Convergent perturbation studies in screened coulomb potential systems: a high precision numerical algorithm via Laguerre basis set

M. Demiralp, N. A. Baykara, and H. Taşeli*
TÜBİTAK, Research Institute for Basic Sciences, Applied Mathematics Department, P.O. Box 74, 41470, Gebze-Kocaeli, Turkey
(Received June 29, 1987 Accepted August 26, 1987)

Abstract

In this work, a high precision algorithm is developed to determine the discrete spectrum of screened coulomb potential systems. The algorithm is mainly based upon the use of the perturbation of a hydrogen-like operator by a bounded operator. The Laguerre basis set expansion is employed in the procedure to obtain the operator inversion. Although a functional analytic analysis of errors and proof of convergence theorem are still lacking, it appears, numerically, that the method rapidly converges for bounded screened coulomb potential. Extremely accurate numerical results for the bound-state energies, in the case of Yukawa potential, are presented for illustrative purposes.

Key words: Screened coulomb potentials-Perturbation theory-Yukawa potential

1. Introduction

Perturbation theory is frequently used in many branches of physical and engineering sciences. For treating several problems, it is possible to model a system so that a parameter, say ε, whose small real values are interesting in many circumstances naturally arises. Hence the problem generally becomes analytically solvable by expanding all ε-dependent entities in powers of ε. Depending on the functional behaviour of the equations with respect to ε, such series may or may not converge. There are notable references which give concrete ideas on perturbation theory, especially in the case of linear operators [1-5].

[^0]Screened coulomb potentials are of considerable importance in the mathematical modelling and understanding of the physical phenomena of many quantum chemical and quantum electrodynamic systems. Various works on the spectral investigation of these systems may be cited [6-16]. There is a general tendency in the perturbative treatment of the problems to use the screening parameter, say γ, as a natural perturbation parameter, except in Smith's work [17] and in our previous work [18]. Even if the total potential operator is bounded in the whole co-ordinate space and has a finite norm, the individual operators appearing in the expansion of potential with respect to powers of γ are generally not bounded. hence the expansion of the Hamiltonian of the system in powers of γ presents a divergent expansion. The divergency of the resulting perturbative series of energy and wave function is therefore not surprising on the contrary it must be expected. To cure divergent perturbational results Padé approximants can be employed [19-22].

If a series approximated by Padé approximants is of Stieltjes type, one can benefit from certain well-known theorems on the convergence of certain sequences in the Padé table and on the uniqueness of their limits [23]. Such a treatment was realized for the Yukawa case, and it was conjectured that the form of the γ-series expansion was Stieltjes. Results for bound-state energies accurate to five digits were given by means of this argument [24]. However, in a very recent paper, by using multiple precision arithmetic to prevent error accumulations in the construction of the Padé table, it has been shown that the perturbation series in powers of γ for $1 \mathrm{~s}, 2 \mathrm{~s}$ and 2 p energy levels are not Stieltjes [25]. Indeed, it is very difficult to prove whether a series is Stieltjes or not unless an amenable integral representation of its coefficients is available. Generally, numerical implementation of the positiveness of the determinants of first few upper left square blocks in the determinental representation of Padé approximants may not be sufficient to satisfy the general determinental conditions for Stieltjes series. Furthermore, the sensitivity of the Padé table to error accumulations prevents one from increasing the order of Padé approximants arbitrarily, so that very high precision arithmetic should be used. In [25], results accurate to 20 digits for almost the entire regime of the screening parameter, in the cases of $1 \mathrm{~s}, 2 \mathrm{~s}$ and 2 p states were presented. There is, however, a considerable loss of accuracy for high screening values in the 2 p state.

All these discussions imply that the use of the naturally arising perturbation parameter, γ, is not suitable for the spectral investigation of screened coulomb potential systems. This motivates us to insert a superfluous parameter, say ε, into a convenient place in the operational form of the Hamiltonian. In our previous work [18], the first paper of this series, certain analytical evaluations up to third-order perturbative energies have been realized for the Yukawa case. In this work, we shall deal with central field screened coulomb potential systems and shall develop an algorithm for numerical implementation of the method to any desired order of perturbation.

To obtain our original problem, the superfluous parameter, ε, is replaced by unity
after the construction of the perturbative series. This kind of perturbation technique is generally known as Neumann perturbation theory [26]. If the operator multiplied by ε is bounded, or if its unboundedness is less than the unperturbed operator, the perturbation theory of linear operators dictates that ε-power series converging in a non-empty circle around the origin of ε-complex plane can be constructed. In particular, if the convergence radii of the series exceed unity then we can represent energy and wave function of the system without any trouble by putting $\varepsilon=1$. Although we shall not give a systematic investigation of the convergence radii of perturbative series, numerical results will be presented which support their convergence.
In the frame of these introductory remarks, this paper contains five sections. In Sect. 2, a detailed presentation of our formalism is given. Section 3 covers the discussion on the role of an effective charge parameter inserted into the scheme for the acceleration of convergence. The fourth section includes the interpretation of numerical results and certain discussions about the convergence properties of the algorithm. The last section involves the conclusions, motivations for future applications and also the standardization and generalization of the proposed technique.

2. Formulation of the algorithm

Let us consider the following Schrödinger equation:

$$
\begin{equation*}
-\frac{1}{2} \nabla^{2} \Psi-\frac{1}{r} V(\gamma \boldsymbol{x}) \Psi=E \Psi, \quad \Psi \in \mathscr{H} \tag{2.1}
\end{equation*}
$$

where \mathscr{H} is the Hilbert space of the problem, \boldsymbol{x} stands for position vector, and r denotes the radial variable in spherical co-ordinates. In the equation, γ characterizes the screening of the central force field by other electrically charged particles. It is clear that the amplitude of the screening may depend on the direction. We shall, however, omit the angle-dependence of the potential, V, for the sake of dealing with a system which can be investigated via ordinary differential equations. That is, we assume

$$
\begin{equation*}
V=V(\gamma r) . \tag{2.2}
\end{equation*}
$$

In fact, angle-dependency does not make important changes in the systematic construction of the perturbational algorithm, only an extra expansion is needed over spherical harmonics. However, the investigation of this rather generalized case is left for future studies, and, after the separation of variables, the radial form of (2.1) is taken as

$$
\begin{equation*}
-\frac{1}{2} \frac{d^{2} \Psi}{d r^{2}}-\frac{1}{r} \frac{d \Psi}{d r}+\left[\frac{1}{2} l(l+1) \frac{1}{r^{2}}-\frac{1}{r} V(\gamma r)\right] \Psi=E \Psi \tag{2.3}
\end{equation*}
$$

where $l(=0,1,2, \ldots)$ characterizes the angular dependence of the system in a global sense, and now, Ψ is solely a function of r. The accompanying boundary conditions of (2.3) are the regularity, the continuity and the appropriately vanishing behaviour of Ψ as $r \rightarrow \infty$. Since our problem is defined on the Hilbert space,
or more specifically, on the space of the square integrable functions, the limitation of square integrability of the ptoential, V, will result in certain advantages, especially on the convergence nature of our algorithm. Moreover, we assume that $V(0)=1$. This specification does not create any loss of generality due to the fact that a scaling transformation on r transforms any case, except $V(0)=0$ to $V(0)=1$. The case where $V(0)=0$ removes the coulombic nature of the potential in the vicinity of the origin, that is, when $r \rightarrow 0$. We, therefore, assume that $V(0) \neq 0$ in order to avoid this undesired case.

By inserting the superfluous perturbation parameter, ε, the equation (2.3) takes the form

$$
\begin{equation*}
-\frac{1}{2} \frac{d^{2} F}{d r^{2}}-\frac{1}{r} \frac{d F}{d r}+\left[\frac{1}{2} l(l+1) \frac{1}{r^{2}}-\frac{1}{r}\right] F+\varepsilon \frac{1-V(\gamma r)}{r} F=\nu F . \tag{2.4}
\end{equation*}
$$

It is, therefore, evident that we can obtain the solution of (2.3) in terms of F and ν by letting $\varepsilon=1$, thus

$$
\begin{align*}
& \Psi(r)=\left.F(r, \varepsilon)\right|_{\varepsilon=1} \tag{2.5}\\
& E=\left.\nu(\varepsilon)\right|_{\varepsilon=1} . \tag{2.6}
\end{align*}
$$

The Hamiltonian of (2.4), which is self-adjoint provided that ε remains on the real axis of ϵ-complex plane, is formally written as

$$
\begin{equation*}
H=H_{0}+\varepsilon H_{1}, \tag{2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{0}=-\frac{1}{2} \frac{d^{2}}{d r^{2}}-\frac{1}{r} \frac{d}{d r}+\frac{1}{2} l(l+1) \frac{1}{r^{2}}-\frac{1}{r} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{1}=\frac{1}{r}[1-V(\gamma r)] . \tag{2.9}
\end{equation*}
$$

One can observe that H has a discrete spectrum located on the negative real axis. In addition, its continuous spectrum covers the entire positive real axis in the ν-complex plane. The Hamiltonian for hydrogen atom, H_{0}, possesses the same type of spectrum as H, except in the number of discrete states. Indeed, H_{0} has a countably infinite number of discrete spectral points, whereas, as a result of the existence of screening, H has only a finite number of discrete states. Hence, as long as ϵ changes from zero to unity, almost all of the discrete spectral points, except a finite number of low-lying ones, have to merge into the continuous spectrum. The number of surviving states is completely determined by the value of γ. Of course, the difference in the number of states between H and H_{0} implies that a slowing down of convergence may be expected when γ is close to a critical value where the discrete state under consideration does not survive anymore.

Now, we can develop a perturbative scheme based on the standard RayleighSchrödinger perturbation technique [2]. Let us consider the expansion of the energy and wave function

$$
\begin{align*}
& \nu=\sum_{j=0}^{\infty} \varepsilon^{j} \nu_{j} \tag{2.10a}\\
& F=\sum_{j=0}^{\infty} \varepsilon^{j} F_{j}(r) . \tag{2.10b}
\end{align*}
$$

If we use these expressions in (2.4),

$$
\begin{equation*}
\left(H_{0}+\varepsilon H_{1}\right) F=\nu F, \tag{2.11}
\end{equation*}
$$

and equate the coefficients of various powers of ε on both sides of equality, we arrive at the recursion

$$
\begin{equation*}
\left(H_{0}-\nu_{0} I\right) F_{j}=\left(\nu_{1} I-H_{1}\right) F_{j-1}+\sum_{k=0}^{j-2} \nu_{j-k} F_{k} ; \quad j \geq 2 \tag{2.12}
\end{equation*}
$$

with the initial equations

$$
\begin{align*}
& \left(H_{0}-\nu_{0} I\right) F_{0}=0 \tag{2.13}\\
& \left(H_{0}-\nu_{0} I\right) F_{1}=\left(\nu_{1} I-H_{1}\right) F_{0} \tag{2.14}
\end{align*}
$$

for the evaluation of ν_{j} and F_{j}, where I stands for the unit operator of the operator space to which H_{0} and H_{1} belong.

By making the co-ordinate transformation,

$$
\begin{equation*}
x=2 r /(n+l+1), \tag{2.15}
\end{equation*}
$$

the solution of the eigenvalue problem of the hydrogenic case,

$$
\begin{equation*}
H_{0} u_{n}=\lambda_{n} u_{n}, \tag{2.16}
\end{equation*}
$$

is obtained where the discrete eigenfunctions and eigenvalues are

$$
\begin{align*}
& u_{n}=\frac{2}{(n+l+1)^{2}}\left[\frac{n!}{(n+2 l+1)!}\right]^{1 / 2} x^{1} e^{-x / 2} L_{n}^{2 l+1}(x) \tag{2.17}\\
& \lambda_{n}=-1 /\left[2(n+l+1)^{2}\right] ; \quad l, n=0,1,2, \ldots \tag{2.11}
\end{align*}
$$

$L_{n}^{m}(x)$ is the associated Laguerre function. Therefore, we can show that the solution of (2.13) is

$$
\begin{gather*}
\nu_{0}=\lambda_{n} \tag{2.19}\\
F_{0}=u_{n} . \tag{2.20}
\end{gather*}
$$

The structure of H_{0} necessitates using r^{2} as a weight function in the scalar products of the Hilbert space. The set of u_{n} 's is an ortho-normal set under the weight r^{2}. Since a global normalization is always possible after obtaining the eigenfunctions, we can assume, without any loss of generality, that the normalization condition

$$
\begin{equation*}
\left\langle F_{j}, F_{0}\right\rangle=\delta_{0 j} ; \quad j=0,1,2, \ldots \tag{2.21}
\end{equation*}
$$

where ket and bra notation implies the scalar product and $\delta_{k j}$ is Kronecker's delta, holds. This removes any arbitrariness from the solutions of the F_{j} 's.

The self-adjointness of the operator $\left(H_{0}-\nu_{0} I\right)$ implies that the homogeneous solution and the right-hand side must be orthogonal both in (2.14) and in (2.12). Thus, in conjunction with (2.21), we obtain the relations

$$
\begin{align*}
& \nu_{1}=\left\langle F_{0}, H_{1} F_{0}\right\rangle=\left\langle u_{n}, H_{1} u_{n}\right\rangle \tag{2.22}\\
& \sum_{k=0}^{j-2} \nu_{j-k}\left\langle F_{0}, F_{k}\right\rangle-\left\langle F_{0}, H_{1} F_{j-1}\right\rangle=0 \rightarrow \nu_{j}=\left\langle u_{n}, H_{1} F_{j-1}\right\rangle ; \quad j \geq 2 \tag{2.23}
\end{align*}
$$

to determine the coefficients of the energy series (2.10a). Here, the last equation involves (2.22) for $j=1$, and it is not problematic to evaluate ν_{1}. However, in the cases where $j>1$, first of all we have to find F_{j} in order to obtain ν_{j+1}. This can be accomplished through the inversion of the operator ($H_{0}-\nu_{0} I$) on the complementary space of its null space spanned by u_{n} 's. F_{j} 's can then be obtained from (2.12) and (2.14). Therefore, we should solve the inversion problem

$$
\begin{equation*}
\left(H_{0}-\nu_{0} I\right) f=g \tag{2.24}
\end{equation*}
$$

where it is assumed that

$$
\begin{equation*}
\left\langle u_{n}, f\right\rangle=\left\langle u_{n}, g\right\rangle=0 \tag{2.25}
\end{equation*}
$$

If \mathscr{F} denotes the inverse of $\left(H_{0}-\nu_{0} I\right)$, the solution will be expressed in the form

$$
\begin{equation*}
f=\mathscr{F} g . \tag{2.26}
\end{equation*}
$$

A frequently used technique for finding \mathscr{F} is the utilization of the spectral decomposition of H_{0}. This is possible, provided that the eigenfunction set of H_{0} is complete. However, the spectral structure of H_{0} implies that the decomposition of H_{0} into projection operators, which project a given function into a specified eigenspace of H_{0}, can be expressed as an infinite sum over a countably infinite set of discrete eigenfunctions, in addition to an infinite sum over an uncountable infinite set of eigendistributions corresponding to the continuous spectrum. The analytical treatment of such sums creates many technical problems and necessitates the evaluation of certain integrals over confluent hypergeometric functions. However, since the spectral series converge very slowly, certain operators cannot be approximated by finite truncations. It is therefore preferable to seek an appropriate way of dealing with an operator which has solely discrete spectra with a complete eigenfunction set. This has been realized in our previous work [18], and Eq. (2.24) was converted to

$$
\begin{equation*}
[T-(n+l+1) I] \tilde{f}=g \tag{2.27}
\end{equation*}
$$

where

$$
\begin{align*}
& T=-x \frac{d^{2}}{d x^{2}}-2 \frac{d}{d x}+l(l+1) \frac{1}{x}+\frac{1}{4} x, \tag{2.28}\\
& \tilde{f}=f[(n+l+1) x / 2], \quad \tilde{g}=\frac{1}{2}(n+l+1)^{2} x g[(n+l+1) x / 2] . \tag{2.29}
\end{align*}
$$

The operator T is a very well-known operator, which arises in the theory of Laguerre polynomials, and has only a discrete spectrum with a complete set of eigenfunctions. Thus

$$
\left.\begin{array}{l}
T \phi_{m}=(m+l+1) \phi_{m} \tag{2.30}\\
\phi_{m}=\left[\frac{m!}{(m+2 l+1)!}\right]^{1 / 2} e^{-x / 2} x^{l} L_{m}^{2 l+1}(x) \\
\left\langle\phi_{m}, \phi_{n}\right\rangle=\int_{0}^{\infty} \phi_{m} \phi_{n} x d x=\delta_{m n}
\end{array}\right\}
$$

and \tilde{f} can be represented by the linear combination of ϕ_{i} 's, that is,

$$
\begin{equation*}
\tilde{f}=\sum_{i=0}^{\infty} \tilde{f}_{i} \phi_{i}(x) \tag{2.31}
\end{equation*}
$$

Therefore, the inverse of $[T-(n+l+1) I]$, say \mathscr{L}, is established such that

$$
\begin{equation*}
\tilde{f}=\mathscr{L} \tilde{g}=\sum_{\substack{m=0 \\ m \neq n}}^{\infty} \frac{1}{m-n} \phi_{m}\left\langle\phi_{m}, \tilde{g}\right\rangle \tag{2.32}
\end{equation*}
$$

Here, the relation between \mathscr{L} and \mathscr{F} is

$$
\begin{equation*}
\mathscr{F} g=\frac{1}{2}(n+l+1)^{2} \mathscr{L}(x g) \tag{2.33}
\end{equation*}
$$

in terms of x. Finally, we show, from (2.12), that the coefficients, F_{j}, of the wave function (2.10b) for $j \geq 1$ can be evaluated by the recursive formula

$$
\begin{equation*}
F_{j}(x)=\frac{1}{2}(n+l+1)^{2} \sum_{k=0}^{j-1} \nu_{j-k} \mathscr{L}\left(x F_{k}\right)-(n+l+1) \mathscr{L}\left\{[1-V(\tilde{\gamma} x)] F_{j-1}\right\} \tag{2.34}
\end{equation*}
$$

where we have written $\tilde{\gamma}$ for $(n+l+1) \gamma / 2$.
Summation formulae for Laguerre functions and their products may be employed, in the case of some specific potentials, to obtain solutions in terms of elementary or special functions of mathematical analysis. Indeed, in the case of the Yukawa potential, where

$$
\begin{equation*}
V(\gamma r)=e^{-\gamma r} \tag{2.35}
\end{equation*}
$$

analytical evaluations up to third-order perturbative contributions were accomplished in the first paper of this series [18]. However, the analytical evaluations are not essentially necessary except for checking purposes and mathematical elegance. A more reasonable way is to develop an appropriate and readily accessible numerical algorithm in order to calculate F_{j}. and ν_{j} up to any desired order of perturbation. So we choose the M-dimensional subspace, say $\mathscr{\mathscr { S }}$, spanned by ϕ_{j} such that $\left\{\phi_{j}: n-m_{1}<j \leq n+m_{2}, m_{1}+m_{2}=M\right\}$. M is called the truncation order for the matrix representations of the related entities. It is possible to write

$$
\begin{equation*}
\mathscr{S}=\mathscr{C}+\mathcal{N}, \tag{2.36}
\end{equation*}
$$

where \mathcal{N} is the one-dimensional subspace spanned by ϕ_{n}, i.e. the null space of the operator $[T-(n+l+1) I]$, and the $(M-1)$ dimensional space \mathscr{C} stands for its complement. If we consider the vector representation of F_{j} and denote its projection into S by f_{j}, it is readily shown that

$$
\boldsymbol{f}_{j} \in \begin{cases}\mathscr{C}, & j>0 \tag{2.37}\\ \mathcal{N}, & j=0\end{cases}
$$

where f_{j} is now a vector of order $(M-1)$ if $j>0$, and a scalar if $j=0$. Furthermore, if we denote the matrix representations of $[1-V(\tilde{\gamma} x)], \mathscr{L}$ and x on \mathscr{C} by $\boldsymbol{A}, \boldsymbol{B}$ and \boldsymbol{X} respectively, and the projections of $x \phi_{n}$ and $(n+l+1)[1-V(\tilde{\gamma} x)] \phi_{n}$ into \mathscr{C} by the vectors \boldsymbol{u} and \boldsymbol{v} respectively, one can conclude that

$$
\begin{align*}
& \boldsymbol{f}_{j} \cong \sum_{k=1}^{j-1} \mu_{j-k} \boldsymbol{B} \boldsymbol{X} \boldsymbol{f}_{k}+\mu_{j} \boldsymbol{B} \boldsymbol{u}-\boldsymbol{B} \boldsymbol{A} \boldsymbol{f}_{j-1} ; \quad j \geq 2 \tag{2.38}\\
& \boldsymbol{f}_{1} \cong \mu_{1} \boldsymbol{B} \boldsymbol{u}-\boldsymbol{B} \boldsymbol{v} \tag{2.39}
\end{align*}
$$

where

$$
\begin{equation*}
\mu_{j}=\frac{1}{2}(n+l+1)^{2} \nu_{j} \tag{2.40}
\end{equation*}
$$

We can finally reproduce, from (2.22) and (2.23), the coefficients of the energy series after some intermediate algebra as follows:

$$
\begin{align*}
& \mu_{j} \cong \frac{1}{4}(n+l+1)^{2} v^{T} f_{j-1} \tag{2.41}\\
& \mu_{1}=\frac{1}{4}(n+l+1)^{2} \int_{0}^{\infty} \phi_{n}^{2}[1-V(\tilde{\gamma x})] x d x . \tag{2.42}
\end{align*}
$$

It should be noticed that the ($M-1$) $\times(M-1)$ matrices in (2.38) are symmetrical, and \boldsymbol{B} and \boldsymbol{X} are diagonal and tridiagonal matrices respectively. Consequently, μ_{j} 's and f_{j} 's can be recursively approximated up to a prescribed j value, say N, which is named as the order of perturbation. By treating with sufficiently large values of M and N is possible to get highly accurate numerical results.

3. Use of the effective charge parameter

In our formulation we used \mathbf{H}_{0} as the Hamiltonian for the unperturbed hydrogen atom, and H_{1} as the perturbing operator. Since there is no adjustable parameter in the structure of either H_{0} or H_{1}, it is not possible to affect the convergence rate of the perturbative series. Had there been a flexibility to adjust the comparative norm of H_{1} with respect to H_{0}, the desired accurate results could have been obtained by expending less effort. For this purpose, we insert a dummy parameter into the operational form of the problem and hence replace H_{0} and H_{1} by

$$
\begin{align*}
& \tilde{H}_{0}=H_{0}+(1-\zeta) / r \tag{3.1}\\
& \tilde{H}_{1}=H_{1}-(1-\zeta) / r \tag{3.2}
\end{align*}
$$

Here, ζ plays the same role as the atomic charge parameter of hydrogen-like systems, so it may be called the effective charge parameter. Even though it looks
as if the insertion of ζ destroys the boundedness of H_{1} when $r=0$, the normed character of H_{1} does not alter due to the existence of the weight r^{2}. On the other hand, since the ζ-contributions of \tilde{H}_{0} and \tilde{H}_{1} cancel each other out in the evaluation of the perturbation series at $\varepsilon=1$, we have to point out that there is no real effect on the differential equation and on the limits of the series. There is, however, no effect for the case where both truncation size M and the order of perturbation N go to infinity. For finite values of M, ζ-dependence of the limits of perturbation series becomes more important and more prominent, especially as γ approaches its critical value, say $\gamma_{c r}$. This is due to the sensitivity of truncation errors to ζ and the slowing down of convergence for high screening. Here, ζ can be interpreted as an artificial screening factor which may, at least in part, share the role of γ. We can therefore expect the value of ζ to start from unity when γ is zero, and to decrease as γ increases to $\gamma_{c r}$. However, the choice of best ζ, which makes the perturbational series under consideration stable, is not a very easy task. If one carefully studies Tables $1-10$, in which numerical results are presented, it is apparent that values smaller than a half have not been used for ζ to avoid possible error accumulations in the calculation of elements of the matrix A, particularly where the truncation order M is quite large.

Although there are such problematic aspects of using an effective charge parameter, we can conclude that ζ can be employed to accelerate the convergence of the series. Indeed, if γ is not nearly zero and if M is sufficiently large, it is always possible to find a ζ value different from unity such that the desired accurate results for energy can be obtained by selecting an order of perturbation which is less than when $\zeta=1$. Furthermore, one can test the accuracy of the limit of the perturbational series by slightly increasing the size of truncation, M, or systematically changing the value of ζ. Finally, we should also notice that upon transforming variable x to $x / \zeta, H_{0}$ and H_{1} are unaltered in form so that it is unnecessary to modify the formulation in Sect. 2.

4. Discussions and numerical applications for Yukawa potential systems

For numerical purposes, primarily, the matrices $\boldsymbol{A}, \boldsymbol{B}$ and \boldsymbol{X} can be constructed. Since the elements of the diagonal matrix \boldsymbol{B} and of the tridiagonal matrix \boldsymbol{X} can be analytically determined by using certain properties of Laguerre polynomials, there is no difficulty in constructing them. On the other hand, if we consider the full matrix \boldsymbol{A}, the definition of which is

$$
\begin{equation*}
A_{m n}=\int_{0}^{\infty} \phi_{m}(x) Q(x) \phi_{n}(x) x d x \tag{4.1}
\end{equation*}
$$

where we have $Q(x)=[1-V(\tilde{\gamma} x)]$, it is possible to attain a recursion relationship to calculate its elements. By using the expression of ϕ_{n} in Eq. (2.30) and the recurrence formulae for the Laguerre polynomials [27] we obtain the relationship

$$
\begin{equation*}
\phi_{n}=\frac{1}{2(n+l+1)}\left\{x \phi_{n}+[(n+1)(n+2 l+2)]^{1 / 2} \phi_{n+1}+[n(n+2 l+1)]^{1 / 2} \phi_{n-1}\right\} . \tag{4.2}
\end{equation*}
$$

Table 1. The comparison of cumulative perturbational energy eigenvalues for 1 s state

γ	M	N	ζ	Our results	Vrscay 1986 [25]	
0.1	30	22	1.0	-0.407058 030613403156754507070361	-0.407	05803061340315675
0.2	35	29	0.95	-0.326808511369193 384882495419282	-0.326	80851136919338488
0.3	40	38	0.9	-0.257 638586303054148878964069306	-0.257	63858630305414888
0.4	45	51	0.85	-0.198 376083361850216608413859926	-0.198	37608336185021661
0.5	50	67	0.8	-0.148 117021889932616711758220725	-0.148	11702188993261671
0.6	55	136	0.85	-0.106 135907505814193000738693811	-0.106	13590750581419300
0.7	55	239	0.9	-0.071 833555904512213040262126802	-0.071	83355590451221304
0.8	60	415	1.0	-0.044 704304497359663200348766240	-0.044	70430449735966320
0.9	60	550	0.85	-0.024 314193827502054887384151	-0.024	31419382750205489
1.0	60	600	0.7	-0.010 2857899900176968048	-0.010	28578999001769680
1.1	60	650	0.5	-0.002 287244234053	-0.002	28724423405348546

Table 2. The comparison of cumulative perturbational energy eigenvalues for 2 s state

γ	M	N	ζ	Our results	Vrscay 1986 [25]	
0.01	30	12	1.0	-0.115 293285167994256222045516170	-0.115	29328516799425622
0.02	30	13	0.99	-0.106 148320244695503250708341186	-0.106	14832024469550325
0.03	30	16	0.98	-0.097531786134 660862770039060920	-0.097	53178613466086277
0.04	35	19	0.97	-0.089 414634185159188415714621025	-0.089	41463418515918842
0.05	40	24	0.96	-0.081 771195795253124173489413770	-0.081	77119579525312417
0.06	40	29	0.95	-0.074 578534412709709694885171159	-0.074	57853441270970969
0.07	45	35	0.935	-0.067815959 981462181222810363311	-0.067	81595998146218122
0.08	45	38	0.92	-0.061 464656212300385911466251113	-0.061	46465621230035891
0.09	50	45	0.9	-0.055 507388553290736394798978074	-0.055	50738855329073639
0.10	50	47	0.875	-0.049928271331918889 234996681037	-0.049	92827133191888923
0.15	50	108	0.825	-0.027 222190725688518250187267589	-0.027	22219072568851825
0.20	55	252	0.775	-0.012 107865195440464385855372408	-0.012	10786519544046439
0.25	60	700	0.7	-0.003 395906283239307796442264	-0.003	39590628323930780
0.30	60	700	0.5	-0.000 091602444	-0.000	09160244389189901

Table 3. The comparison of cumulative perturbational energy eigenvalues for 2 p state

γ	N	ζ	Our results	Vrscay 1986 [25]
0.01	12	1.0	-0.115 245224090564185894783216336	-0.115 24522409056418589
0.02	13	0.99	-0.105 963398179939904755731028037	-0.105963 39817993990476
0.03	16	0.975	-0.097131366795 691310671783889214	-0.097 13136679569131067
0.04	19	0.96	-0.088 729373582879526287939141468	-0.088 72937358287952629
0.05	21	0.95	-0.080 740387037784609712102743610	-0.080 74038703778460971
0.06	24	0.925	-0.073 149619385860625023805418421	-0.073 14961938586062502
0.07	29	0.9	-0.065 944176996156573384560516652	-0.065944 17699615657338
0.08	31	0.875	-0.059 112804787031234635692332928	-0.059 11280478703123464
0.09	35	0.85	-0.052 645701331584274463576906198	-0.052 64570133158427446
0.10	38	0.825	-0.046 534390486724608386600840395	-0.046 53439048672460839
0.15	104	0.75	-0.021 104888927736242916943382961	-0.021 10488892773624292
0.20	600	0.675	-0.004 101646530784090388446610214	-0.004 10164653

Table 4. Cumulative perturbational energy eigenvalues for 3 s state

γ	N	ζ	Energy
0.01	17	1.0	-0.046 198857799033191519298258968
0.02	22	0.95	-0.038 020014393017364134542111478
0.03	30	0.9	-0.030 886083779974481232731547628
0.04	34	0.85	-0.024 692267257683267057858319277
0.05	47	0.8	-0.019 352554814752342295397996789
0.06	59	0.75	-0.014 794157295178504997929579983
0.07	65	0.725	-0.010 953922474898051105461938169
0.08	109	0.7	-0.007 775877038957710092639379433
0.09	205	0.725	-0.005 209440420383781109197435239
0.10	400	0.75	-0.003 208046744690258718213516792

Table 5. Cumulative perturbational energy eigenvalues for $3 p$ state

γ	N	ζ	Energy
0.01	17	1.0	-0.046 153104829162287315273878682
0.02	22	0.95	-0.037852 389200223176326568017591
0.03	30	0.9	-0.030 540967584512981172892758929
0.04	38	0.85	-0.024 132353610390802462032068924
0.05	47	0.8	-0.018 557751883405996604893993884
0.06	60	0.75	-0.013 761345303506408408115349158
0.07	77	0.725	-0.009 697593751970732639176727847
0.08	137	0.7	-0.006 329995439268113269338178286
0.09	300	0.7	-0.003 631543813637522782845891872
0.10	650	0.675	-0.001 589001525867560267558634940

Table 6. Cumulative perturbational energy eigenvalues for 3 d state

Multiplying by ϕ_{m} and reusing this identity to express $x \phi_{m}$ in terms of ϕ_{m-1}, ϕ_{m} and ϕ_{m+1} we obtain the two-dimensional recursion relationship

$$
\begin{align*}
2(n-m) \phi_{m} \phi_{n}= & {[(n+1)(n+2 l+1)]^{1 / 2} \phi_{m} \phi_{n+1}+[n(n+2 l+1)]^{1 / 2} \phi_{m} \phi_{n-1} } \\
& -[(m+1)(m+2 l+2)]^{1 / 2} \phi_{m+1} \phi_{n}-[m(m+2 l+1)]^{1 / 2} \phi_{m-1} \phi_{n} . \tag{4.3}
\end{align*}
$$

Table 7. Cumulative perturbational energy eigenvalues for 4 s state

γ	N	ζ	Energy
0.01	25	1.0	-0.022 356120521237134526537480368
0.02	29	0.9	-0.015 379266427896141378328766000
0.025	37	0.85	-0.012 503238318007071505739698432
0.03	50	0.8	-0.009 992038197871687950471313673
0.04	72	0.75	-0.005 958084497576461475241796902
0.05	163	0.7	-0.003 091659900161321484658950292
0.06	550	0.7	-0.001 236719097035032773917445475

Table 8. Cumulative perturbational energy eigenvalues for $4 p$ state

γ	N	ζ	Energy
0.01	25	1.0	-0.022 313420741967189431061748014
0.02	30	0.9	-0.015 233805356103025211040276736
0.025	40	0.85	-0.012 294320436313933670168893845
0.03	50	0.8	-0.009 716695159602488892977681790
0.04	80	0.75	-0.005 556019078689840613671502405
0.05	205	0.7	-0.002 598058852571853965261191255
0.06	650	0.625	-0.000 729172766636200572968574

Table 9. Cumulative perturbational energy eigenvalues for 4 d state

γ	N	ζ	Energy
0.01	25	1.0	-0.022 227792489804398453786853194
0.02	30	0.9	-0.014940057467644185894004 256442
0.025	40	0.85	-0.011870 448936190599940851142013
0.03	50	0.8	-0.009 155162858705684411207666945
0.04	85	0.7	-0.004 727823602939955013950318353
0.05	280	0.65	-0.001 580871626871004952883948070

Table 10. Cumulative perturbational energy eigenvalues for 4 f state

Hence, we conclude that

$$
\begin{align*}
A_{m+1, n}= & {[(m+1)(m+2 l+2)]^{-1 / 2}\left\{[(n+1)(n+2 l+2)]^{1 / 2} A_{m, n+1}\right.} \\
& +[n(n+2 l+1)]^{1 / 2} A_{m, n-1} \\
& \left.-[m(m+2 l+1)]^{1 / 2} A_{m-1, n}+2(m-n) A_{m n}\right\} ; \quad m, n=0,1,2, \ldots . \tag{4.4}
\end{align*}
$$

This implies that all rows of the matrix can be recursively obtained from its first row. It should also be noted that this property does not depend on the explicit form of the algebraic operator $Q(x)$. That is, a knowledge of only $2 M$ integrals over $Q(x)$ is sufficient to progress through the presented algorithm for any screened coulomb potential. Depending on the analytical structure of the potential, these integrals can be performed analytically or numerically.

Now to take a particular case, consider the Yukawa potential for which

$$
\begin{equation*}
V(\gamma r)=e^{-\gamma r} . \tag{4.5}
\end{equation*}
$$

In this case, one can analytically evaluate all elements of the matrix \boldsymbol{A}. However, in the computational sense, this causes a considerable increase in execution time. It is, therefore, preferable to employ the recurrence relationship (4.4).

Numerical results in the case of Yukawa poential systems are presented for 1 s , $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s} ; 2 \mathrm{p}, 3 \mathrm{p}, 4 \mathrm{p} ; 3 \mathrm{~d}, 4 \mathrm{~d}$ and 4 f states in Tables $1-10$. Table 1 contains the results for 1 s state. The screening parameter γ, in the first column, has been varied over a great portion of its domain between zero and $\gamma_{c r}$ The size of truncation M, the perturbation order N, and the value of the effective charge parameter ζ have been given in the second, third and fourth columns respectively. The last two columns are devoted to the presentation of our results corresponding to γ, M, N and ζ and also to Vrscay's results corresponding to γ, for comparison. For all values of γ from zero to one, extremely accurate results are obtained. However, as γ approaches $\gamma_{c r}$, the present method starts to lose its efficiency. This may possibly be due to the structure of ϕ_{n}-functions. Hence it is necessary to utilize high-order perturbations such as 650 for large screening parameters. In fact, it is well known that most of the methods used in such problems, where a composite spectrum appears, fail in the close neighbourhood of $\gamma_{c r}$

In the other tables, almost the same kind of presentation is used. In all states, results are obtained by systematically increasing γ. However, tables may not involve all values in the close vicinity of $\gamma_{c r}$ M has been given only in Tables 1 and 2, and only Tables 1-3 (for $1 \mathrm{~s}, 2 \mathrm{~s}$ and 2 p states) include a comparison with literature values, since there are no highly accurate results for other states to the authors' knowledge. We have to admit that our algorithm cannot achieve the power of Vrscay's method, which is mainly based on continued fractions and Padé approximations, for relatively high values of γ for 1 s and 2 s states. However, in our method a decreasing accuracy is not observed for excited states.

A VAX-780 is employed for numerical calculations, and programmes are executed in quadruple precision. If we recall the fact that in Vrscay's work a multiple precision arithmetic was used, and the accuracy of the results obtained was compared in each approximating step, the validity of the present algorithm becomes clearer. To give a rough idea about the time consumption we can say that a hundred-step perturbation with a size of truncation of approximately 40 consumes one CPU minute. To control numerical instabilities due to error accumulations, ζ and M are appropriately chosen. M can be estimated by comparing results with our previous analytical ones, setting ζ equal to one, and is considered to be sufficient whenever there is no discrepancy between both results. For a large variety of γ in all states, it is observed that a truncation size of $30-40$ and an order of perturbation of $100-150$ are sufficient to obtain the desired accuracy.

The software is written in a machine-independent manner. It may, however, be improved by taking certain precautions for the unnecessary time and memory consumption. Work on the standardization of the algorithm and the removal of the slow convergence problem around the critical value of the screening parameter is under consideration.

5. Conclusions and remarks

In this work, we have presented a rapidly convergent perturbation algorithm for radially screened coulomb potential systems. The numerical results presented for the Yukawa case are the most accurate results for almost all states except a certain narrow γ-domain around the critical value of the screening parameter in 1 s and 2s states, where the results given by Vrscay [25] are better. The method needs to be modified to speed up its slow convergence when γ approaches $\gamma_{c r}$ Investigations to modify the basis set for relatively large γ values are continuing.

The algorithm presented in this work is sufficiently general in its structure, except for the limitation of the square integrability of $V(\gamma r)$. It can be extended to such screened coulomb potentials by altering the input data of the matrix \boldsymbol{A}. A functional analytical treatment of the algorithm will reveal its convergence properties and will possibly enable us to evaluate error estimates for a prescribed perturbation order and truncation size.

The next step after the achievement of the items given in the previous paragraphs will be the generalization of this algorithm to angle-dependent potentials. Then it is very likely that we shall have a powerful tool to enter the realm of atoms and molecules. In other words, the investigation of atomic systems in the framework of these kind of approaches is our future goal. It is, however, clear that difficulties arising from the multi-dimensionality of the systems and the singular structure of the potential will create many problems. Once we have the detailed analysis of angle-dependent screened coulomb potential systems, we shall possibly be sufficiently encouraged to deal with these troublesome problems.

References

1. Kato T (1966) Perturbation theory for linear operators, Springer, Berlin Heidelberg New York
2. Reed M, Simon B (1978) Methods of modern mathematical physics, vol. 4. Academic Press, New York London
3. Chatelin F (1983) Spectral approximation of linear operators. Academic Press, New York
4. Kramer HP (1957) Pacific J Math 7:1405
5. Balslev E (1962) Math Scand 11:131
6. Yukawa M (1835) Proc Phys Soc Jpn 17:48
7. Foldy LL (1958) Phys Rev 111:1093
8. Rogers FJ, Graboske HC, Harwood DJ (1970) Phys Rev A1:1577
9. Pratt RH, Tsena HK (1972) Phys Rev A5:1063
10. Barut AO (1972) Dynamical groups and generalized symmetries in quantum theory. University of Canterbury Publications, Christchurch, New Zealand
11. Bednar M (1973) Ann Phys 75:305
12. Rotenberg M (1970) Adv Atom Mol Phys 6:233
13. Cizek J, Vrscay ER (1982) Int J Quantum Chem 21:27
14. Adams BG, Cizek J, Paldus J (1982) Int J Quantum Chem 21:153
15. Gazeau JP, Maquet A (1979) Phys Rev A20:727
16. McEnnan J, Kissel L, Pratt RH (1976) Phys Rev A13:532
17. Smith CR (1964) Phys Rev 134:A1235
18. Taseli H, Demiralp M (1987) Theor Chim Acta 71:315
19. Dold A, Eckmann B (eds) (1981) Lect Notes vol 888. Springer, Berlin Heidelberg New York
20. Dold A, Eckmann B (eds) (1984) Lect Notes Math vol 1071. Springer, Berlin Heidelberg New York Tokyo
21. Baker GA (1965) Adv Theor Phys $1: 1$
22. Baker GA, Gammel JL (eds) (1970) The Padé approximant in theoretical physics. Academic Press, New York London
23. Baker GA (1975) Essentials of Padé approximants. Academic Press, New York London
24. Lai CS (1981) Phys Rev $23: 455$
25. Vrscay ER (1986) Phys Rev A33:1433
26. Friedman B (1966) Principles and techniques of applied mathematics. Wiley, New York London Sydney
27. Sneddon IN (1966) Special functions of mathematical physics and chemistry. Oliver and Boyd, Edinburgh

[^0]: * Offprint requests to: H. Taşeli

