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The series solution of the N-dimensional isotropic quartic oscillator weighted by an 
appropriate function which exhibits the correct asymptotic behavior of the wave func- 
tion is presented. The numerical performance of the solution in Hill's determinant pic- 
ture is excellent, and yields the energy spectrum of the system to any desired accuracy for 
the full range of the coupling constant. Furthermore, it converges to the well-known 
exact solution of the unperturbed harmonic oscillator wave function, when the anharmo- 
nic interaction vanishes. 

1. I n t r o d u c t i o n  

The  compu ta t i on  of  the energy eigenvalues for spherically symmetr ic  states of  
the N-d imens iona l  Schr6dinger equat ion  

d E N - 1  d l ( l + N - 2 )  
d r  2 - - - - ~  dr -~ r 2 

r E [0, oo),  

1- r 2 + 3r41 ~(r) ~--- E~(r ) ,  

(1.1) 

has been subjected to intensive study, especially, in one d imension bo th  in q u a n t u m  
field theory  and in chemical physics for a long time. Several me thods  have been 
in t roduced  and applied usually to the quart ic  oscillator in (1.1) as it describes the 
mos t  natura l  and  the first nontrivial  per turba t ion  problem over the classical har-  
monic  oscillator solution. Actually,  Bell et al. [1 ] calculated the eigenvalues of  (1.1) 
using the comple te  basis of  eigenfunctions of  the N-dimens ional  isotropic ha rmo-  
nic oscil lator in the Rayle igh-Ri tz  variat ional  method .  A few years ago, Witwit  [2] 
pe r fo rmed  those calculations by per turbat ive and power  series techniques employ-  
ing again the renormal ized exact solut ion of  the ha rmonic  oscillator to characterize 
the wave funct ion  • (r). A renormalized Rayleigh-SchriSdinger per turba t ion  the- 
ory was also developed by Vrscay in [3]. More  recently, two- and three-dimensional  
quar t ic  oscillators were t reated by means  of  the phase-integral  app roach  [4]. Some 
other  different me thods  for the quart ic oscillator, as well as for more  general  anhar-  
monic  oscillators, may  be found in refs. [5-8]. 
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In a preceding paper  [9] by the present  author ,  an alternative series solut ion to 
the two-dimensional  equat ion corresponding to (1.1) was presented.  More  specifi- 
cally, an asymptot ical ly  correct  wave funct ion was const ructed which yields the 
exact solut ion of  the harmonic  oscillator as a special case. Therefore,  the main  pur- 
pose o f  this article is to extend such a const ruct ion to N-mode  oscillators. In order  
to make  the present  article self-contained, we sketch here some of  the findings and 
a rguments  of  [9] adapted  to the N-dimensional  case. 

It is clear that  the usual boundary  condit ions of  the p rob lem are the regulari ty 
and the appropr ia te ly  vanishing behavior  of  the wave funct ion at the origin and 
infinity, respectively. The first condi t ion requires that  ~(r)  behaves like r t as r ---+ 0. 
Therefore,  it is convenient  to t ransform the dependent  variable fo rm ~I,(r) to cI,(r), 
where 

~(r )  = r t~( r ) .  (1.2) 

N o w  the equat ion  satisfied by cI, (r) is 

( d2 2 1 + N - 1 d  ) 
dr 2 r dr + r2 +/3r4 ~(r)  = Edg(r) (1.3) 

subject to 

cI,(0) = constant ,  lim ~(r) = 0. (1.4) 
r----+oo 

In general,  the number  l denotes the angular  dependence of  the system in a global 
sense. In the one-dimensional  case of  N = 1, however,  l takes on only the special 
values 0 and 1 for which eq. (1.3), where r is replaced by x E ( - o o ,  oo), corresponds  
to the equat ion  of  the symmetr ic  and ant isymmetr ic  states, respectively. 

As can be readily shown, the problem of  N-dimensional  isotropic ha rmon ic  
oscillator, where/3 = 0, admits  exact solutions in the form 

~n(r) = e-½r=L(n½N+~-O(r2), n = 0, 1, . . . .  (1.5) 

Here, the L~ ) (z) are the associated Laguerre  polynomials  satisfying the differential  
equat ion  [10] 

d2y d y + I ( E -  N -  21)y = 0 (1.6) Z-d-ff + ('P + l - Z) dz 4 

when the unper tu rbed  energies are defined to be 

E = Ent = 2(½N + 2n + l) (1.7) 

for all values of  the q u a n t u m  numbers  n and l. It  is easily seen, in one dimension,  
that  the Laguerre  polynomials  L(,-1/2)(r a) and L(,1/2)(r 2) for / = 0 and 1 turn  out  to 
be the Hermi te  polynomials  H2~(x) and H2n+l (x)/x, respectively, where x = q:r, 
i.e. x E (-cx~, oo). 
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The exact solution of  the harmonic oscillator may be regarded as a guide to sol- 
ving the full equation (1.3) rescaled as 

d 2 2 l + N -  1 d 
Hib = uE69, H -- dr 2 r dr + u2r2 + (1 -//3)/" 4 (1.8) 

for the sake of  dealing with a bounded potential. Now the parameter u defined by 

u = (1 +1~)-1/3, 0 ~ u ~ l ,  (1.9) 

stands for the anharmonic interaction such that u = 1 and u = 0 represent, respec- 
tively, the harmonic and the purely quartic oscillators. In what follows, an expo- 
nentially weighted eigensolution similar to that of  the harmonic oscillator may be 
suggested. An exponential factor in the solution is necessary owing to the essential 
singularity of the problem at infinity. It is a simple matter to determine the asymp- 
totic form of the wave function qS(r), which may be written as 

• (r) ~ e-~ (1-~)'/2'3-½(1-~)-1/2r (1.10) 

as r ~ ~ ,  satisfying the boundary condition. So an appropriate solution 
weighted by (1.10) is obviously bounded but Hcb/~  is not, since H ~  = O(r)~ as 
r --, ~ .  We notice, from (1.8), that the Hm~/cb, for m = 0, 1 , . . .  are all bounded 
due to the linearity of the operator H. Therefore, the weighting factor could be 
taken as 

• (r) ~ r-½(2t+N+l)e -]fl-~3)'/2'3-½(1-~)-'/2~ ( 1.1 1 ) 

to make H ~ / ~  bounded, i.e. H ~  = O(1)ff as r ~ oo, so do HE~b/~, n 3 ~ / ~ ,  .. .. 
Hence we might  propose a complete solution of the form 

• (r) = r-½(21+N+l)e-½(1-~)~/2r3-½(1-u3)-~/ErF(r) (1.12) 

in terms of a t ransformed dependent variable F(r) to be determined. However, a 
solution of  this type would still be defective because of two main reasons. Firstly, if 
we wish to satisfy the constancy of ep(r) as r ~ O, F(r) must then behave like 
r~ (2j+N+I) for sufficiently small values of r, which destroys again the boundedness of  
H ~ / ~  at infinity. Secondly, it does not converge to the harmonic oscillator solution 
( 1 . 5 ) a s v ~ l , o r 3 ~ 0 .  

In section 2, following the ideas developed for the one- and two-dimensional pro- 
blems [9,11] corresponding to (1.8) we construct a solution which reflects every 
desired property of  the exact wave function. We show in section 3 that Hill's deter- 
minant  of  the problem leads to a matrix eigenvalue problem, where the coefficient 
matrix is of  an upper Hessenberg form. The last section contains the numerical 
applications and the discussion of  certain aspects of  the energy spectrum of  N- 
dimensional oscillators. 



238 1t. Ta~eli / The N-dimensional isotropic quartic oscillator 

2. R e f o r m u l a t i o n  o f  the  p r o b l e m  

In this section, we start  with the in t roduct ion  of  the t ransformat ion  mot iva ted  
by the success of[9] 

¢ = (1 + o~F2) -1/2, 0 .Q ot < 00, (2.1) 

which maps  the semi-infinite interval of  the original variable r into ~ E [0, 1], where 
is a finite positive parameter .  Thus  the problem alters to the form 

T,~(¢) = vE,~(¢), ~(0) = 0, ~(1) = cons tan t ,  (2.2) 

with the t ransformed Hami l ton ian  T, 

d 2 d 
T =  a~4(¢2 _ 1)~-~ + a¢3(3~ 2 + 2l + N -  3 ) ~ +  O~-1//2(~ - 2 -  1) 

+ a-2(1 - v3)(( -2 - 1) 2 • (2.3) 

To  take care of  the essential singularity located now at ( = 0 we require tha t  

i~(() ,~ (Ce--taC-~+b¢-', a > 0,  (2.4) 

u p o n  subst i tut ion of  which into (2.2) we get the result 

a 2 T ~  ~{(1 - u 3 - a 3 a 2 ) ~  - 4  q -  [2a3ab + a3a 2 - -  2(1 - v 3) + au2]~ -2 

+ a3a(2l + N + 1 - 2c)~ -1 + O(1)}~ (2.5) 

as ( ---, 0. We infer, f rom the last equation,  that  Tok/,~ remains finite at ( = 0 if 

1 - v 3 - a 3 a  2 = O, 

and 

2a3ab + a3a 2 - 2(1 - v 3) + a u  2 = 0 

(2.6) 

(2.7) 

c =  ½ ( 2 / + N +  1). (2.8) 

Therefore,  the true wave funct ion is assumed to be of  the form 

¢b(~) = ~(21+N+l)e-~aU3+bUI r (~)  (2.9) 

for which the boundary  condi t ions  in (2.2) a n d  the requi rement  tha t  
T " ~  = O(1 )~  as { + 0 are fulfilled, provided that  

F({)  = O(1) as { + 0, F(a)  = cons tan t .  (2.10) 

Subst i tut ing (2.9) into (2.2) and using the relations (2.6)-(8) we see that  F(~) satis- 
fies the differential  equat ion  

( / 2 -  vE)F(~) = 0, ~ E [0, 1], (2.11) 
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where the opera tor  Z~ is defined by 

d 2 d 
Z~ = c~4(~ 2 -  1) ~-~ + t~[(2c + 3)~ 5 -  2b{4 - 4~ 3 + 2(a + b)~ 2 -  2a] ~-~ 

+ o~{c(c + 2){ 4 -  b(2c + 1){ 3 + (b2+ c 2 -  3c)s c2 + [a (2c-  1) + 2b]s c - b2}. 

(2.12) 

In par t icular  case of  the harmonic  oscillator, where u = 1, the parameter  c~ might  
be t aken  as zero f rom (2.6) and (2.7). However,  the t ransformed equat ion  seems to 
be indeterminate  i f a  = 0. Thus  we should reformulate  the p rob lem as the determi- 
na t ion  of  a in such a way that  the harmonic  oscillator is obta ined whenever  a ~ 0. 
To  this end, letting r 2 = z we find, f rom (2.1), that  

~ =  1 -½c~z+ O(~ 2) (2.13) 
and that  

m 
~'~ = 1 - ~-c~z + O(c~ 2) (2.14) 

as c~ ~ 0. I f  we make  use of  the operat ional  relations 

d _ 2  d c~ 2 d~2 d 2 ~ - ~ =  dz + O(~2), _ _  = 4~z2 + O(c~2), (2.15) 

eq. (2.11), with u = 1, may  be writ ten in the form 

dF d2F [2(2c - 1) - c~(10c + 3)z - 4t~(a - b)z]--~z - 4z(1 - 2c~z) ~ - 

+ [~c(2c - 1) + ~(a - b)(2c - 1) - E]F + O(~ 2) = 0 (2.16) 

for sufficiently small values ofc~. N o w  imposing the condi t ion that  

a ( a -  b) = 1 (2.17 

identically, we then arrive at the differential equat ion  

-4z-d~ d2F - 2(2t + N -  2z) aF+ (2t + N -  E)F (2.18) 

for ~ = 0, which is no th ing  but  the Laguerre 's  differential equat ion  (1.6). Wi th  
. . l - 3  b - l  . i 

(2.17) it is no t  difficult to see that  ~Ce-~a~ + ~ tends to a constant  mult iple  ofe-~ z, 
and hence tha t  the wave funct ion in (2.9) converges to the ha rmonic  oscillator solu- 
t ion (1.5) as c~ ~ 0. This is an interesting analysis of  the anha rmon ic  oscillators 
because there is no  analytic solut ion which yields the exact eigenfunctions of  the 
unpe r tu rbed  Schr6dinger  equat ion  in this manner .  

The  de te rmina t ion  of  the structure parameters  is accomplished by means  of  the 
nonl inear  algebraic equat ions  (2.6), (2.7) and  (2.17). For tunate ly ,  they provide  us 
with nice mathemat ica l  formulas  for expressing ~, a and b, 
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a = (1 - v3)[1 + (1 - tJ2)'/2] -2 , (2.19) 

a = (1 -//3)1/2ot-3/2 (2.20) 

and 

b -- (1 - v3)l/2a -l , (2.21) 

respectively. No te  that  a lies entirely between the values of  0 and 0.25 as u varies 
f rom 0 to 1. 

Finally, we may  verify that  the resulting differential equat ion  (2.11) for F ( ( )  
has asymptot ic  solutions of  the form 

Fl (() ~ constant ,  F2(~) ~ e ~-3-2b~-' , (2.22) 

as ~ ~ 0. So the second solut ion F2(~) must  be rejected since it grows faster than  
the decay of  the exponential  term in (2.9) as ~ --, 0. In other  words,  i; is impor t an t  
to ensure that  F(~) behaves correctly, like Fl (~), as ~ ~ 0 to satisfy the first condi- 
t ion in (2.10). On the other  hand,  we will show in section 3 that  eq. (2.11) possesses a 
regular  solut ion about  the singular point  at ~ = 1. 

3. Hill's determinant 

We seek solutions of eq. (2.11) in the form of  power  series about  ~--- 1. Since 
the singularities of  the differential equat ion are located at ( = q:l and 0, the series 
solutions are surely convergent  inside a unit  circle centered at ( = 1, i.e. 1( - 1 ] < 1. 
The  exponents  of  the singularity at ~ = 1 are 0 and -(2• + N - 2)/2.  Therefore,  we 
have a solut ion start ing with a constant  which may  be writ ten as 

F(~) --- - ~  fk(~--  1) k, (3.1) 
k=0 

where the factor ( - 2 / a )  k in the coefficients of  the series has been in t roduced  for 
convenience.  The  second power  series solut ion corresponding to the root  
-(2• + N - 2) /2  ofindicial  equat ion does not  fulfill the condi t ion at ~ = 1, which is 
neglected. In fact, it represents a physical solution only for the one-dimensional  
oscillators [9]. 

Subst i tut ing (3.1) into (2.11) we obtain the fifth-order difference equat ions  

- 2 ( 2 k  + 2c - 1)(k + 1)fk+l 

+ { 9 a k ( k  - 1) + [5(2c + 3)a  - 12a + 4lk + (2c - 1)(1 + ac)  - uE} fk  

- ! a 2 { 1 6 ( k -  1 ) ( k -  2) 
2 
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+2[a - 5b + 5(2c + 3) - 6](k - 1) + (2c - 1)a 

- ( 6 c  + 1)b + 2b 2 + 2c(3c + 1)}fk-1 + lc~3 { 1 4 ( k -  2 ) ( k -  3 ) +  215(2c + 3) 

- 4 b  - 2](k - 2) + b 2 - 3(2c + 1)b + c(7c + 9)}fk-2 

- lo~4{6(k - 3)(k - 4) + [5(2c + 3) - 2 b ] ( k -  3) + 4 c ( c  + 2) - ( 2 c  + 1)b}fk-3 

+ ~ a S { ( k -  4)(k - 5) + (2c + 3 ) ( k -  4) + c(c + 2)}fk_ 4 • 0 (3.2) 

with  k = 0, 1 , . . . ,  for the de terminat ion  of  the coefficientsfk, where 

f - 4  ~ ' - "  ~---f-1 ~ 0 .  (3.3) 

The  series in (3.1) leads to the bounded  solut ion required as (--o 0 or FI(()  in 
(2.22) only if it contains  a finite number  of  terms. As a result, the square integrabil- 
ity of  the wave funct ion should be guaranteed  by assuming that  

fM+l -----fM+2 ---= . . .  = 0,  (3.4) 

where M is the t runca t ion  order of  F(() .  By (3.4) the linear recurrences (3.2) are 
reduced to a f ini te-dimensional  homogeneous  system whose coefficient matr ix  of  
order  M, L(E) say, is of  a banded Hessenberg form. It is evident that  there exist 
nontr ivial  solutions if and only if the so-called Hill 's de te rminant  is zero, 

det L(E) = 0,  (3.5) 

which are compat ible  with (3.3). The last condi t ion allows the numerical  evalua- 
t ions of  the t runca ted  energy eigenvalues using available routines [12]. F r o m  a com- 
puta t ional  point  of  view, in the asymptot ic  domain  o f k  >> 1 a backward  recursion 
for (3.2) with the initial condi t ions (3.4) should  be proceeded.  Such a procedure  is 
k n o w n  as Miller 's a lgor i thm [13], and is suitable for the stable calculat ion of  the 
coefficients of  the series yielding the nondominan t  asymptot ic  solut ion F1 ((). 

Reconsider ing the harmonic  oscillator, i.e. u = 1 and c~ ~ 0, we find, in conjunc- 
t ion with (2.8) and (2.13), that  the power  series (3.1) and  the recursions (3.2) for its 
coefficients are reduced to 

Oo 

F(r) = Z f k r  ~ 
k=0 

and 

(3.6) 

-2(2k + 21+ N)(k + l)fk+l + (4k + 2l + N -  E)fk =O, k = 0 , 1 , . . . , n , . . . ,  

(3.7) 

respectively. I f  the eigenvalues are specified as those in (1.7) it follows then  that  

- f . + 2  - - - . . .  - o ,  (3 .8)  
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and that the series terminates resulting simply in polynomials of degree 2n. These 

are the associated Laguerre polynomials r(~ N+l-1) with argument r 2 [14]. Observe 
that (3.8) is equivalent to (3.4). 

4. Results  and discussion 

We solve two- and three-dimensional systems to test the numerical efficiency of 
the present method. Nevertheless, these calculations are representative for higher- 
dimensional spaces as well. We may deduce this interesting feature of N-dimen- 
sional isotropic oscillators directly from eq. (1.3). Actually, it is shown that the 
spectrum of the Schr6dinger equation remains invariant for all fixed values of the 
positive integer number 2l + N. As a result, denoting the eigenvalues in N dimen- 
sions by E~,~ ), we formulate the following degeneracies: 

E (2) ~ / 7  '(4) 
n,1 ~n,0 

En(2) E(4) ~ p(6) 
,2 ~ nil "-'n,0 

En(2) E(4) E(6) _ _/7,(21-2) p(21) K,(2l+2) 
,l ~ n , l - I  ::- n , l - 2  ~ " ' "  -~ ~ n , 2  =- ~n ,1  ~ ~n,O 

when N is even, where E~20 ) is single in the system. Similarly, we have 

E(3) ~(5) 
n,1 ~ ~n,0 

E ( 3 )  p(5) p(7) 
,2 ~ ~n,1 ~ ~-'n,0 

(4.1) 

E (3) E (5) E (7) --  --/7(21-1) b-'(21+l) /7(21+3) (4.2) 
n,l ~ n , l - I  ~ n~l-2 ~ " " " ~ ~ n , 2  ~ ~"n,l ~ ~n,O 

if N is odd. In the exceptional case of N = 1, the eigenvalues can be characterized 
by Ezn+t rather than two quantum numbers, with l = 0 and 1. As was indicated ear- 
lier in the introduction, l = 0 implies the symmetric states E2n and I = 1 the anti- 
symmetric states E2n+l. Furthermore, it may be seen that p(3) ~n,0 = E2,,+l since 
2l + N = 3 for each case. 

The numerical results are given in Tables 1 and 2 so as to cover the whole range 
of the original coupling constant/3. The case of/3 --, c~ corresponds to the infinite- 
field limit Hamiltonian where the eigenvalue problem is 
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Table 1 
Specimen calculations in two dimensions as a function of/3. The eigenvalues E,(2r ) represent also the 
eigenvalues in 2N dimensions according to eq. (4.1). The last column includes, where possible, 
Witwit 's  results for comparison. 

/~ n 1 M <~ <2) in rer. [21 

0.0001 0 0 7 2.000 199 955 022 234 348 149 930 
1 1 9 8.002398591662386403444616 
0 5 8 12.00419695952695054056241 
3 1 12 16.009 589 044 588 030 969 292 34 

10000 

O¢3 

0 0 35 2.952050091962874287056570 2.952050091 9628 
0 2 39 10.39062729550378212735548 10.390627295503 6 
1 1 40 15.482771 57725166647673491 
0 4 39 19.21752349588898490682274 19.217523495888 

0 0 37 50.548 044 948 103 018 662 533 82 50.548 044 948 102 
1 0 39 205.377 745 742 563 428 720 578 2 205.377 745 742 56 
0 4 41 368.030 082 448 256 517 258 408 0 368.030 082 448 24 
1 2 41 394.577407 137436 105423 675 5 394.577407 13742 

0 0 37 
0 2 39 
0 4 40 

2.344 829 072 744 275 209 808 996 
8.928 082 199 849 951 179 552 253 

17.077 681 440 978 319 569 540 21 

d 2 2 1 + N -  1 d ) 
dr  2 r dr + r4 ¢(r) = g ¢ ( r )  (4.3)  

with g =/3-1/3E, showing the correct asymptotic relation for the eigenvalues, 
C ~/3-1/3E, for large enough values of/3. Therefore, the energy eigenvalues in our 
tables as/3 --, cx~ are tabulated in terms of & We confine ourselves to present only 
some specimen calculations in order not to overfill the contents of the paper with 
tabular material. Further results are available from the author. 

We report eigenvalues to twenty-five significant digits for all values of the anhar- 
monicity constant. The accuracy of the results is checked by employing the succes- 
sive approximations of M. In the tables, M stands for the truncation order of Hill's 
determinant for which the recorded accuracy is achieved. The eigenvalues by 
Witwit [2] are also included for comparison. It should be noted that in Table 1 the 
eigenvalues and the coupling constants taken from [2] are twice their original values 
because of a different notation adopted. The precision of Witwit's results is not uni- 
form, and differs from nine- to fifteen-digits. In any case, however, the results are in 
a good agreement with each other to the accuracy quoted. 

The trivial eigenvalue ordering properties 
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Table 2 
calculations in three dimensions as a function of 3. The eigenvalues E~3~ represent also the Specimen 

eigenvalues in (2N + 1) dimensions according to eq. (4.2). The last column includes, where possible, 
Witwit 's  results for comparison. 

3 n l M E(3),,I E~ff in ref. [2] 

0.0001 0 0 7 3.000374896936 121 098 337 847 
0 10 9 23.014356719 158913 502993 75 
5 5 15 33.039285 168 376526523 59258 

20 

0 0 36 4.648812704212077536377033 
0 1 36 8.380 342 530 101 586 016 658 644 8.380 342 5300 
0 5 43 26.52891755812392394150839 26.5289175581239 
1 3 41 27.89841776000825392461902 27.898417760082 a 

0 1 39 19.78325191133535705806714 19.78325190 
0 2 41 30.057199045 323927 972631 36 30.057 1990 
1 1 41 44.20927997315684677481628 44.20927997315 
0 5 45 65.961 500030678 143050225 38 65.961 50003067 

1000 0 0 37 38.086 833459 382264084978 36 
0 3 41 149.439045580769 5782909418 

OO 0 0 38 
0 5 42 

3.799 673 029 801 394 168 783 094 
23.940 622 097 894264 116 215 20 

a There is most likely a misprint in this result. 

E(N) ~,(N) w(N) p(N) (4.4) 
n,12 > ~n,ll ¢:~ 12 > ll,  ~n2,1 > ~nl,l ~2~ n2 > nl , 

have been confirmed by our calculations. Now (4.4) and (4.1)-(4.2) imply that 

En(N2) L"(NI ) ,t > ~n,t ¢* N2 > N l .  (4.5) 
Thus the eigenvalues with the same quantum numbers increase as the dimension 
N of  the space increases, and vice versa. Finally, we characterize the energy levels 
E(N) ,t as groups denoted by the number m, where m = n + l. We deduce, from the 
numerical experiments, that the eigenvalues in such a group may be ordered 
according to the rule 

Eo(N) p(N) ,< < E (N) < E (N) (4.6) 
,m "< ~1 on-1 " ' "  m-l,1 m,0 

independent of the coupling constant and of the dimension. 
As a concluding remark, we should point out once more that an asymptotically 

correct wave function which approaches the classical harmonic oscillator solution 
as a special case has been presented. The intelligence substitution (2.1) plays a sig- 
nificant role to this end. The importance of  this remark is discussed by Znojil [15], 
who concludes that 'we never get any elementary or exact p~irticular solution as a 
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special case of  asymptotically correct wave functions'. It is the removal of  such an 
undesired situation which explains both the complicated looking structure of  the 
resulting differential equation (2.11) and the reason for referring to the simple har- 
monic oscillator throughout  the text. 

On the other hand, one might certainly use a standard power series method,  hav- 
ing no novelty, which leads to a 3-term recurrence relation instead of the 5-term one 
in (3.2). At first sight, the usage of the former may be considered to be much more 
preferable than of the latter one. In the former case, however, it would be necessary 
to introduce certain appropriate optimization parameters in order to achieve satis- 
factory numerical results [2]. Note that we have never used in this study a specific 
numerical technique such as optimization, or otherwise, in getting extremely accu- 
rate results reported in the tables for all values of the coupling constant. Note  also 
that  there are some other variants of Hill's determinant approach that do not 
require such parameters as well. For instance, we may cite here the Riccati-Hill  
method,  which yields accurate eigenvalues and eigenfunctions for anharmonic 
oscillators (see [16] and references therein). Consequently, if we remind how much 
labor is involved in the determination of  a flexible convergence parameter properly 
even for the one-dimensional quartic oscillator [17], the numerical efficiency of  our 
solution becomes much clearer. This is due to the fact that the present solution 
behaves exactly like the true wave function everywhere for all ft. 
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