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The classical orthogonal polynomials (COPs) satisfy a second-order differential equation of the form �.x/y00 C �.x/y0 C
�y D 0, which is called the equation of hypergeometric type (EHT). It is shown that two numerical methods provide
equivalent schemes for the discrete representation of the EHT. Thus, they lead to the same matrix eigenvalue problem. In
both cases, explicit closed-form expressions for the matrix elements have been derived in terms only of the zeros of the
COPs. On using the equality of the entries of the resulting matrices in the two discretizations, unified identities related
to the zeros of the COPs are then introduced. Hence, most of the formulas in the literature known for the roots of Her-
mite, Laguerre and Jacobi polynomials are recovered as the particular cases of our more general and unified relationships.
Furthermore, we present some novel results that were not reported previously. Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

The first equation concerning the zeros of the classical orthogonal polynomials (COPs) dates back to more than a century ago. In 1885,
Stieltjes [1, 2] established the relations

NX
iD1
i¤n

1

xi � xn
D �xn, n D 1, 2, : : : , N (1)

where xn denotes the roots of Hermite polynomial HN.x/ of degree N. Stieltjes discovered the relations in (1) while dealing with the fol-
lowing electrostatic model: Place N movable unit charges at distinct points on the line, and determine the equilibrium position of these
charges when the interaction forces arise from a logarithmic potential in the harmonic field [3, 4]. He showed that the equilibrium posi-
tion is attained at the zeros of HN.x/. Moreover, he obtained similar relations for the Laguerre and Jacobi polynomials by considering
two other electrostatic models. These results are known as the Stieltjes relations. A short and light survey on the electrostatic interpre-
tation of the zeros of some well-known families of orthogonal polynomials is given by Marcellán and co-workers [5]. Further results on
electrostatic models can be found in [6–8].

Nearly a hundred years after Stieltjes, in [9–14], Calogero, Ahmed, Bruschi, Olshanetsky and Perelomov made a series of investigations
and extended the results to the Bessel functions as well. Besides (1), the authors presented a number of different relations involving
the zeros of the COPs, most of which were obtained during the study of certain integrable many-body problems in one dimension.

On the other hand, Ronveaux and Muldoon [15] revisited the Stieltjes relations in order to enlarge the class of differential equations
to which the theory applies, and to find sum formulas not only for the zeros of the polynomial solutions but also for their derivatives. In
[16,17], Case generated sum rules for the powers of the zeros for polynomials satisfying higher order differential equations of particular
forms having polynomial coefficients.
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Recently, Kudryashov and Demina [3] derived non-linear relations for some families of polynomials by comparing two power series.
Two series come from a representation of the polynomial in terms of its zeros and from the Painlevé expansion of solution of the
associated non-linear differential equation near a removable singular point. Then, in [18], Anghel extended the results of Kudryashov
and Demina from polynomials to entire functions of finite order by using Gil’s relations.

In this article, we deal with a unification of the relations of these kinds, which are satisfied by the zeros of the COPs. In this way, we can
obtain the separate identities known for the Hermite, Laguerre and Jacobi polynomials as particular cases of our unified formulation
by choosing the coefficient functions �.x/ and �.x/ in the equation of hypergeometric type (EHT) appropriately. The idea behind our
approach is numerical in character, which is quite different than those in the literature. To be specific, in section 2, we first construct
the pseudospectral discretization of the EHT. Then, we use the Galerkin approach incorporated with the Gaussian quadrature as an
alternative method. Finally, we prove that the two matrix representations of the EHT are identical in the resulting matrix eigenvalue
problems. Hence, in section 3, we deduce several unified relations as required, on equating the corresponding entries of these matrices.
To verify the accuracy of our general results valid for arbitrary values of the coefficients �.x/ and �.x/, we specify them in section 4
for a recovery of the celebrated formulas related to the roots of the Hermite, Laguerre and Jacobi polynomials. New relations are also
introduced in this section. Section 5 concludes the paper with further remarks as usual.

2. Pseudospectral and Galerkin with Gauss quadrature schemes for EHT

Consider the EHT

�.x/y00 C �.x/y0 C �y D 0, x 2 .a, b/ � R (2)

in which �.x/ and �.x/ are polynomials of degree at most two and one, respectively, and � is a real parameter. It can be written in the
self-adjoint form

d

dx

�
�.x/�.x/

dy

dx

�
C ��.x/y D 0 (3)

where �.x/ is a weight function satisfying the Pearson equation

d

dx
Œ�.x/�.x/� D �.x/�.x/. (4)

The EHT has polynomial solutions, say y D pn.x/, of degree n for specific values of �

� :D �n D �n

�
� 0 C

1

2
.n � 1/� 00

�
, � 0 ¤ 0, (5)

standing for the simple and discrete eigenvalues of the problem, when n is a non-negative integer [19]. These polynomial solutions are
characterized by the Rodrigues’ formula

pn.x/ D
Kn

�.x/

dn

dxn
Œ�n.x/�.x/� D knxn C : : : (6)

where kn is the coefficient of the leading term and Kn denotes a renormalization constant. On the other hand, if the equation

�.x/�.x/xk D 0, k D 0, 1, : : : (7)

is satisfied at the boundaries of .a, b/ interval, then the polynomial solutions pn.x/ are orthogonal with respect to the weight function
�.x/ on .a, b/ in the sense that Z b

a
pm.x/pn.x/�.x/dx D h2

nımn (8)

where hn is a normalization constant and ımn denotes Kronecker’s delta [19]. Moreover, the n-th degree polynomial solution pn.x/ of
the EHT has exactly n real and distinct zeros in the orthogonality interval .a, b/ [19].

Now, consider a pseudospectral method that is based on N-th degree polynomial interpolation of a function y.x/ denoted by IN.x/,

IN.x/ D
NX

nD0

`n.x/yn, (9)

where yn :D y.xn/ are the actual values of the function y.x/ at the specified nodes x D xn for n D 0, 1, : : : , N [20]. The set of Lagrange
interpolating polynomials f`n.x/g of degree N is defined by

`n.x/ D
 NC1.x/

.x � xn/ 
0
NC1.xn/

(10)
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for each n, in which  NC1.x/ D pNC1.x/=hNC1 is the .N C 1/-th degree normalized polynomial solution of the EHT, and xn stands
for the N C 1 real and distinct roots of pNC1.x/. The interpolant IN.x/ and the function y.x/ agree, at least, at the nodes yn D IN.xn/,
because `n.xm/ D ımn. The derivatives of the function y.x/ can also be approximated by differentiating the interpolant IN.x/. Indeed,
making use of the so-called differentiation matrix defined by

D.k/ :D
h

d.k/mn

i
D

dk

dxk
Œ`n.x/�

ˇ̌̌̌
xDxm

, k D 1, 2, : : : , N (11)

for m, n D 0, 1, : : : , N, we determine the approximate derivative values y.k/ by means of the algebraic system written in the matrix-
vector form

y.k/ D D.k/y , y.k/ D
h

I.k/N .x0/, I.k/N .x1/, : : : , I.k/N .xN/
iT

(12)

in terms of the function values yn at the nodes, where y D Œy0, y1, : : : , yN�
T.

In particular, the entries of the first-order and the second-order differentiation matrices are expressible, respectively, as

d.1/mn D
1

2

8̂̂̂<̂
ˆ̂:

2

xm � xn

 0NC1.xm/

 0NC1.xn/
if m ¤ n

�
�.xn/

�.xn/
if m D n

(13)

and

d.2/mn D
1

3

8̂̂̂<̂
ˆ̂:
�

3

xm � xn

�
�.xm/

�.xm/
C

2

xm � xn

�
 0NC1.xm/

 0NC1.xn/
if m ¤ n

1

�.xn/

�
�.xn/

�.xn/

�
� 0.xn/C �.xn/

�
C N

�
� 0 C 1

2 .NC 1/� 00
��

if m D n

(14)

on differentiating (10), taking into account that NC1.xn/ D 0 and using (2) [21].
Now proposing the interpolant IN.x/ in (9) to be an approximate solution of the EHT and requiring the satisfaction of the EHT at the

nodal points xm

�

NX
nD0

�
�.xm/`

00
n .xm/C �.xm/`

0
n.xm/

�
yn D �

NX
nD0

`n.xm/yn D �

NX
nD0

ımnyn (15)

for m D 0, 1, : : : , N, we obtain a discrete representation

bKy D �y , bKmn D �
�
�.xm/`

00
n .xm/C �.xm/`

0
n.xm/

�
(16)

of the EHT. Here, the vector y D Œy0, y1, : : : , yN�
T now contains the values of an eigenfunction y.x/ of the EHT at the nodal points, and

the entries bKmn of the matrix bK take the form

bKmn D

8̂̂̂<̂
ˆ̂:

2�.xm/

.xm � xn/2

 0NC1.xm/

 0NC1.xn/
if m ¤ n

�.xn/

6�.xn/

�
�.xn/ � 2� 0.xn/

�
� 1

3 N
�
� 0 C 1

2 .NC 1/� 00
�

if m D n,

(17)

which is not symmetric [21]. However, it may be symmetrized by a similarity transformation of the form K D S�1bKS in which S D
diag fs0, s1, : : : , sm, : : : , sNg is a diagonal matrix with entries

sm D
p
�.xm/ 

0
NC1.xm/, m D 0, 1 : : : , N. (18)

Then, we may replace the unsymmetric system (16) by the symmetric one Ky D �y where

Kmn D
1

6

8̂̂̂<̂
ˆ̂:

12
p
�.xm/�.xn/

.xm � xn/2
if m ¤ n

�.xn/

�.xn/

�
�.xn/ � 2� 0.xn/

�
� 2N

�
� 0 C

1

2
.NC 1/� 00

�
if m D n

(19)
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because the similar matrices share the same eigenvalues [21]. Hence, the eigenvalues (5) of the EHT for n D 0, 1, : : : , N are exactly
determined by the symmetric matrix eigenvalue problem because the exact polynomial solution of the EHT is used in the construction
of the approximate solution. That is, the EHT is satisfied exactly by IN.x/ for n � N. In other words, the n-th degree polynomial solution
y D pn.x/, for n � N, and the interpolant IN.x/ agree not only at the nodes xn but also at any point x of the interval .a, b/. This is, in fact,
a direct consequence of the existence and uniqueness theorem for polynomial interpolation [22]. As a result, the interpolant IN.x/may
be regarded as another rearrangement of each polynomial solution of the EHT.

The numerical treatment of a differential equation by using its actual solution has no meaning from a numerical point of view.
Nevertheless, there is no inconvenience theoretically in doing so. As a matter of fact, our aim is not to solve the EHT numerically. The
main objective is to obtain a discrete analogue of the EHT in which the matrix elements have closed-form analytical expressions in
terms of the roots of its polynomial solutions. Actually, the construction of the matrix in (19) requires only the knowledge of zeros of an
orthonormal polynomial solution  NC1.x/ of the EHT for prescribed values of the coefficients �.x/ and �.x/.

It should be noted here that the zeros of pNC1.x/, and hence  NC1.x/, can be computed as the eigenvalues of a tridiagonal matrix
R of size .NC 1/ � .NC 1/ having the diagonal

Rnn D �n�1 � �n, �n�1 D n

�
�.0/C .n � 1/� 0.0/

� 0 C .n � 1/� 00

�
, n D 0, 1, : : : , N (20)

and the off-diagonal entries

Rn,nC1 D RnC1,n :D An D
knhnC1

hnknC1
, n D 0, 1, : : : , N � 1 (21)

where kn and hn are defined in (6) and (8), respectively. In (20), the parameter �n�1 depends on �.x/ and �.x/. It is also possible to
express the An in terms of the coefficients of the EHT. For further information, we refer the readers to [23].

As an alternative numerical procedure, we multiply the self-adjoint form (3) of the EHT by `m.x/, for m D 0, 1, : : : , N, and integrate
from a to b to obtain

� �.x/y0.x/`m.x/�.x/
ˇ̌

b
a C

Z b

a
�.x/�.x/y0.x/`0m.x/dx D �

Z b

a
y.x/�.x/`m.x/dx. (22)

Now inserting the N-th degree polynomial interpolant in (9) as an approximate solution for y.x/, we obtain

NX
nD0

"Z b

a
`0m.x/`

0
n.x/�.x/�.x/dx

#
yn D �

NX
nD0

"Z b

a
`n.x/`m.x/�.x/dx

#
yn (23)

where the leftmost term in (22) vanishes by the use of (7) because each `i.x/ is a polynomial of degree N. This is the Galerkin method
that results in another matrix representation of the EHT

Ay D �My (24)

in which the matrix A and the mass matrix M are defined by

Amn D

Z b

a
`0m.x/`

0
n.x/�.x/�.x/dx and Mmn D

Z b

a
`m.x/`n.x/�.x/dx, (25)

respectively. Clearly, the integrands in (25) are polynomials of degrees at most 2N, and therefore, the integrals may be evaluated exactly
by the Gauss quadrature rule based on .NC 1/ points. The degrees of the integrands can be rechecked by keeping in mind that �.x/ is
a polynomial of degree at most two, and `n.x/ is a polynomial of exact degree N. Hence, we write

Amn D

NX
iD0

`0m.xi/`
0
n.xi/�.xi/!i and Mmn D

NX
iD0

`m.xi/`n.xi/!i (26)

where !i is referred to as the Christoffel numbers defined by [24]

!i D
1

AN 
0
NC1.xi/ N.xi/

D
�2NC2

2.NC 1/�.xi/
h
 0NC1.xi/

i2 , (27)

the determination of which depends on the COP used in the construction of the Gauss quadrature. Here, AN is the parameter in (21),
and �n the eigenvalues in (5). Then, it is not difficult to see that M reduces to a diagonal matrix with entries

Mmn D !nımn D
�2NC2

2.NC 1/�.xn/
h
 0NC1.xn/

i2 ımn (28)
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by virtue of `n.xm/ D ımn. On the other hand, the general entry Amn of the matrix A is given by

Amn D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

�2NC2

2.NC 1/ 0m 
0
n

2664 �m�n � �n�m

2�m�n.xm � xn/
C

NX
iD0

i¤m,n

1

.xi � xm/.xi � xn/

3775 if m ¤ n

�2NC2

2.NC 1/. 0n/
2

2664� �n

2�n

	2

C

NX
iD0
i¤n

1

.xi � xn/2

3775 if m D n

(29)

where we have used (13) and the last equation in (27). In (29), we adopt the abbreviations  0k D  
0
NC1.xk/, �k D �.xk/ and �k D �.xk/.

In practice, when m ¤ n, the three cases .i ¤ m, n/, .i D m, i ¤ n/ and .i ¤ m, i D n/ should be handled separately. Likewise, when
m D n, the two cases .i ¤ n/ and .i D n/ require an individual treatment.

The generalized matrix eigenvalue problem in (24) can be reduced to a standard one bT y D �y immediately, where bT DM�1A is
again unsymmetric. Fortunately, it is interesting to see that the matrix S , whose entries are given by (18), also symmetrizes bT , so that
T D S�1bT S turns out to be a symmetric one with entries

Tmn D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

p
�m�n

2664 �m�n � �n�m

2�m�n.xm � xn/
C

NX
iD0

i¤m,n

1

.xi � xm/.xi � xn/

3775 if m ¤ n

�n

2664� �n

2�n

	2

C

NX
iD0
i¤n

1

.xi � xn/2

3775 if m D n.

(30)

Now we state the main theorem of this section.

Theorem 2.1
The two discrete representations Ky D �y and T y D �y of the EHT suggested by the methods of pseudospectral and Galerkin
incorporated with a numerical integration, respectively, are equivalent with K D T .

Proof
The eigenvalues of the matrices K in (19) and T in (30) coincide with the first N C 1 eigenvalues �n D �n

�
� 0 C 1

2 .n � 1/� 00
�
, for

n D 0, 1, : : : , N, of the EHT. Therefore, K and T are similar matrices. Furthermore, we can prove that they are equal. To this end, first
note, from the definition bT DM�1A and from (28), that bT mn D Amn=wm, where Amn may be rewritten as

Amn D �.x/�.x/`m.x/`
0
n.x/

ˇ̌
b
a �

Z b

a

�
`0n.x/�.x/�.x/

�0
`m.x/dx (31)

on integrating the first equation in (25) by parts. Now using (4) and (7), we have

Amn D �

Z b

a

�
�.x/`00n .x/C �.x/`

0
n.x/

�
`m.x/�.x/dx, (32)

which may be evaluated exactly by a Gauss quadrature based on NC 1 points because the integrand is a polynomial of degree at most
2N. So choosing the quadrature points to be the NC 1 real and distinct zeros xn of the polynomial solution pNC1.x/ of the EHT, we find
that

Amn D �

NX
iD0

�
�.xi/`

00
n .xi/C �.xi/`

0
n.xi/

�
`m.xi/!i (33)

having only one non-zero term when i D m, that is,

Amn D �!m

�
�.xm/`

00
n .xm/C �.xm/`

0
n.xm/

�
(34)

because `m.xi/ D ıim. Comparing this and (16), we see that bKmn D Amn=wm and that bT D bK. Hence, it follows from the definitions
T D SbT S�1 and K D SbKS�1 that T D K, which completes the proof.
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3. Relations satisfied by the zeros of the COPs

Making use of the equality of the matrix elements Kmn and Tmn in (19) and (30), we derive here several algebraic equations satisfied by
the real and distinct zeros of an arbitrary polynomial solution pn.x/ of the EHT, �.x/y00 C �.x/y0 C �y D 0 with specific � values in (5).

Theorem 3.1
The zeros xn of the pNC1.x/ satisfy the relation

NX
iD0
i¤n

1

xi � xn
D

�.xn/

2�.xn/
(35)

for each n D 0, 1, : : : , N.

Proof
Equating the off-diagonal elements of (19) and (30), we immediately obtain

NX
iD0

i¤m,n

1

.xi � xm/.xi � xn/
D

2

.xm � xn/2
C

1

2.xm � xn/

�
�.xm/

�.xm/
�
�.xn/

�.xn/

�
, (36)

which can be rewritten as
NX

iD0
i¤m,n

�
1

xi � xm
�

1

xi � xn

	
�

2

xm � xn
�

1

2

�
�.xm/

�.xm/
�
�.xn/

�.xn/

�
D 0 (37)

where we have expanded the term under the summation symbol into its partial fractions. Rearranging the term 2.xm � xn/
�1 D

.xm � xn/
�1 � .xn � xm/

�1, we obtain

Gm.N/ � Gn.N/ D 0, Gn.N/ D
NX

iD0
i¤n

1

xi � xn
�
�.xn/

2�.xn/
(38)

implying that Gn.N/ is independent of n D 0, 1, : : : , N for all N and that Gn.N/ D c, where c is some constant. So it remains to show that
c D 0. To this end, it is enough to consider the case of N D 0, so does n D 0, and G0.0/ D ��.x0/=Œ2�.x0/�. In this case, x0 is the only
root of the first-degree polynomial solution p1.x/ of the EHT, that is, �.x/p001 .x/ C �.x/p

0
1.x/ C �p1.x/ D 0. Now replacing x by x0, we

arrive at �.x0/ D 0 because p01 is a non-zero constant, p001 is identically zero and p1.x0/ D 0. That is, G0.0/ D 0, and hence, Gn.N/ D 0 for
all n and N, and the result follows.

Corollary 3.2
The zeros xn of the pNC1.x/ satisfy an equation of the form

NX
nD0

�.xn/

�.xn/
D 0 (39)

for each N.

Proof
Summing (35) over n, we obtain

NX
nD0

�.xn/

�.xn/
D 2

NX
nD0

NX
iD0
i¤n

1

xi � xn
(40)

in which the right-hand side vanishes because the summand is unsymmetric in the dummy indices i and n.

Theorem 3.3
The zeros xn of the pNC1.x/ satisfy the relation

NX
iD0
i¤n

1

.xi � xn/2
D �

1

3�.xn/

��
1
4 �.xn/C �

0.xn/
� �.xn/

�.xn/
C N

�
� 0 C 1

2 .NC 1/� 00
��

(41)

for each n D 0, 1, : : : , N.

Proof
This is a direct consequence of the equality of the matrices K and T in (19) and (30), respectively.
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Theorem 3.4
The zeros xn of the pNC1.x/ satisfy the relation

NX
iD0
i¤n

1

.xi � xn/3
D �

1

4

NX
iD0
i¤n

1

.xi � xn/2

�
�.xi/

�.xi/
�
�.xn/

�.xn/

�
(42)

for each n D 0, 1, : : : , N.

Proof
By dividing (36) by .xn � xm/ and taking the sum over n, there follows

NX
nD0
n¤m

2

.xn � xm/3
D �

1

2

NX
nD0
n¤m

1

.xn � xm/2

�
�.xn/

�.xn/
�
�.xm/

�.xm/

�

C

NX
nD0
n¤m

1

.xn � xm/

NX
iD0

i¤m,n

1

.xi � xm/.xi � xn/

(43)

in which the rightmost term sums to zero because the summand is unsymmetric in the dummy variables n and i. Then, the replacement
of the dummy indices n and m by i and n, respectively, yields the result.

Theorem 3.5
The zeros xn of the pNC1.x/ satisfy an equation of the form

NX
nD0

�
�.xn/

�.xn/
C 2

� 0.xn/

�.xn/

�
�.xn/

�.xn/
D � 2N

�
� 0 C 1

2 .NC 1/� 00
� NX

nD0

1

�.xn/

C

NX
nD0

NX
iD0
i¤n

1

xi � xn

�
�.xi/

�.xi/
�
�.xn/

�.xn/

� (44)

for each N.

Proof
Squaring equation (35) and summing over n, we write

NX
nD0

�
�.xn/

2�.xn/

�2

D

NX
nD0

NX
iD0
i¤n

1

.xi � xn/2
C

NX
nD0

NX
iD0
i¤n

NX
kD0

k¤i,n

1

.xk � xi/.xk � xn/
. (45)

Now, using (36) and theorem 3.3 and rearranging the result, we complete the proof.

Theorem 3.6
The zeros xn of the pNC1.x/ satisfy an equation of the form

NX
nD0

�
�.xn/ � 2� 0.xn/

� �.xn/

�.xn/
D .2� 00 � � 0/N.NC 1/ (46)

for each N.

Proof
The proof is based on the well-known theorem of the basic linear algebra stating that the sum of eigenvalues of a matrix is equal to its
trace. Thus, summing the diagonal elements Knn in (19) of the matrix K and the eigenvalues �n in (5), we obtain the required result.

Theorem 3.7
The zeros xn of the pNC1.x/ satisfy an equation of the form

NX
nD0

NX
iD0
i¤n

2�.xn/

.xi � xn/2
D �

�
� 0 C 1

3 .N � 1/� 00
�

N.NC 1/ �
NX

nD0

Œ�.xn/�
2

2�.xn/
(47)

D �
�

1
2 �
0 C 1

3 .NC 2/� 00
�

N.NC 1/ �
NX

nD0

�.xn/�
0.xn/

�.xn/
(48)
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for each N.

Proof
The proof is similar to the previous one, where now the trace of the matrix T is determined by using Tnn in (30). Clearly, we employ
theorem 3.6 to write (48).

Theorem 3.8
The summation rule

NX
nD0

xn D �.NC 1/

�
�.0/C N� 0.0/

� 0 C N� 00

�
(49)

holds for the zeros xn of the pNC1.x/ for each N.

Proof
The zeros of the COPs are the eigenvalues of the tridiagonal matrix R defined by (20) and (21). Thus, the trace of R may easily be
calculated because the diagonal elements Rnn ofR in (20) are telescoping. It is obvious that the result in (49) stands for a special case
of the so-called Newton sums of forms

sk D

NX
nD0

xk
n, k D 1, 2, : : :

when k D 1.

4. Application to the Hermite, Laguerre and Jacobi polynomials

4.1. Relations satisfied by the zeros of the Hermite polynomials Hn.x/

When �.x/ D 1 and �.x/ D �2x in the EHT, the suitably scaled polynomial solutions are the Hermite polynomials Hn.x/. In this case,
we obtain from theorems 3.1, 3.3 and 3.4 the well-known Stieltjes–Calogero relations [1, 2, 13]

NX
iD0
i¤n

1

xi � xn
D �xn,

NX
iD0
i¤n

1

.xi � xn/2
D

1

3



2N � x2

n

�
,

NX
iD0
i¤n

1

.xi � xn/3
D �

1

2
xn, (50)

respectively, for the zeros of HNC1.x/. Equation (36) leads to another relation [13]

2

.xm � xn/2
D 1C

NX
iD0

i¤m,n

1

.xi � xm/.xi � xn/
. (51)

By corollary 3.2 or theorem 3.8, the trivial result
PN

nD0 xn D 0 is deduced, because the zeros of Hn.x/ are located symmetrically about
the origin. This tells us that the sum of all the odd powers of the roots is also zero. From theorem 3.5 (or 3.6) and theorem 3.7, we have,
respectively,

NX
nD0

x2
n D

1

2
N.NC 1/ D

NX
nD0

NX
iD0
i¤n

1

.xi � xn/2
. (52)

4.2. Relations satisfied by the zeros of the Laguerre polynomials L�n .x/

When �.x/ D x and �.x/ D � C 1 � x, the EHT in (2) reduces to the Laguerre differential equation. Therefore, with these coefficient
functions, the unified formulas give rise several relations for the roots xn 2 .0,1/ of the Laguerre polynomials L�NC1.x/. First, from
theorem 3.1, we obtain the Stieltjes relation [11, 12, 25]

NX
iD0
i¤n

1

xi � xn
D �

1

2

�
1 �

� C 1

xn

	
. (53)

Then, corollary 3.2 gives
NX

nD0

�
1 �

� C 1

xn

	
D 0 )

NX
nD0

1

xn
D

NC 1

� C 1
(54)
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the sum of reciprocals of the roots xn [11]. We have from theorem 3.3

NX
iD0
i¤n

1

.xi � xn/2
D �

1

3xn

�
.� C 1 � xn/.� C 5 � xn/

4xn
� N

�

D �
.� C 1/.� C 5/

12x2
n

C
2.NC 1/C � C 1

6xn
�

1

12
,

(55)

and theorem 3.4 in conjunction with (53) and (54) gives the result

NX
iD0
i¤n

1

.xi � xn/3
D
� C 1

4x2
n

NX
iD0
i¤n

�
1

xi � xn
�

1

xi

	
D
� C 1

4x2
n

�
� C 1 � xn

2xn
�

�
NC 1

� C 1
�

1

xn

	�

D
.� C 1/.� C 3/

8x3
n

�
2.NC 1/C � C 1

8x2
n

,

(56)

which may be checked with those of [3, 11, 12]. On the other hand, theorem 3.5 gives

NX
nD0

.� C 1 � xn/.� C 3 � xn/

x2
n

D 2N
NX

nD0

1

xn
� .� C 1/

NX
nD0

1

xn

NX
iD0
i¤n

1

xi
(57)

from which the sum [11]
NX

nD0

1

x2
n

D
.NC 1/.NC � C 2/

.� C 1/2.� C 2/
(58)

is obtained by excluding the term i D n in the last sum and using (54). Now the sum of (55) over n implies that [10]

NX
nD0

NX
iD0
i¤n

1

.xi � xn/2
D

N.NC 1/

4.� C 2/
(59)

where we have used (54) and (58). The summation formula [14]

NX
nD0

.� C 1 � xn/.� � 1 � xn/

xn
D N.NC 1/ )

NX
nD0

xn D .NC 1/.NC � C 1/ (60)

may be derived from theorem 3.6. The last formula may also be deduced by theorem 3.8 directly. Finally, equation (48) in theorem 3.7
gives a new formula

NX
nD0

NX
iD0
i¤n

xn

.xi � xn/2
D

1

4
N.NC 1/ (61)

for the roots of the Laguerre polynomial L�NC1.x/ that is free of the parameter � . Furthermore, two interesting formulas

NX
nD0

NX
iD0
i¤n

� C 2 � xn

.xi � xn/2
D 0,

NX
nD0

NX
iD0
i¤n

� C 2C xn

.xi � xn/2
D

1

2
N.NC 1/ (62)

are introduced from (59) and (61), which we could not find them elsewhere. By the way, equation (36) leads to a relation

NX
iD0

i¤m,n

1

.xi � xm/.xi � xn/
D

2

.xm � xn/2
�
� C 1

2xmxn
, (63)

which was most likely not reported previously.
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4.3. Relations satisfied by the zeros of the Jacobi polynomials P.˛,ˇ/
n .x/

The Jacobi polynomials are solutions of the EHT with �.x/ D ˇ�˛� .˛CˇC2/x and �.x/ D 1� x2. Now the unified general formulas
of section 3 suggest numerous relations for the zeros xn 2 .�1, 1/ of P.˛,ˇ/

NC1 .x/. The famous Stieltjes relation [2, 12]

NX
iD0
i¤n

1

xi � xn
D �

1

2

�
˛ C 1

1 � xn
�
ˇ C 1

1C xn

	
(64)

is written down from theorem 3.1. Corollary 3.2 implies that

.˛ C 1/
NX

nD0

1

1 � xn
� .ˇ C 1/

NX
nD0

1

1C xn
D 0. (65)

Using theorem 3.6 with some manipulations, we have

.˛2 � 1/
NX

nD0

1

1 � xn
C .ˇ2 � 1/

NX
nD0

1

1C xn
D

1

2
.NC 1/.NC ˛ C ˇ C 2/.˛ C ˇ � 2/ (66)

leading to the relations

NX
nD0

1

1 � xn
D
.NC 1/.NC ˛ C ˇ C 2/

2.˛ C 1/
,

NX
nD0

1

1C xn
D
.NC 1/.NC ˛ C ˇ C 2/

2.ˇ C 1/
, (67)

which are most probably new. These relations suggest some other new formulas. For instance, the addition and subtraction of the
equations in (67) imply that

NX
nD0

1

1 � x2
n

D
.NC 1/.NC ˛ C ˇ C 2/.˛ C ˇ C 2/

4.˛ C 1/.ˇ C 1/
,

NX
nD0

xn

1 � x2
n

D
.NC 1/.NC ˛ C ˇ C 2/.ˇ � ˛/

4.˛ C 1/.ˇ C 1/
, (68)

respectively. We also have

NX
nD0

xn

1 � xn
D
.NC 1/.N � ˛ C ˇ/

2.˛ C 1/
,

NX
nD0

xn

1C xn
D �

.NC 1/.NC ˛ � ˇ/

2.ˇ C 1/
(69)

because xn=.1� xn/ D 1=.1� xn/� 1 and xn=.1C xn/ D 1� 1=.1C xn/. Furthermore, by simple algebraic manipulations, there follows

NX
nD0

1C xn

1 � xn
D
.NC 1/.NC ˇ C 1/

˛ C 1
,

NX
nD0

1 � xn

1C xn
D
.NC 1/.NC ˛ C 1/

ˇ C 1
. (70)

Similar relations may be derived by suitably combining the relations in (67)–(70). Observe that the equations from (67) to (70) are in
accordance with the property P.˛,ˇ/

n .�x/ D .�1/nP.ˇ,˛/
n .x/ of the Jacobi polynomials.

Theorems 3.3 and 3.4, on the other hand, reduce to [9, 12]

NX
iD0
i¤n

1

.xi � xn/2
D

1

12

�
2N.NC ˛ C ˇ C 3/C .˛ C 3/.ˇ C 3/ � 4

1 � xn
�
.˛ C 1/.˛ C 5/

.1 � xn/2

C
2N.NC ˛ C ˇ C 3/C .˛ C 3/.ˇ C 3/ � 4

1C xn
�
.ˇ C 1/.ˇ C 5/

.1C xn/2

� (71)

and
NX

iD0
i¤n

1

.xi � xn/3
D �

1

4

NX
iD0
i¤n

1

.xi � xn/2

�
ˇ C 1

1C xi
�
˛ C 1

1 � xi
�
ˇ C 1

1C xn
C
˛ C 1

1 � xn

	
, (72)
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respectively. After a little algebra and using (64) and the relations in (67), the last one gives the known relation [12]

NX
iD0
i¤n

1

.xi � xn/3
D

1

8

�
.ˇ C 1/.ˇ C 3/

.1C xn/3
�
.˛ C 1/.˛ C 3/

.1 � xn/3
C

.˛ C 1/.ˇ C 1/

.1C xn/.1 � xn/2
�

.˛ C 1/.ˇ C 1/

.1C xn/2.1 � xn/

C
.NC 1/.NC ˛ C ˇ C 2/

.1 � xn/2
�
.NC 1/.NC ˛ C ˇ C 2/

.1C xn/2

�
,

(73)

which is written here in a more neatly form.
It is worth mentioning that theorem 3.7 yields

NX
nD0

NX
iD0
i¤n

1 � x2
n

.xi � xn/2
D

1

12
N.NC 1/.4NC 3˛ C 3ˇ C 2/, (74)

which seems to be new. Finally, the summation rule [14]

NX
nD0

xn D
.NC 1/.ˇ � ˛/

2NC ˛ C ˇ C 2
(75)

may easily be found from theorem 3.8. If this is combined with an appropriate one in (67)–(70), further relations may be derived.
However, we do not present them here in order not to overfill the content with similar formulas.

5. Conclusion

In this paper, we have elucidated the general and unified structures of the formulas generating specific algebraic equations for the
roots of the polynomials that satisfy the EHT in (2). Actually, the statements of the theorems in section 3, except those of 3.1 and 3.3
[9, 26], are reported for the first time within this generality. Therefore, well-known and certain novel results for the zeros of the COPs
associated with the names Hermite, Laguerre and Jacobi are presented in section 4 as special cases. Note that similar equations for the
zeros of derivatives p.k/n .x/may be generated by using the differential–difference relations

dk

dxk
Hn.x/ D

2knŠ

.n � k/Š
Hn�k.x/,

dk

dxk
L�n .x/ D .�1/kL�Ck

n�k .x/

and

dk

dxk
P.˛,ˇ/

n .x/ D
1

2k
.nC ˛ C ˇ C 1/kP.˛Ck,ˇCk/

n�k .x/

for the COPs, where .a/m D a.aC 1/ : : : .aCm � 1/ is the Pochhammer symbol.
As another remark, it may be of some interest to recall that the pseudospectral differentiation matricesD.k/ of order k have zero row

sums [27, 28]. This suggests several Stieltjes–Calogero relations of new kinds. To be specific, the first-order differentiation matrix in (13)
provides an identity of the form

NX
nD0
n¤m

1

.xm � xn/ 
0
NC1.xn/

D
�.xm/

2�.xm/ 
0
NC1.xm/

. (76)

Keeping in mind that  NC1.x/ stands for a normalized polynomial solution of the EHT, we have in the Hermite case, for example,

NX
nD0
n¤m

1

.xm � xn/HN.xn/
D �

xm

HN.xm/
(77)

where the recursion H0NC1.x/ D 2.N C 1/HN.x/ or  0NC1.xn/ D
p

2.NC 1/ N.x/ has been used. In principle, it is also possible to
evaluate the sums of forms

NX
iD0
i¤n

�.xi/

.xi � xn/M
or

NX
iD0
i¤n

�.xi/

.xi � xn/M
for M D 1, 2, : : :
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by means of the idea employed in section 3. As a simple and typical example, multiplying (35) throughout by �.xn/, and adding and
subtracting the term �.xi/ to the numerator on the left-hand side, we have

NX
iD0
i¤n

�.xn/ � �.xi/C �.xi/

xi � xn
D
Œ�.xn/�

2

2�.xn/
)

NX
iD0
i¤n

�.xi/

xi � xn
D N� 0 C

Œ�.xn/�
2

2�.xn/

where �.xn/ � �.xi/ D .xn � xi/�
0 if the Taylor polynomial expansion �.x/ D �.0/ C � 0x of �.x/ about zero is considered. Unfortu-

nately, however, when M > 3, the labour involved in finding and equating the powers of the matrix elements Kmn and Tmn increases
dramatically, making the procedure useless from a practical viewpoint.

The present results have been obtained under the orthogonality assumption in (8). Nevertheless, most of the results are valid much
more generally. For example, the results for the Laguerre polynomials L�NC1.x/ are derived for a real parameter � > �1. However, they
may be extended to be valid for an arbitrary complex constant � ¤ �1,�2, : : : ,�.NC 1/ by means of analytic continuation. The same
idea can be used in the case of the Jacobi polynomials as well, to extend the validity of the results from real parameters ˛,ˇ > �1 to
arbitrary complex numbers ˛ and ˇ where ˛ C ˇ ¤ �2,�3, : : : ,�2.NC 1/.

More general second-order ordinary differential equations than equation (2) with polynomial coefficients have sometimes polyno-
mial solutions as well. To be specific, the exceptional Laguerre and Jacobi or the Heun-like equations are the typical examples for
equations of this type [29, 30]. It seems that the present technique with appropriate modifications may be applied to determine similar
relations between the zeros of polynomial solutions. Furthermore, it may be generalized to deal with the roots of discrete orthogonal
polynomials like Hahn, Charlier, Krawchouk and Meixner, which is presently an ongoing research.
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