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The series solution of the N-dimensional isotropic quartic oscillator weighted by an
appropriate function which exhibits the correct asymptotic behavior of the wave func-
tion is presented. The numerical performance of the solution in Hill’s determinant pic-
ture is excellent, and yields the energy spectrum of the system to any desired accuracy for
the full range of the coupling constant. Furthermore, it converges to the well-known
exact solution of the unperturbed harmonic oscillator wave function, when the anharmo-
nic interaction vanishes.

1. Introduction

The computation of the energy eigenvalues for spherically symmetric states of
the N-dimensional Schrodinger equation
_cf__ N——lii_+l(l+N—2)
dr? r dr r?
r € [0,00), (1.1)

+r+ ,Br"jl U(r) = EY(r),

has been subjected to intensive study, especially, in one dimension both in quantum
field theory and in chemical physics for a long time. Several methods have been
introduced and applied usually to the quartic oscillator in (1.1) as it describes the
most natural and the first nontrivial perturbation problem over the classical har-
monic oscillator solution. Actually, Bell et al. [1] calculated the eigenvalues of (1.1)
using the complete basis of eigenfunctions of the N-dimensional isotropic harmo-
nic oscillator in the Rayleigh~Ritz variational method. A few years ago, Witwit [2]
performed those calculations by perturbative and power series techniques employ-
ing again the renormalized exact solution of the harmonic oscillator to characterize
the wave function ¥(r). A renormalized Rayleigh—Schrodinger perturbation the-
ory was also developed by Vrscay in [3]. More recently, two- and three-dimensional
quartic oscillators were treated by means of the phase-integral approach [4]. Some
other different methods for the quartic oscillator, as well as for more general anhar-
monic oscillators, may be found in refs. [5-8].
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In a preceding paper [9] by the present author, an alternative series solution to
the two-dimensional equation corresponding to (1.1) was presented. More specifi-
cally, an asymptotically correct wave function was constructed which yields the
exact solution of the harmonic oscillator as a special case. Therefore, the main pur-
pose of this article is to extend such a construction to N-mode oscillators. In order
to make the present article self-contained, we sketch here some of the findings and
arguments of [9] adapted to the N-dimensional case.

It is clear that the usual boundary conditions of the problem are the regularity
and the appropriately vanishing behavior of the wave function at the origin and
infinity, respectively. The first condition requires that ¥(r) behaves like ¥ asr — 0.
Therefore, it is convenient to transform the dependent variable form ¥(r) to &(r),
where

U(r) =ra(r). (1.2)
Now the equation satisfied by ®(r) is

> 2+N-1d 4
<—W_—-__—r E-&-rz-}—ﬁr )‘D(r)—EdD(r) (1.3)
subject to
®(0) = constant, rlilg’ o(r)=0. (1.4)

In general, the number / denotes the angular dependence of the system in a global
sense. In the one-dimensional case of N = 1, however, / takes on only the special
values 0 and 1 for which eq. (1.3), where r is replaced by x € (—o0, 00), corresponds
to the equation of the symmetric and antisymmetric states, respectively.

As can be readily shown, the problem of N-dimensional isotropic harmonic
oscillator, where 8 = 0, admits exact solutions in the form

8,(r) =e VLIV n=0,1,.... (1.5)

Here, the ¥ (z) are the associated Laguerre polynomials satisfying the differential
equation [10]

d%y dy 1
ZE—{-(p-l—l—z)—(E—i—Z(E—N—Zl)y—O (1.6)
when the unperturbed energies are defined to be
E=E;=23N+2n+]) (1.7)

for all values of the quantum numbers n and /. It is easily seen, in one dimension,
that the Laguerre polynomials Y 2)(rz) and L\ 2)(,2) for / = 0 and 1 turn out to
be the Hermite polynomials H,(x) and H»,1(x)/x, respectively, where x = Fr,
i.e.x € (—oo,00).
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The exact solution of the harmonic oscillator may be regarded as a guide to sol-
ving the full equation (1.3) rescaled as

2 _
H® = vE®, H=-d——3{w——1%+%ﬂ+(1—ﬂ)r“ (1.8)

for the sake of dealing with a bounded potential. Now the parameter v defined by
v=>1+8"" o<v<l, (1.9)

stands for the anharmonic interaction such that » = 1 and v = 0 represent, respec-
tively, the harmonic and the purely quartic oscillators. In what follows, an expo-
nentially weighted eigensolution similar to that of the harmonic oscillator may be
suggested. An exponential factor in the solution is necessary owing to the essential
singularity of the problem at infinity. It is a simple matter to determine the asymp-
totic form of the wave function ®(r), which may be written as

B(r) e e 1= PP s (110)

as r — oo, satisfying the boundary condition. So an appropriate solution
weighted by (1.10) is obviously bounded but H®/® is not, since H® = O(r)® as
r — oo. We notice, from (1.8), that the H"®/®, for m = 0, 1,... are all bounded
due to the linearity of the operator H. Therefore, the weighting factor could be
taken as

B(r) m pHOHNHD (1) AP 1) (1.11)

to make H®/® bounded, i.e. H® = O(1)® as r — oo, so do H*®/®, H*®/®, - - -.
Hence we might propose a complete solution of the form

B(r) = rHANH) 1) PP gy (1.12)

in terms of a transformed dependent variable F(r) to be determined. However, a
solution of this type would still be defective because of two main reasons. Firstly, if
we wish to satisfy the constancy of ®(r) as r — 0, F(r) must then behave like
A@+N+D) for sufficiently small values of r, which destroys again the boundedness of
H®/® at infinity. Secondly, it does not converge to the harmonic oscillator solution
(1.5 asv — 1l,or g — 0.

Insection 2, following the ideas developed for the one- and two-dimensional pro-
blems [9,11] corresponding to (1.8) we construct a solution which reflects every
desired property of the exact wave function. We show in section 3 that Hill’s deter-
minant of the problem leads to a matrix eigenvalue problem, where the coefficient
matrix is of an upper Hessenberg form. The last section contains the numerical
applications and the discussion of certain aspects of the energy spectrum of N-
dimensional oscillators.
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2. Reformulation of the problem
In this section, we start with the introduction of the transformation motivated
by the success of [9]
§=(1+ar2)“1/2, 0<a<oo, (2.1)

which maps the semi-infinite interval of the original variable r into £ € [0, 1], where
ais a finite positive parameter. Thus the problem alters to the form

T®(¢) =vE®(E), @®(0)=0, &(1)= constant, (2.2)
with the transformed Hamiltonian T,

2
T = o (e - 1):?+a§3(3§2 +2[+N - 3)di€+a‘lz/2(£_2 -1)

+a” 21 =) (e -1)%. (2.3)
To take care of the essential singularity located now at ¢ = 0 we require that
B(E) m e ETHE 550, (2.4)

upon substitution of which into (2.2) we get the result
AT® ={(1 —1* — Pa®)¢* + [20ab + o*d® — 2(1 — V) + ¢ 2

+ a2l + N+1-2)¢1+001)}@ (2.5)

as¢ — 0. We infer, from the last equation, that 7% /® remains finite at £ = 0if

1-0—a*d® =0, (2.6)

20%ab + Pd® —2(1 - )+ a? =0 (2.7)
and

c=1@2I+N+1). (2.8)
Therefore, the true wave function is assumed to be of the form

B(§) = GO R (¢) (29)

for which the boundary conditions in (2.2) and the requirement that
T"® = O(1)® as& — Oarefulfilled, provided that

F()=0(1) as¢—0, F(1)=-constant. (2.10)

Substituting (2.9) into (2.2) and using the relations (2.6)—(8) we see that F(£) satis-
fies the differential equation

(L-vE)F(§) =0, £€l0,1], (2.11)
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where the operator L is defined by
d

2
L=at (- 1)3%+ af(2¢ + 3)€° — 2be* — 463 + 2(a + b)E* — 2a]d—£

+ afc(c +2)& - b(2c + )€ + (b*+ 2= 3¢)€* + [a(2c— 1) + 2b]¢ — B?}.

(2.12)

In particular case of the harmonic oscillator, where v = 1, the parameter o might
be taken as zero from (2.6) and (2.7). However, the transformed equation seems to
be indeterminate if @ = 0. Thus we should reformulate the problem as the determi-
nation of « in such a way that the harmonic oscillator is obtained whenever a — 0.
To this end, letting r* = z we find, from (2.1), that

E=1-1laz+0(a?) (2.13)
and that
e =1 —%naz—i—O(az) (214)
as a — 0. If we make use of the operational relations
| d ,d & )
d§ —2d+0( a?), ad—§5_4d_zi+0(a)’ (2.15)
€q. (2.11), with » = 1, may be written in the form
d*F dF
—4z(1 - 2az)72— —[2(2¢ = 1) = ¢(10c + 3)z — 4a(a — b)Z]E
+ [ec(2e —1) + a(a—b)(2c — 1) — E]JF + 0(c*) =0 (2.16)
for sufficiently small values of &. Now imposing the condition that
ala—b) =1 (2.17)
identically, we then arrive at the differential equation
2 dF
-.42%5—2(21“\/ 2) 5+ @+ N E)F =0 (2.18)

for a = 0, which is nothing but the Laguerre s differential equation (1.6). Wlth
(2.17) it is not difficult to see that £&%~3% "+ tends to a constant multiple of =%,
and hence that the wave function in (2.9) converges to the harmonic oscillator solu-
tion (1.5) as a — 0. This is an interesting analysis of the anharmonic oscillators
because there is no analytic solution which yields the exact eigenfunctions of the
unperturbed Schrodinger equation in this manner.

The determination of the structure parameters is accomplished by means of the
nonlinear algebraic equations (2.6), (2.7) and (2.17). Fortunately, they provide us
with nice mathematical formulas for expressing o, aand b,
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a=1-)1+01-»AHY72, (2.19)

a=(1-17)"2a"? (2.20)
and

b=(1-14)"a", (2.21)

respectively. Note that « lies entirely between the values of 0 and 0.25 as v varies
fromOto 1.

Finally, we may verify that the resulting differential equation (2.11) for F(¢)
has asymptotic solutions of the form

Fi(€) ~ constant,  Fy(¢) ~ &2 (2.22)

as £ — 0. So the second solution F,(£) must be rejected since it grows faster than
the decay of the exponential term in (2.9) as £ — 0. In other words, it is important
to ensure that F(£) behaves correctly, like Fy (£), as £ — 0 to satisfy the first condi-
tion in (2.10). On the other hand, we will show in section 3 thateq. (2.11) possesses a
regular solution about the singular pointat£ = 1.

3. Hill’s determinant

We seek solutions of eq. (2.11) in the form of power series about £ = 1. Since
the singularities of the differential equation are located at £ = F1 and 0, the series
solutions are surely convergent inside a unit circle centered at§ = 1,i.e. [ — 1] < 1.
The exponents of the singularity at { = 1 are 0 and —(2/ + N — 2) /2. Therefore, we
have a solution starting with a constant which may be written as

00 k
FE) =Y (-2) Ale- 1, (3.1)

=\ <

where the factor (-2/ a)k in the coefficients of the series has been introduced for
convenience. The second power series solution corresponding to the root
—(21 + N — 2)/2 of indicial equation does not fulfill the condition at £ = 1, which s
neglected. In fact, it represents a physical solution only for the one-dimensional
oscillators [9].

Substituting (3.1) into (2.11) we obtain the fifth-order difference equations

22k +2¢ — D)k + Dfiers
+{90k(k — 1) + [5(2¢ + 3)o — 12a + 4Jk + (2c — 1)(1 + ac) — vE}Mfi

~1a?{16(k — 1)(k — 2)



H. Tageli/ The N-dimensional isotropic quartic oscillator 241

+2[a —5b+5(2¢+3) —6](k— 1) + (2c — 1)a
~(6¢ + 1)b +2b% + 2c(3c + 1)} + 1P {14(k — 2)(k — 3) +2[5(2¢ + 3)
—4b —2)(k = 2) + b* —=3Q2c+ )b+ c(Tc + 9} iz

—La*{6(k — 3)(k — 4) + [5(2¢ +3) — 2b)(k — 3) + 4c(c +2) — (2c + 1)bYfis

+%a5{(k -4 k=5 +2c+3)k—4)+c(c+2)Hfea=0 (3.2)
withk = 0,1, ..., for the determination of the coefficients f;, where
faa=...=/,=0. (3.3)

The series in (3.1) leads to the bounded solution required as £ — 0 or Fi(£) in
(2.22) only if it contains a finite number of terms. As a result, the square integrabil-
ity of the wave function should be guaranteed by assuming that

M1 =2 =...=0, (3.4)

where M is the truncation order of F(£). By (3.4) the linear recurrences (3.2) are
reduced to a finite-dimensional homogeneous system whose coefficient matrix of
order M, L(E) say, is of a banded Hessenberg form. It is evident that there exist
nontrivial solutions if and only if the so-called Hill’s determinant is zero,

det L(E) =0, (3.5)

which are compatible with (3.3). The last condition allows the numerical evalua-
tions of the truncated energy eigenvalues using available routines [12]. From a com-
putational point of view, in the asymptotic domain of k > 1 a backward recursion
for (3.2) with the initial conditions (3.4) should be proceeded. Such a procedure is
known as Miller’s algorithm [13], and is suitable for the stable calculation of the
coefficients of the series yielding the nondominant asymptotic solution Fi (£).

Reconsidering the harmonic oscillator, i.e. v = 1 and @ — 0, we find, in conjunc-
tion with (2.8) and (2.13), that the power series (3.1) and the recursions (3.2) for its
coefficients are reduced to

F(r) = i fir*™ (3.6)
k=0

and
~2(2k+2I+ N)(k+ 1)fys1 + (bk+ 21+ N-E)f, =0, k=0,1,...,n,...,
(3.7)
respectively. If the eigenvalues are specified as those in (1.7) it follows then that

Sl =S =...=0, (3.8)
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and that the series terminates resulting simply in polynomials of degree 2n. These

L’(}N +-1)

are the associated Laguerre polynomials with argument r? [14]. Observe

that (3.8) isequivalent to (3.4).

4. Results and discussion

We solve two- and three-dimensional systems to test the numerical efficiency of
the present method. Nevertheless, these calculations are representative for higher-
dimensional spaces as well. We may deduce this interesting feature of N-dimen-
sional isotropic oscillators directly from eq. (1.3). Actually, it is shown that the
spectrum of the Schrodinger equation remains invariant for all fixed values of the
positive integer number 2/ + N. As a result, denoting the eigenvalues in N dimen-

sions by E,Ey), we formulate the following degeneracies:

E® = gl

nl — “n0

2 4 6 _ =2y __ (2D _ (242
EQ=E) =B, = =3P =g} = EZ" (4.1)

nl — nl —

when N is even, where E,(lzg is single in the system. Similarly, we have

5=,

nl =

E) =EP) = E)

nl — ~n0>

3 5 _ 7 - - 201y __ 21+1) 2043
E®) = Ef) = E,(,’,)_z =...=ESV = EZ™) = EZY (4.2)

nd —

if N is odd. In the exceptional case of N = 1, the eigenvalues can be characterized
by Ej,+ rather than two quantum numbers, with / = 0 and 1. As was indicated ear-
lier in the introduction, / = 0 implies the symmetric states E,, and / = 1 the anti-
symmetric states Ep,;;. Furthermore, it may be seen that E,(fo) = Ey,41 since
2l + N = 3foreach case.

The numerical results are given in Tables 1 and 2 so as to cover the whole range
of the original coupling constant 3. The case of § — oo corresponds to the infinite-
field limit Hamiltonian where the eigenvalue problem is
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Table 1

Specimen calculations in two dimensions as a function of 3. The eigenvalues E,(,z,) represent also the
eigenvalues in 2N dimensions according to eq. (4.1). The last column includes, where possible,
Witwit’s results for comparison.

8 n i M EY EQ inref. 2]
0.0001 0 0 7 2.000 199955 022 234 348 149930
1 1 9 8.002398 591 662 386 403 444 616
0 5 8 12.004 196 959 526 950 540 562 41
3 1 12 16.009 589 044 588 030 969 292 34
1 0 0 35 2.952050091 962 874 287056 570 2.952050 091962 8
0 2 39 10.390 627 295 503 782 127 355 48 10.390 627295 503 6
1 1 40 15.482771 577251 666 476 734 91
0 4 39 19.217 523 495 888 984 906 822 74 19.217 523 495 888
10000 0 0 37 50.548 044948 103 018 662 533 82 50.548 044 948 102
1 0 39 205.377745 742 563 428 720 578 2 205.377 745742 56
0 4 41 368.030082 448 256 517 258 408 0 368.030 082 448 24
1 2 41 394.577407 137436 105423 6755 394.577407 13742
0o 0 0 37 2.344.829 072 744 275 209 808 996
0 2 39 8.928082199 849951 179 552253
0 4 40 17.077 681 440978 319 569 540 21

a> 20+N-14d |,
(*'ﬁ'—'——r—_-d';ﬁ” r )@(r) =EP(r) (4.3)

with & = 8~'3E, showing the correct asymptotic relation for the eigenvalues,
£ =~ f~13E, for large enough values of 3. Therefore, the energy eigenvalues in our
tables as § — oo are tabulated in terms of £. We confine ourselves to present only
some specimen calculations in order not to overfill the contents of the paper with
tabular material. Further results are available from the author.

We report eigenvalues to twenty-five significant digits for all values of the anhar-
monicity constant. The accuracy of the results is checked by employing the succes-
sive approximations of M. In the tables, M stands for the truncation order of Hill’s
determinant for which the recorded accuracy is achieved. The eigenvalues by
Witwit [2] are also included for comparison. It should be noted that in Table 1 the
eigenvalues and the coupling constants taken from [2] are twice their original values
because of a different notation adopted. The precision of Witwit’s results is not uni-
form, and differs from nine- to fifteen-digits. In any case, however, the results are in
a good agreement with each other to the accuracy quoted.

The trivial eigenvalue ordering properties
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Table 2

Specimen calculations in three dimensions as a function of 3. The eigenvalues E,(:,) represent also the
eigenvalues in (2N + 1) dimensions according to eq. (4.2). The last column includes, where possible,
Witwit’s results for comparison.

B no 1 M EQ Ef) inref. 2]
0.0001 0 0 7 3.000 374 896936 121 098 337 847

0 10 9 23.014356 719 158913 502993 75

5 5 15 33.039 285 168 376 526 523 592 58
1 0 0o 36 4.648 812704212077 536 377033

0 1 36 8.380 342530 101 586 016 658 644 8.3803425300

0 5 a4 26.528917 558 123923 941 508 39 26.528917558 1239

1 3 4l 27.898 417760 008 253 924 619 02 27.898 417760 082°
20 0 1 39 19.783251911 335357058 067 14 19.78325190

0 2 a4l 30.057 199 045323927 972 631 36 30.0571990

1 1 4 44.209279973 156 846 774816 28 44209279973 15

0 5 a5 65.961 500030 678 143 050 225 38 65.961 500030 67
1000 0 0 37 38.086 833459 382264 084 978 36

0 3 41 149.439045580769 5782909418
% 0 0 38 3.799 673 029 801 394 168 783 094

0 5 4 23.940 622097894264 116 215 20

2 There is most likely a misprint in this result.

EN >EN e b>t, EN>EN an>n, (4.4)

nh ny nyJ

have been confirmed by our calculations. Now (4.4) and (4.1)—(4.2) imply that
EN > EIV o Ny > Ny (4.5)

Thus the eigenvalues with the same quantum numbers increase as the dimension
N of the space increases, and vice versa. Finally, we characterize the energy levels
E,EI}’) as groups denoted by the number m, where m = n + /. We deduce, from the
numerical experiments, that the eigenvalues in such a group may be ordered
according to the rule

N N N
E(gm) < ngm)_l <. .. < E,(,,_)l’1 < E,(,,Ng (4.6)

independent of the coupling constant and of the dimension.

As a concluding remark, we should point out once more that an asymptotically
correct wave function which approaches the classical harmonic oscillator solution
as a special case has been presented. The intelligence substitution (2.1) plays a sig-
nificant role to this end. The importance of this remark is discussed by Znojil [15],
who concludes that ‘we never get any elementary or exact particular solution as a
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special case of asymptotically correct wave functions’. It is the removal of such an
undesired situation which explains both the complicated looking structure of the
resulting differential equation (2.11) and the reason for referring to the simple har-
monic oscillator throughout the text.

On the other hand, one might certainly use a standard power series method, hav-
ing no novelty, which leads to a 3-term recurrence relation instead of the 5-term one
in (3.2). At first sight, the usage of the former may be considered to be much more
preferable than of the latter one. In the former case, however, it would be necessary
to introduce certain appropriate optimization parameters in order to achieve satis-
factory numerical results [2]. Note that we have never used in this study a specific
numerical technique such as optimization, or otherwise, in getting extremely accu-
rate results reported in the tables for all values of the coupling constant. Note also
that there are some other variants of Hill’s determinant approach that do not
require such parameters as well. For instance, we may cite here the Riccati-Hill
method, which yields accurate eigenvalues and eigenfunctions for anharmonic
oscillators (see [16] and references therein). Consequently, if we remind how much
labor is involved in the determination of a flexible convergence parameter properly
even for the one-dimensional quartic oscillator [17], the numerical efficiency of our
solution becomes much clearer. This is due to the fact that the present solution
behaves exactly like the true wave function everywhere for all 5.
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