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Comment on “Strongly convergent method to solve one-dimensional quantum problems”

H. Tagli
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Vargaset al. [Phys. Rev. E53, 1954 (1996] presented a numerical matrix method to solve the one-
dimensional Schidinger equation subject to Dirichlet boundary conditions. It is a well-known fact that the
eigensolutions of such a confined system converge asymptotically to those of the corresponding unbounded
problem as the boundary value increases. However, it is verified computationally that the results given by
Vargas et al. are inaccurate, especially for the excited states of the perturbed oscillator Hamiltonian.
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PACS numbsgs): 02.70.Bf, 03.65.Ge

In a recent article by Vargaat al.[1], Lindberg’s matrix ~ with a rescaled potential functiow(¢). Now the limiting

approach was used to solve the Sdlinger equation caseR—0 leads to the simple boundary-value problem
1 d2 M dZ\P
“3 gt 2 @ YO=E¥(x), — gz MY W(=m)=¥(m)=0, ©6)
Yel,(—-RR), (1) having the normalized sequences of eigenfunctions
where
${** (&)= icos(j - 3) & =12 (7)
W(-R)=W(R)=0 (2) : Va 2/

and Lo(—R,R) is the Hilbert space of square-integrable 44
functions. Such a modification of the usual asymptotic
boundary conditions at o and the consideration of the Di-
richlet problem, in which the boundary valiis regarded

as a nonlinear optimization parameter, was realized previ-
ously by the present author as wigd-4]. The eigenvalues of
the Dirichlet problem so defined are upper bounds to th}

1
¢ (&)= \/—;sinj & j=12,.... )

herefore, for a problem with a reflection symmetry as in
g. (1), ¢J(e"e“) and gbj(Odd) may be used to determine the
symmetric and antisymmetric states, respectively, in a varia-
tional scheme. Actually, postulating the wave function
V'(-R)=¥'(R)=0, 3) V(&) as the Iinearl combination of EG7) or (8) then yields

the standard matrix eigenvalue problem

eigenvalues of the usual unbounded system. Moreover, wi
deduced that the von Neumann boundary-value problem, f
which the wave function obeys the conditions

generates lower-bound eigenvalues in this conft2x].
Unfortunately, however, it appears that the authorglin TABLE I. Symmetric state eigenvalues of the harmonic oscilla-

were completely unaware of our earlier studies. Thereforelor as a function of the boundary paramefier

the main purpose of this comment is to show that the well-

founded variational methods using the matrix representatioﬁ2 n Eon N
of the Hamiltonign are superior to nume_rica_ll matrix methods 4 0 0.500 000 490 6
We sketch brl_efly here some of the findings _of our recent 1 2500 201 6
articles. Introducing the coordinate transformation 4 9091 10
6 0 0.500 000 000 000 001 15
£= IX, ge[—m ], (4) 1 2.500 000 000 003 15
R 4 8.500 008 15
. ) . ) 8 0 0.500 000 000 000 000 000 000 000 001 22
the Schrdinger equation may be rewritten in the form 1 2.500 000 000 000 000 000 000 011 22
2 HR2 OR? 4 8.500 000 000 000 001 22
— —+—V( &) V(&) =—5EV(§), 10 0 0.500 000 000 000 000 000 000 000 000 000 27
dé m m 1 2.500 000 000 000 000 000 000 000 000 00 29
4 8.500 000 000 000 000 000 000 000 000 01 32
Vely(—m,m), (5)
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TABLE Il. Lower and upper bounds for the symmetric state eigenvalues of the quartic oscillator as a funetion of

an n Eon N Rer
0.0001 0 0.500 074 973 770 778 406 839 704 533 744/5 27 10
1 2.500 974 232 502 151 027 841 135 559 010/1 29 10
2 4.503 070 949 409 913 913 484 032 094 841/2 30 10
1.0 0 0.803 770 651 234 273 769 354 085 964 732/3 32 5
1 5.179 291 687 639 390 959 022 862 864 20/1 33 5
2 10.963 583 094 127 472 925 799 051 713 4/5 34 5
1000.0 0 6.694 220 850 504 030 969 503 088 451 37/8 33 1.7
1 47.017 338 732 427 724 313 680 975 622 0/1 35 1.7
2 102.516 157 134 231 472 937 324 175 680/1 36 1.7
100 000.0 0 31.008 270 778 878 314 051 297 662 933 6/7 33 0.75
1 218.016 572 253 841 491 646 153 774 153/4 34 0.75
2 475.514 422 767 858 784 048 384 890 305/6 35 0.75
* R? problem of ordeN=6400. In[1], even this huge matrix size
2 Hij— 7E6ij)cj =0, i=12,..., (9) is not sufficient for the excited states and 10-digit accuracy
=1

where thec; are the expansion coefficients. Furthermore, the

matrix elementsH;; can be evaluated analytically with
simple and nice mathematical expressions. In the same wa

similar trigonometric bases can be derived for a formulation

of the von Neumann problef2,3]. Another very important
advantage of this approach is that it can be extended to mu
tidimensional nonseparable probleffs6].

The low-lying symmetric energy levels of the harmonic

1
V(x)= Exz, (10)
quartic
1 2 4
V(X): EX +a2X y a2>0, (11)
and the sextic
1 2 4 6
V(x)=§x +aX*+ asX®,  ap,a3>0 (12

oscillators considered by Vargasal.[1] are recalculated in
this work with some of their parameters for comparison. In

could be achieved by an additional extrapolation procedure.
In Table II, we report extremely accurate two-sided eigen-
value bounds for the asymptotic energies of the quartic os-
cillator. In the terminology of our previous papers, the
%bundary value at which the required precision for a specific
state being considered is reached is defined as the critical
fi_istanceRcr. To denote lower and upper bound energies,
I.e., the eigenvalues of the von Neumann and Dirichlet prob-
lems, we employ the notation in which, for instance,
0.500 074 - -533 744/5 means that

0.500 074 - -533 744<E=<0.500 074--533 745, (13

so that there is no uncertainty in our results. Comparing the
results with those of Vargaet al. tabulated in their Table I,

we see that theirs are not correct. As an example, the last 7
decimal points of E,=475.514 3827648 for
a>=100 000.0 are wrong. Clearly, if 7 decimals of a num-
ber recorded to 10 decimal points are wrong, then one should
not conclude that the method used in this calculation gives a
high degree of accuracy.

A careful inspection of our Table Il and of Table 4[if]
shows that the situation is virtually the same in the case of
the sextic perturbation withr,=0.5 anda3=1. Most likely,
the numerical algorithm would be much more unsatisfactory

Table | the upper-bound eigenvalues yielded by the Dirichletf they had tried for larger values of the coupling constants.

problem are presented as a functionFPofor the harmonic

Note also that the results of Aguiat al. and Hioeet al.

oscillator whose exact unbounded eigenvalues are given by

the formulaE,,=2n+ 3 in terms of the quantum number

n. It is observed that the eigenvalues of the enclosed har=

monic oscillator start to behave like the eigenvalues of th
unbounded potential wheR>4. At R=8, 27 significant

TABLE lll. Lower and upper bounds for the symmetric state
eigenvalues of the sextic oscillatvi(x) = 2x2+ 2x*+x°.

E2n N I:zcr

figures are obtained for the ground-state energy diagonali3  0.874 643 498 551 409 790 738 727 559 981/2 35 3.50

ing a matrix of sizeN=22. The ground-state eigenvalue be- 1
comes accurate to more than 30 digitRi 10. On the other 2
hand, Vargaset al. were able to calculate the same eigen-3
value only to 10 digits at the cost of using a step sizeg

6.197 232 644 187 403 534 437 688 611 75/6 38 3.55
14.206 320 178 955 759 565 493 479 622 0/1 39 3.60
24,129 650 492 953 797 984 095 127 483 8/9 40 3.65
35.637 149 199 063 125 326 089 351 457 1/2 42 3.70

h=0.0025, which results in a generalized matrix eigenvalue
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(Refs. 6 and 11 inl]) given by Vargast al, for compari-  stable method that uses a reasonable value gifing satis-
son, are correct up to their last digits quoted. factory results. Otherwise, the smaller thethe larger the
Consequently, Vargast al. solved solely the simple and dimension of the matrix required. The diagonalization of a
trivial harmonic oscillator correctly, with the aforementioned matrix beyond a certain size is, unfortunately, intractable.
reservations. There are, however, a number of serious obje¢he reported inaccurate numerical results show that this is
tions about the results of the_ pgrturbed cases, implying eviexacﬂy the case for the algorithm proposed by Varefaal.
dently that the method therein is not a robust and strongly-or the harmonic oscillator the target is known, so that the
convergent one as claimed by the authors. First of all, sincg|qqrithm may be forced to give the correct results by further
the eigenvalues of the Dirichlet problem prowde .Uppercomputational effort such as Richardson’s extrapolation. For
bounds, they cannot go below the asymptotic energies. the anharmonic cases, however, where the target is unknown,

the contrary, most of the results if] are less than the exact the stability of the method should have been checked by
unbounded eigenvalues. Moreover, everybody knows the

ineoetca argumet il te-0 i gves he xact 1. BP0 SICTETL S Sees, By 1 ey e confie
sults. In practice, however, nobody can reach this limiting 9 PP

case, and it is important to have a rapidly convergent ands significant digits for the energy levels.
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