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Comment on ‘‘Strongly convergent method to solve one-dimensional quantum problems’’

H. Taşeli
Department of Mathematics, Middle East Technical University, 06531 Ankara, Turkey

~Received 26 July 1996!

Vargaset al. @Phys. Rev. E53, 1954 ~1996!# presented a numerical matrix method to solve the one-
dimensional Schro¨dinger equation subject to Dirichlet boundary conditions. It is a well-known fact that the
eigensolutions of such a confined system converge asymptotically to those of the corresponding unbounded
problem as the boundary value increases. However, it is verified computationally that the results given by
Vargas et al. are inaccurate, especially for the excited states of the perturbed oscillator Hamiltonian.
@S1063-651X~97!03606-4#

PACS number~s!: 02.70.Bf, 03.65.Ge
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In a recent article by Vargaset al. @1#, Lindberg’s matrix
approach was used to solve the Schro¨dinger equation
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2kDC~x!5EC~x!,

CPL2~2R,R!, ~1!

where

C~2R!5C~R!50 ~2!

and L2(2R,R) is the Hilbert space of square-integrab
functions. Such a modification of the usual asympto
boundary conditions at6` and the consideration of the D
richlet problem, in which the boundary valueR is regarded
as a nonlinear optimization parameter, was realized pr
ously by the present author as well@2–4#. The eigenvalues o
the Dirichlet problem so defined are upper bounds to
eigenvalues of the usual unbounded system. Moreover
deduced that the von Neumann boundary-value problem
which the wave function obeys the conditions

C8~2R!5C8~R!50, ~3!

generates lower-bound eigenvalues in this context@2,3#.
Unfortunately, however, it appears that the authors in@1#

were completely unaware of our earlier studies. Therefo
the main purpose of this comment is to show that the w
founded variational methods using the matrix representa
of the Hamiltonian are superior to numerical matrix metho

We sketch briefly here some of the findings of our rec
articles. Introducing the coordinate transformation
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x, jP@2p,p#, ~4!

the Schro¨dinger equation may be rewritten in the form
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with a rescaled potential functionV(j). Now the limiting
caseR→0 leads to the simple boundary-value problem

2
d2C

dj2
5lC, C~2p!5C~p!50, ~6!

having the normalized sequences of eigenfunctions

f j
~even!~j !5

1

Ap
cosS j2 1

2D j, j51,2, . . . ~7!

and

f j
~odd!~j !5

1

Ap
sinj j, j51,2, . . . . ~8!

Therefore, for a problem with a reflection symmetry as
Eq. ~1!, f j

(even) and f j
(odd) may be used to determine th

symmetric and antisymmetric states, respectively, in a va
tional scheme. Actually, postulating the wave functi
C(j) as the linear combination of Eq.~7! or ~8! then yields
the standard matrix eigenvalue problem

TABLE I. Symmetric state eigenvalues of the harmonic oscil
tor as a function of the boundary parameterR.

R n E2n N

4 0 0.500 000 490 6
1 2.500 201 6
4 9.091 10

6 0 0.500 000 000 000 001 15
1 2.500 000 000 003 15
4 8.500 008 15

8 0 0.500 000 000 000 000 000 000 000 001 2
1 2.500 000 000 000 000 000 000 011 22
4 8.500 000 000 000 001 22

10 0 0.500 000 000 000 000 000 000 000 000 000 2
1 2.500 000 000 000 000 000 000 000 000 00 2
4 8.500 000 000 000 000 000 000 000 000 01 3
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TABLE II. Lower and upper bounds for the symmetric state eigenvalues of the quartic oscillator as a function ofa2.

a2 n E2n N Rcr

0.0001 0 0.500 074 973 770 778 406 839 704 533 744/5 27 10
1 2.500 974 232 502 151 027 841 135 559 010/1 29 10
2 4.503 070 949 409 913 913 484 032 094 841/2 30 10

1.0 0 0.803 770 651 234 273 769 354 085 964 732/3 32 5
1 5.179 291 687 639 390 959 022 862 864 20/1 33 5
2 10.963 583 094 127 472 925 799 051 713 4/5 34 5

1000.0 0 6.694 220 850 504 030 969 503 088 451 37/8 33 1.7
1 47.017 338 732 427 724 313 680 975 622 0/1 35 1.7
2 102.516 157 134 231 472 937 324 175 680/1 36 1.7

100 000.0 0 31.008 270 778 878 314 051 297 662 933 6/7 33 0.75
1 218.016 572 253 841 491 646 153 774 153/4 34 0.75
2 475.514 422 767 858 784 048 384 890 305/6 35 0.75
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where thecj are the expansion coefficients. Furthermore,
matrix elementsHi j can be evaluated analytically wit
simple and nice mathematical expressions. In the same
similar trigonometric bases can be derived for a formulat
of the von Neumann problem@2,3#. Another very important
advantage of this approach is that it can be extended to m
tidimensional nonseparable problems@5,6#.

The low-lying symmetric energy levels of the harmoni

V~x!5
1

2
x2, ~10!

quartic

V~x!5
1

2
x21a2x

4, a2.0, ~11!

and the sextic

V~x!5
1

2
x21a2x

41a3x
6, a2 ,a3.0 ~12!

oscillators considered by Vargaset al. @1# are recalculated in
this work with some of their parameters for comparison.
Table I the upper-bound eigenvalues yielded by the Dirich
problem are presented as a function ofR for the harmonic
oscillator whose exact unbounded eigenvalues are given

the formulaE2n52n1 1
2 in terms of the quantum numbe

n. It is observed that the eigenvalues of the enclosed
monic oscillator start to behave like the eigenvalues of
unbounded potential whenR.4. At R58, 27 significant
figures are obtained for the ground-state energy diagon
ing a matrix of sizeN522. The ground-state eigenvalue b
comes accurate to more than 30 digits ifR510. On the other
hand, Vargaset al. were able to calculate the same eige
value only to 10 digits at the cost of using a step s
h50.0025, which results in a generalized matrix eigenva
e
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problem of orderN56400. In@1#, even this huge matrix size
is not sufficient for the excited states and 10-digit accura
could be achieved by an additional extrapolation procedu

In Table II, we report extremely accurate two-sided eige
value bounds for the asymptotic energies of the quartic
cillator. In the terminology of our previous papers, th
boundary value at which the required precision for a spec
state being considered is reached is defined as the cri
distanceRcr . To denote lower and upper bound energi
i.e., the eigenvalues of the von Neumann and Dirichlet pr
lems, we employ the notation in which, for instanc
0.500 074•••533 744/5 means that

0.500 074•••533 744<E<0.500 074•••533 745, ~13!

so that there is no uncertainty in our results. Comparing
results with those of Vargaset al. tabulated in their Table III,
we see that theirs are not correct. As an example, the la
decimal points of E45475.514 382 764 8 for
a25100 000.0 are wrong. Clearly, if 7 decimals of a num
ber recorded to 10 decimal points are wrong, then one sho
not conclude that the method used in this calculation give
high degree of accuracy.

A careful inspection of our Table III and of Table 4 in@1#
shows that the situation is virtually the same in the case
the sextic perturbation witha250.5 anda351. Most likely,
the numerical algorithm would be much more unsatisfact
if they had tried for larger values of the coupling constan
Note also that the results of Aguiaret al. and Hioeet al.

TABLE III. Lower and upper bounds for the symmetric sta

eigenvalues of the sextic oscillatorV(x)5 1
2x

21
1
2x

41x6.

n E2n N Rcr

0 0.874 643 498 551 409 790 738 727 559 981/2 35 3.
1 6.197 232 644 187 403 534 437 688 611 75/6 38 3.
2 14.206 320 178 955 759 565 493 479 622 0/1 39 3.
3 24.129 650 492 953 797 984 095 127 483 8/9 40 3.
4 35.637 149 199 063 125 326 089 351 457 1/2 42 3.
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~Refs. 6 and 11 in@1#! given by Vargaset al., for compari-
son, are correct up to their last digits quoted.

Consequently, Vargaset al. solved solely the simple an
trivial harmonic oscillator correctly, with the aforementione
reservations. There are, however, a number of serious ob
tions about the results of the perturbed cases, implying
dently that the method therein is not a robust and stron
convergent one as claimed by the authors. First of all, si
the eigenvalues of the Dirichlet problem provide upp
bounds, they cannot go below the asymptotic energies.
the contrary, most of the results in@1# are less than the exac
unbounded eigenvalues. Moreover, everybody knows
theoretical argument that theh→0 limit gives the exact re-
sults. In practice, however, nobody can reach this limit
case, and it is important to have a rapidly convergent
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stable method that uses a reasonable value ofh giving satis-
factory results. Otherwise, the smaller theh, the larger the
dimension of the matrix required. The diagonalization o
matrix beyond a certain size is, unfortunately, intractab
The reported inaccurate numerical results show that thi
exactly the case for the algorithm proposed by Vargaset al.
For the harmonic oscillator the target is known, so that
algorithm may be forced to give the correct results by furth
computational effort such as Richardson’s extrapolation.
the anharmonic cases, however, where the target is unkno
the stability of the method should have been checked
applying different step sizes. By this way, the confirmi
digits of two consecutive approximations could be record
as significant digits for the energy levels.
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