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This is the first of a series of papers on the perturbative treatment of screened 
coulomb potential systems in quantum mechanics. Its content is mainly 
devoted to the evaluation of first four terms in a convergent energy expansion 
of Yukawa potential. For this purpose, a weighted eigenvalue problem of 
Laplacian accompanied by spherical symmetry is employed to find the inverse 
of the Schr6dinger operator for unperturbed case (which is assumed to be 
the Hamiltonian of  Hydrogen-like systems). Some very encouraging numerical 
results are also given for illustrative purposes. 
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I. Introduction 

The screened coulomb potential has a great importance in quantum mechanics, 
especially in describing certain atomic phenomena involving electronic transi- 
tions. It has been investigated numerically and analytically by several procedures 
like the WKBJ method [1], quantum defect method [2], and several types of 
perturbation methods [3]. 

It is very convenient to separate the class of screened coulomb potentials into 
two categories, one of which only involves the cases where the difference between 
the screened coulomb potential and the limit potential when the screening 
parameter, say y, goes to zero is bounded and the other of  which includes the 
cases where the same difference is unbounded. The usefulness of this classification 
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lies in the fact that the boundedness of the perturbation operator strongly 
determines the convergence domain of perturbation series with respect to the 
perturbation parameter, say e, for both eigenvalue and eigenfunction. Therefore, 
bounded perturbations will provide convergent perturbation series with a finite 
radius of convergence, however, the unbounded ones will result in perturbation 
series which are divergent at everywhere except at the origin of e-complex plane 
[4]. 

There are several papers on the investigation of certain properties of the Schr6din- 
ger's equation's eigenvalue as a function of perturbation parameter e for various 
structures of screened coulomb potential [5] in numerical [6], group theoretical 
[7-12], perturbative [13-17] treatments of the problem. However, we are not 
going to give more references about the subject and the reader is kindly invited 
to take a promenade in the world of abundant worthwhile works for gathering 
further information about the topic. 

In this work, we revisit the convergent perturbation treatment for Yukawa poten- 
tial realized by Smith [13] in 1964. There, only first order perturbative results are 
given. Here, we are going to proceed up to third order terms, the analytic 
expressions of which could be attained. Since, the second step of these series of 
works will involve the construction of an efficient, general purpose, numerical 
algorithm to evaluate the perturbative contributions up to any desired order we 
shall need exact values of, at least, first few contributions to check the performance 
of that algorithm via comparison of the algorithm's results with the analytical 
ones. Hence, obtaining such analytical results is a necessity rather than a mere 
satisfaction in mathematical elegancy. On the other hand, the precision in the 
results evaluated by these formulae will reveal their utilizability in getting satisfac- 
torily accurate values for the eigenvalues of Schr6dinger's equation with Yukawa 
potential. 

In the coming sections we shall present the evaluations of first four perturbative 
contributions to the energy for Yukawa system. The last section will, as usual, 
include the concluding remarks. 

2. Formulation of the perturbation scheme and the evaluation 
of first-order contribution 

Let us assume we have a quantum mechanical system in a central force field. 
This assumption of angle-independence in spherical coordinates, immediately 
makes it possible to write the radial equation for the eigenfunctions under/ th 
order azimuthal symmetry via dimensionless coordinate and parameters as follows 

1 d2~ l d ~  l ( l + l )  - V ( T r ) ~ = / ~  
2 dr  2 r dr  ~" ~ ~ - 

r C [0, cO), ~E L2 (the space of square integrable functions) (2.1) 

where l, y and /~ denote, respectively azimuthal quantum number, screening 
parameter and energy eigenvalue. On the other hand, lth order azimuthal sym- 
metry implies that the angle-dependence of the eigenfunctions can completely 
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be characterized by lth order spherical harmonics. Therefore, we have confined 
ourselves only to the angle-independent potential cases. Beyond this limitation, 
we shall also assume that V(3,r) is a bounded function of its argument on the 
semi-interval [0, co) and the normalization condition V(0)= 1 holds. Whenever 
V(0) differs from unity one can immediately use a scaling transformation on 
radial variable and get the possibility of dealing with a new potential V(~r) such 
that V(0) = 1 and ~ = 3'/V(0) hence, the last condition does not create any loss 
of generality. The limitation on the boundedness of V(r) is due to the fact that 
the unbounded potential case can not be treated in the same way with the bounded 
potential case. Indeed, in those cases a different kind of  expansion is needed to 
get accurate results by dealing with convergent perturbation series. In our future 
works, we are willing to deal with such a category of  potential functions. 

In the light of these discussions we can, now consider the Eq. (2.1) as a special 
case of  the following, more general, equation 

l d20 1 d~ 1(1+1) 1 +el-V(3"r)  O=E 0 
2 dr 2 -r dr ~ ~ ' -r  r 

r e [0, oo), 0 �9 L2. (2.2) 

Therefore, the equalities 

O(r) = {O(r)}~=l (2.3) 

/~ : {E},=, (2.4) 

are obvious. Henceforth, our task will be the determination of the serial expansions 
of E(e) and 0(r, e) in nonnegative powers of  e. Since the perturbation potential 

1 - V ( 3 " r )  
P(r) (2.5) 

r 

which measures the global deviation of the screened coulomb potential from the 
coulomb potential for hydrogen atom, is bounded; the perturbation theory of 
linear operators [4] dictates us that the resulting energy series will have, non- 
empty, at least finite, convergence regions in E-complex plane. Since the radius 
of this convergence circle depends on 3, and it covers all E-plane when 3' vanishes 
(hydrogen atom case, the perturbation series ends at the zeroth order term) we 
can expect that these series will converge as long as 3" remains smaller than a 
non-zero value, say ~. If  one can find that ~ reaches a critical value, 3'or where 
the bound state under consideration cannot survive, then all eigen-energies of 
the system will be analytically determined. Even when this is not so, we shall be 
able to get the chance of analytic continuation from these limitedly convergent 
series to other values of  3' via standard techniques. 

Let us, now, assume the following expansions for E(e) and 0(r, e) to be valid 
in a finite radius vicinity of the origin in e-complex plane 

E ( e ) =  ~ Eke k, e<--p~ (2.6) 
k~O 

0 ( r , e ) =  ~. ~pk(r)e k, e<-p~ ,  r c [ 0 ,  oo). (2.7) 
k=0 
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These immediately yield the following recursion in Ok's (Ho being unperturbed 
Hamiltonian of the system) 

(Ho-  Eo I)q,o = 0 (2.8) 

k - - i  

(Ho-EoI)q& = E Ek-j49--Pq;k-,, k>-I (2.9) 
j = o  

where ~0k's are assumed to be in the Hilbert space of square integrable functions 
of r on the interval [0, oo) with a scalar product which has a weight r 2. Eq. (2.8) 
produces the eigen states of hydrogen atom, hence one can start by choosing a 
specified eigenlevel of this system as follows 

1 
E o -  2 ( n + / + l )  2, / = 0 , 1 , 2 , . . . , n = 0 , 1 , 2 , . . .  (2.10) 

2 [ n! 1~/2{ 2r }'e L, ( 2r ) 
Oo(r) ( n + l + l )  2 ( n + 2 / + l )  -~/(n+t+l) 21+~ [ ( n + / + l )  n + / + l  

(2.11) 

where 0o is normalized by unity and L 2t+~ denotes the associated Laguerre 
Polynomial. 

If  we, now, take the scalar product of Eq. (2.9) by ~0o and consequently use the 
self-adjointness of H and the Eq. (2.8), we can conclude the following formula 
for Ek'S 

k-1  

W Ek-j(Oo, Oj)--(~bo, P~k-l)=0.  (2.12) 
j = 0  

As is easily understood, the determination of E1 necessitates only 0o, 

2 n! x 21+le -x 1 -  [ n + / + l  
E'-(n+l+l)2 (n+21+1)!  V~ ~ yx 

{L~'+l(x)} 2 dx (2.13) 

where the change of variable x = 2r/(n + l+ 1) has been used. 

Obviously, the evaluation of E~ is just a matter of quadrature. Depending on the 
analytic structure of P(x), one can perform it analytically or, at least, numerically. 
Since our aim is to get certain analytical formulae to be used for comparative 
purposes in our future works, we are going to specify V as follows 

V(x) = e -x (2.14) 

which is certainly Yukawa type of screening function. Therefore, after performing 
the integration in Eq (2.13) we find 

, [ I, 4)1 E1 ( n + l + l ) 2  1-o-2F1k_2n_21_l ( n + / + l ) 2 7 2  (2.15) 



Perturbation studies in screened coulomb potential systems 319 

where 2 F1 denotes Gaussian hypergeometric function [18] and ~ has the following 
expression 

(2n+21+1)!  [ (n+l+l) ]-2n-21-2(n~-l~-l)2n 2n 
~r= 2 n!(n+21+l)! 1+ 3' 22" y (2.16) 

The result in Eq. (2.15) is a reproduction of Smith's [13] result. In his work he 
only proceeds up to first order and his purpose seemed to get a reasonably 
accurate, perturbative approach without cumbersome procedures. Indeed as is 
very well-known, higher order terms necessitate the evaluation of the inverse of 
the unperturbed Hamiltonian of the system, over the complementary subspace 
of the finite dimensional space spanned by the eigenvectors corresponding to a 
certain eigenvalue of Ho. This task is,generally difficult, tedious and discouraging 
when the continuous spectrum is involved in the spectrum of Ho. However, the 
Hamiltonian of hydrogen atom makes it possible to deal with an operator, the 
spectrum of which is purely discrete [19]. Hence, we were able to analytically 
evaluate the second and third order contributions to energy. Although the evalu- 
ation of higher order terms seems to be, in principle, possible, the enormousness 
of the effort needed to handle the intermediate steps without mistakes, has 
prevented us from continuing further in this direction. As a matter of fact, the 
scheme remains same in higher order evaluations, however the appearance of 
many dimensional integrations which are elementary in concept, rapidly increases 
the number of manipulations. 

3. Second-order contribution to energy and first-order perturbative eigenfunction 

Let us, now, consider the following inhomogeneous differential equation 

{ 1 d 2 1 d I ( I + 1 ) 1 +  1 } 
(Ho-EoI ) f=  2 dr 2 r dr ~ 2r ------T- r 2 ( n + l + l )  2 f = g  (3.1) 

where f and g belong to the space of square integrable functions over the weight 
r 2. If  we transform the variable r into x as follows 

n + / + l  
r = 2 x (3.2) 

we can conclude 

[ T - ( n +  l + l ) I ] f  =g(x); g(x)= 

where 

(n+l+l )  ( n + l + l  ) 
2 xff 2 x (3.3) 

d 2 _ d / ( /+1)  x 
r=-XT~x~-2G + x +4" (3.4) 

The operator T has purely discrete spectrum and its eigenfunctions form a 
complete orthonormal basis set for [0, oo) with respect to the weight function x. 
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They are related to associated Laguerre polynomials as follows 

9~ (n +~-+ 1)! e-X/2x'L~'+l(x) (3.5) 

Tq~, = (n + l+  1)9,, ~om~nrdr = 8,,, (3.6) 

If we now remember the orthogonality of the right-hand side of the Eq. (3.3) to 
the homogeneous solution of its left-hand side via weight r, we can write 

f =  2 - - 1  pro(x) ~0m(~:)~:g(~:) d~: (3.7) 
m=O m - t l  
m~n 

where f is assumed to be orthogonal to q~,. 

By using integral representation of 1/( m - n) and summation theorem of Laguerre 
polynomials one can write 

Io Io ~ f (x)  = x 1 e -x/2 1 dz ,~+1 ee/2[K(x ' ~, z) - S(x, ,~, z)]g(g) d~: (3.8) 

where 

z)=~o.= J! ~ 21+1 2,+1 -6/,,] (3.9) S(x,~, ( j+Zl+l) !ZLj  (x)Lj (~ ) [ l+z  2"-2j 

(X~Z)-l-1/2e-Z(X+,)/(1-z),21+l(2 Xqt-~ ~ 
K(x, ~, z ) -  1 - z  \ l - z / "  (3.10) 

In these formulae 8jk stands for Kroenecker delta and I denotes first kind modified 
Bessel function [20]. 

If we now identify g with { E l -  (1 - e x p  (-yr))/r}qJo we can express ~bl for n = 0 
in the following manner after certain intermediate steps 

f 
Ill 1 ( X )  = A,,lx I e -x/2 ~ A 1 ( X  - -  21 - 2) 

+f~-~[W2t+2(O)-W(z)2~+2e-tZ/(~-z~lx(~-w(z~']} 
where 

2 [ n ' 1 1 / 2  
A"~-(n+l+l)2  ( n + 2 l + l ) !  ; 

and 

W(z)=[1-+ (n+l+ l ) y ( 1 - z ) ]  - 1 " 2  

(3.11) 

( n + l + l )  2 
A1 = E~ (3.12) 

2 

(3.13) 



Perturbation studies in screened coulomb potential systems 321 

Although 01 has a similar form for other n values, certain finite sums appear  
and n-times differentiation with respect to a dummy variable can be used to get 
rid of most of  the sums and to be able to express qq in a more compact  form. 
Indeed, if we specify g ( x )  as x ~-1 e (~+~)XP(x) where cr and P ( x )  are given as 
a constant and a polynomial  respectively, then we can conclude the following 
formula in the frame of this philosophy 

where ~ denotes the inverse of  the operator { T -  (n + l + 1)I} on the complement 
of  the space spanned by ~ and f~ is defined as below 

1 j=0 

~'~1 : W21+2( 0/, z) e -[*/(1-z)lxtl w(~,~)] 

(3.15) 

(3.16) 

1 
W(a,  Z) (3.17) 

1 + er(1 - z )  - a ( a  - z)" 

These formulae can be used in several steps of  calculations to express ~Yk'S as 
certain multi dimensional integrals. However, we are not going to get into details 
of  this matter anymore because it is out of  the scope of our work. 

Now, we can immediately write the following formula for E2 

2 
E2 - (n + l+  1) 2 {(tPo, g,1) + hl(X~Po, ~//1) - (e-V("+'+l)x/20a, ~o)} (3.18) 

where ket and bra notation imply the scalar products over the weight x. 

After performing the necessary integrations to evaluate the scalar products appear- 
ing above, one can conclude the following formula for the second order perturba- 
tive energy 

2 
E 2 -  ( n + l +  1)2 A2 (3.19) 

ar 4 
"~'2 = /~.2 _{_ ,y.5~3a 1 - - T  {In [ J ( 2  - a~)] - N} 

2 (3.20) 
2 3' ag= ; ~ 3 - - -  

2 + y  4(1+ y) 

4. Third-order  perturbative contr ibut ions  to the energy  

Third-order perturbative contribution to the energy, E3, can be expressed in terms 
of certain inner products including 0o, 01 and certain elementary functions after 
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using the hermiticity of the operator 5r and the definition of ~bl via ~7 in the 
definition of E3, as follows 

2 
E 3 -  ( n + / + l ) j A 3  (4.1) 

A3 = 2Aa(xO0, ///1)'~-AI(XtPl , I/tl)-~-(~//1, ff ' t l)- (e-[(n+l+l)ex/2]01, 01) (4.2) 

We have not given the intermediate steps of this derivation for the sake of brevity. 
Due to the same reason we are not also going to give the details of the evaluations 
of the inner products appearing above. As a matter of fact, nothing is new in the 
calculations of these integrals and all steps are elementary however the maniputla- 
tions are tedious. Hence we only give the results for these inner products when 
n = 0, l = 0 as follows 

---7 s~3 (4.3) (X4~o, 4,1)= - a ,  2 

(X~I 2 2 2 , ~ b l ) = 4 A ~ - 6 ~  A l + ~ / ~ 3 A l + ~ 8 ~ 5 ~ + ~ 4 ~ - 2 , ~ 5 1 n [ ~ ( 2  ~ ) ]  (4.4) 

k=l k 2 (4.5) 

,5~ 4 
(I//1, ~/tl) = /~2"~ T (~61 -- ~1~) (4.6) 

ar 4 f- 
1 (e-'X/21ltl, ~'I) = A21 6g/2( 3'5~12 - 4 s r  + 2) + A1 ~ L(2 

[ 1] 
-A1 dSy[ ln  ~/(2 - s~) - N] - ~5 In (1 - C 2) ~3 -~ 2 ( 2 -  d )  

32~ 6 M 6 
- ~ In 2 (1 - C 2) + - ~ -  [In 2 d ( 2  - sg) - 2 ~  In ~r - ~r - 5e2] (4.7) 

5e2= ~ (-1)k (1-~g)2k (4.8) 
k=l k 2 (3-2~r  k 

C = (1 - ~ ) / ( 2 -  sg) (4.9) 

w h e r e  ~1 and 5e2 are very closely related to Lerch's transcendental [21] or 
incomplete zeta function, in other words they are well-known functions. 

5. Resul t s  and conc luding  remarks 

In the previous sections we have given the necessary and sufficient information 
to find the analytic expressions for first four contributions to the perturbation 
series of energy Eo, El ,  E2, E3. Here, we present some calculations based on 
these kinds of  formulae in Tables 1-4. In the first table the comparison of the 
consecutive cumulative values of first four contributions (Eo, Eo+E1,...) are 
given for l s - s t a t e  (n=O, I=O) at certain different y-values. The results in 
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Table 1. The comparison of cumulative perturbational energy values for ls-state 

Screening C.S. Lai Rogers Vrscay a 
parameter Our results [15] et al. [6] [17] 

3' E o Eo+E 1 Eo+E~+E 2 Eo+E~+E2+E 3 1980 1970 1986 

0.05 -0.5 -0.451814 -0.45181642 -0.4518164284 - -  - -  - -  
0.10 -0.5 -0.40703 -0.4070575 -0.40705802 -0.40706 -0.4071 -0.4070580306 
0.20 -0.5 -0.3264 -0.32679 -0.3268067 -0.32681 -0.3268 -0.3268085113 
0.25 -0.5 -0.2901 -0.2909 -0.290912 -0.29092 -0.2909 - -  
0.50 -0.5 -0.140 -0.1464 -0.14761 -0.14812 -0.1481 -0.1481170218 
1.00 -0.5 0.06 0.017 0.005 -0.01027 -0.01029 -0.0102857899 

a Only ten digits are quoted here 

Table 2. The comparison of cumulative perturbational energy values for 2s-state 

Screening C.S. Lai Rogers Vrscay 
parameter Our results [15] et al. [6] [17] 

y Eo Eo+E1 E o + E I + E  2 E o + E ~ + E 2 + E  3 1980 1970 1986 

0.05 -0.125 -0.0817 -0.08177 -0.0817710 -0.08177 -0.08177 -0.0817711957 
0.10 -0.125 -0.049 -0.0498 -0.04991 -0.04993 -0.04993 -0.0499282713 
0.20 -0.125 -0.005 -0.0100 -0.01118 -0.01211 -0.01211 -0.0121078651 
0.25 -0.125 0.009 0.002 -0.0007 -0.00339 -0.00339 -0.0033959062 
0.30 -0.125 0.02 0.01 0.006 -0.00005 - -  -0.0000000379 

Table 3. The comparison of cumulative perturbational energy values for 2p-state 

Screening C.S. Lai Rogers Vrscay 
parameter Our results [15] et al. [6] [17] 

y Eo Eo+E1 Eo+Et+E2 Eo+EI+E2+E3 1980 1970 1986 

0.05 -0.125 -0.0807 -0.08074 -0.0807402 -0.08074 -0.08074 -0.0807403870 
0.10 -0.125 -0.0458 -0.04642 -0.046511 -0.04653 -0.04654 -0.0465343904 
0.20 -0.125 0.04 -0.001 -0.0024 -0.00404 -0.00410 -0.0041016465 

l i t e r a t u r e  a r e  a l so  i n c l u d e d  to  i l l u s t r a t e  t h e  c o n v e r g e n c e  r a t e  o f  t h e  p r e s e n t  

p e r t u r b a t i v e  s c h e m e .  S e c o n d  a n d  t h i r d  t a b l e s  i n c l u d e  t h e  s a m e  t y p e  o f  c o m p a r i s o n  

f o r  2 s ( n = 2 ,  l = 0 )  a n d  2 p ( n = 0 ,  l = l )  s ta tes .  T h e  c o n t e n t  o f  t h e  l a s t  t a b l e ,  

h o w e v e r ,  c o v e r s  t h e  c o m p a r i s o n  o f  t h e  d i s c r e p a n c i e s  b e t w e e n  t h e  s u m  Eo + E l  + 

E2 + E3 a n d  t h e  r e s u l t s  o b t a i n e d  b y  La i  f o r  s e v e r a l  n, l a n d  y va lue s .  

As  c a n  b e  ea s i ly  c o n c l u d e d ,  o n e  c a n  o b t a i n  q u i t e  h i g h  a c c u r a c y  fo r  su f f i c i en t ly  

s m a l l  y v a l u e s .  I n  o t h e r  w o r d s ,  t h e  c o n v e r g e n c e  r a t e  o f  t h e  p e r t u r b a t i o n  se r ies  
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Table 4. The discrepancies of third order cumulative perturbational energy values for various states 

Screening parameters Our results C.S. Lai [15] 
State 3' E o + E I + E 2 + E  3 1980 

3s 0.025 -0.0343294 -0.03433 
3s 0.050 -0.019338 -0.01935 
4s 0.025 -0.0124997 -0.01250 
3p 0.025 -0.0340788 -0.03408 
4p 0.025 -0.0122906 -0.01229 
3d 0.025 -0.0335729 -0.03357 
4d 0.025 -0.011866 -0.01187 
4f 0.025 -0.011214 -0.01122 

decreases as 3' increases. On the other hand, convergence rate reduction seems 
not to depend on n and / .  These observations imply that the perturbation series 
presented here, have limited convergence radius (3;) which depends on y, n and 
/. I f  one can prove that ~ is equal to or greater than Yc, which is the largest 
screening parameter  value where the corresponding bound state can survive then 
we can use the present approach without any trouble. Toward this end an intense 
study is continuing. 

Finally, it should be noticed that by using a bounded perturbation term in 
Schrrdinger 's  equation, the presented convergent perturbation series have been 
constructed. The general tendency in this kind of perturbational problem is, 
however, to employ the screening constant, 3/, as a perturbation parameter.  The 
resulting series are divergent due to the existence of unbounded terms in the 
expansion of potential function with respect to the powers of  y, but certain 
acceleration techniques for instance Pad6 or Padr-Borel  resummations yield 
quite accurate numerical results [17]. 

On the other hand, our approach may have some connections with the methods 
of  deriving closed quadratures. However, as is cited in [22], there are serious 
problems extending the method to many dimensional cases. Since the evaluations 
appearing in certain perturbative steps are in quite general character and the 
increase of  dimension alters nothing except the dimension of various integrals, 
our method becomes preferable. I f  the dimension of the integrals increases, the 
analytic evaluations will be too complicated. But, these type of integrals can be 
treated by truncated matrix representation of several operators appearing in their 
kernels and sufficiently accurate numerical results may be obtained. Indeed, a 
numerical algorithm to calculate any desired order contribution to the energy for 
any desired bounded screened coulomb potential is being developed. Work on, 
this subject is close to completion. 
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