Son Güncelleme:

28/07/2020 - 15:48

Üniversitemiz öğretim üyelerinden Doç. Dr. Kostyantyn Zheltukhin’in yazarları arasında bulunduğu “Nonlocal hydrodynamic type of equations” başlıklı makale Communications in Nonlinear Science and Numerical Simulation’da yayınlandı.

We show that the integrable equations of hydrodynamic type admit nonlocal reductions. We first construct such reductions for a general Lax equation and then give several examples. The reduced nonlocal equations are of hydrodynamic type and integrable. They admit Lax representations and hence possess infinitely many conserved quantities.


Gürses, M., Pekcan, A., & Zheltukhin, K. (2020). Nonlocal hydrodynamic type of equations. Communications in Nonlinear Science and Numerical Simulation, 85 doi:10.1016/j.cnsns.2020.105242

 

Makaleye erişim için: https://www.sciencedirect.com/science/article/pii/S1007570420300757


ODTÜ Yazarı

Doç. Dr. Kostyantyn Zheltukhin

zheltukh@metu.edu.tr Scopus Yazar Kimliği: 6603497099
Yazar Hakkında ORCID: 0000-0002-1098-7369

Etiketler/Anahtar sözcükler:

Conserved quantities, Hydrodynamic equations, Lax representations, Nonlocal reductions


Diğer Yazarlar:
Gürses, M., & Pekcan, A.


Ek Bilgiler:
This work is partially supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK).