

<u>СН XI</u>

RS

COURSE OUTLINE

1.	INTRODUCTION & BASIC CONCEPTS	
11.	MODELING DYNAMIC SYSTEMS	
III.	CONTROL SYSTEM COMPONENTS	
IV.	STABILITY	
ν.	TRANSIENT RESPONSE	
VI.	STEADY STATE RESPONSE	
VII.	DISTURBANCE REJECTION	
VIII.	BASIC CONTROL ACTIONS & CONTROL	LE
IX.	FREQUENCY RESPONSE ANALYSIS	
Χ.	SENSITIVITY ANALYSIS	

XI. ROOT LOCUS ANALYSIS

Prof. Dr. Y. Samim Ünlüsoy

ROOT LOCUS - OBJECTIVES

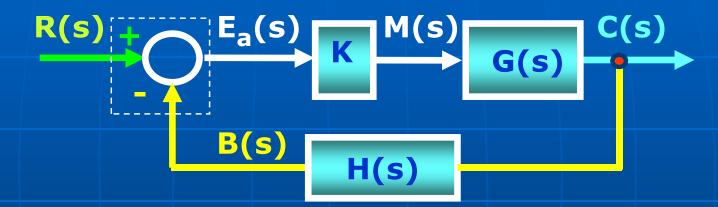
- **Getting familiar with the**
 - definition of root locus, and
 - concept of root locus analysis.
- **Understanding the**
 - use of root locus to find the poles of a closed loop system,
 - selection of a design parameter to meet transient response and stability requirements of a control system.

Prof. Dr. Y. Samim Ünlüsoy

ROOT LOCUS - Definition

- Root Locus is the trajectory of the <u>closed</u> <u>loop poles</u> of a system in the s (complex) plane, as the value of a design parameter (such as open loop gain) is varied.
- Thus, the variation of the dynamic behaviour of the system with different values of the design parameter can be observed and a suitable value can be selected for use.

Consider a typical closed loop system.



Open Loop Transfer Closed Loop Transfer
 Function Function

 $\frac{B(s)}{R(s)} = KG(s)H(s)$

$$T(s) = \frac{C(s)}{R(s)} = \frac{KG(s)}{1 + KG(s)H(s)}$$

Prof. Dr. Y. Samim Ünlüsoy

<mark>B(s)</mark>=KG(s)H(s) R(s)

 $T(s) = \frac{C(s)}{R(s)} = \frac{KG(s)}{1 + KG(s)H(s)}$

ROOT LOCUS

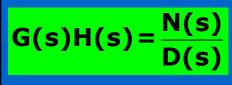
- It is noted that, the transient response and stability of the system is dependent on the poles of the closed loop transfer function T(s).
- The poles of the closed loop transfer function (poles of the open loop transfer function are independent of K) vary as the parameter K varies. The characteristic equation is given by:
 1+KG(s)H(s)=0

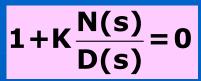
1+KG(s)H(s)=0

ROOT LOCUS

If one writes the open loop transfer function in the form $G(s)H(s)=\frac{N(s)}{D(s)}$ $1+K\frac{N(s)}{D(s)}=0$ Then $\frac{D(s)}{\nu} + N(s) = 0$ and or D(s)+KN(s)=0

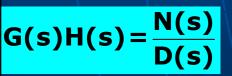
Prof. Dr. Y. Samim Ünlüsoy





D(s)+KN(s)=0

It is clear that as K ⇒ 0, the roots of the characteristic equation (closed loop poles) are given by
 D(s)=0



i.e. the poles of the open loop transfer function.

Prof. Dr. Y. Samim Ünlüsoy

$$1+K\frac{N(s)}{D(s)}=0$$

<u>ROOT LOCUS</u>

$$\frac{D(s)}{K} + N(s) = 0$$

Similarly, if K ⇒ ∞ then the roots of the characteristic equation (closed loop poles) are given by
 N(s)=0

G(s)H(s)=<mark>N(s)</mark> D(s)

i.e. the zeroes of the open loop transfer function.

Prof. Dr. Y. Samim Ünlüsoy

- Thus, as K varies from 0 to ∞, the roots of the characteristic equation (closed loop poles)
 - start as the poles of the open loop transfer function and
 - end as the zeroes of the open loop transfer function.
- For an nth order system, there will be n closed loop poles.

Prof. Dr. Y. Samim Ünlüsoy

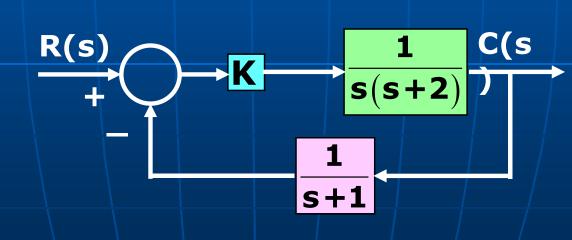
- Let the order of the numerator and denominator polynomials of the open loop transfer function be m and n, respectively. Thus the <u>open loop transfer</u> <u>function</u> will have m zeroes and n poles.
- Then, n closed loop poles will start from the open loop poles and only m will end at open loop zeroes.
- The remaining n-m closed loop poles will end at infinity, i.e. open loop zeroes at infinity.

- Thus, the root locus will consist of n branches; each starting from an open loop pole and ending either at an open loop zero or at infinity.
- Corresponding to each value of the gain K, there will be n closed loop poles; one on each branch of the root locus.
- Hence, by proper selection for the gain K, the poles of the system can be located such that the system response is close to the desired response.

Prof. Dr. Y. Samim Ünlüsoy

ROOT LOCUS Example 1a

- Draw the root locus for the following system.
- Select a value for the gain K such that the system has an undamped natural frequency of at least 0.5 Hz and a damping ratio between 0.5 to 0.8.



Prof. Dr. Y. Samim Ünlüsoy

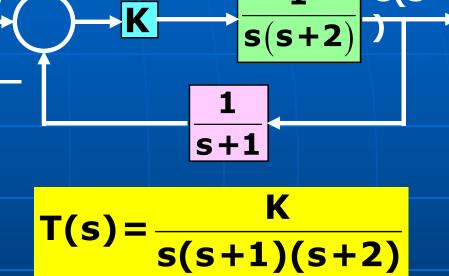
ROOT LOCUS Example 1b

- To draw the root locus, first determine the open loop transfer function.

 R(s)

 K

 s(s+2)
- 3 open loop poles, (0,-1,-2)
- O open loop zeroes, (3 open loop zeroes at infinity)



Thus the root locus will have 3 branches starting from the open loop poles at 0, -1, and -2 and all of them will go to infinity.

Prof. Dr. Y. Samim Ünlüsoy

$$T(s) = \frac{K}{s(s+1)(s+2)}$$

ROOT LOCUS Example 1c

Enter the Matlab commands :

s=tf(`s'); T=1/s/(s+1)/(s+2)2 •K=6 rlocus(T) Imaginary Axis 1 axis([-4 1 -2.5 2.5]) 0 **Closed loop poles** K -1 0, -1, -2 K=0.385 0 -2 0.385 -0.423, -0.423, -2.155 -3 -2 -4 -1 0 6 -3, $\pm \sqrt{2}$ j **Real Axis** -3.3, 0.155±1.73j 10

Remember that for a complex pole :

$$s_{1,2} = -ξω_n \pm jω_n \sqrt{1-ξ^2}$$

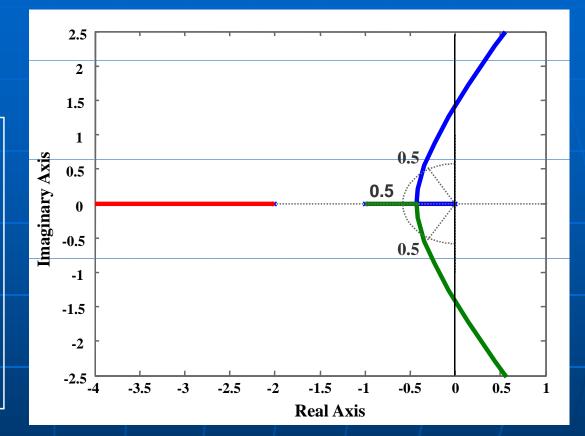
Prof. Dr. Y. Samim Ünlüsoy

ROOT LOCUS Example 1d

Add 3 more Matlab commands.

s=tf('s'); T=1/s/(s+1)/(s+2)
rlocus(T)
axis([-4 1 -2.5 2.5])

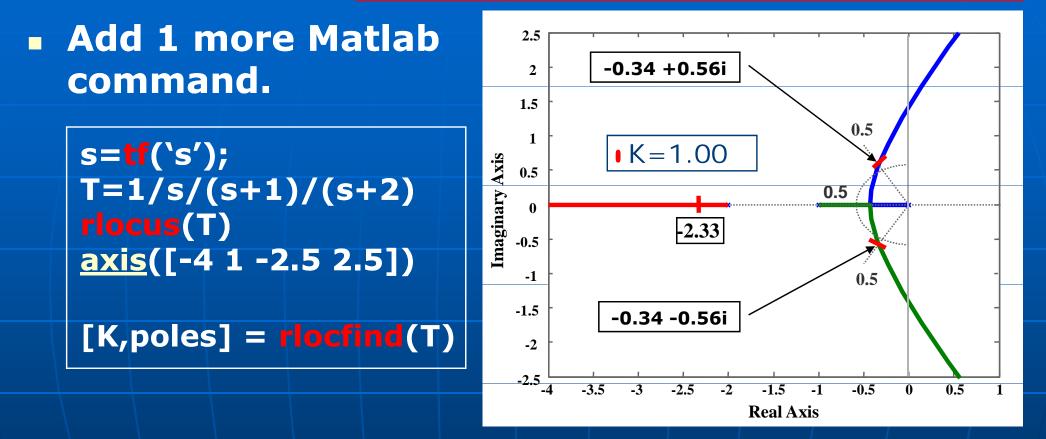
zeta=0.5; wn=0.5; sgrid(zeta, wn)



to get the constant undamped natural frequency and damping ratio lines.

Prof. Dr. Y. Samim Ünlüsoy

ROOT LOCUS Example 1e



 Click on the crosshair cursor in the graphics window put by rlocfind to select a pole location on an existing root locus. The root locus gain associated with this point is returned in K and all the system poles for this gain are returned in poles.

Prof. Dr. Y. Samim Ünlüsoy

ROOT LOCUS Reading

Read Nise 8.1-8.4, 8.7 Dorf & Bishop 7.1-7.2

Prof. Dr. Y. Samim Ünlüsoy

The END (for this term !)

Prof. Dr. Y. Samim Ünlüsoy