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Abstract 

The variational method is used to obtain solutions to Schr6dinger's equation for 
a particle in the radially screened Yukawa potential. A basis set is presented. While the 
Laguerre basis set shows considerable improvement over the hydrogenic one, problems 
are still encountered as the screening parameter approaches its threshold value. Variational 
calculations are also presented using an Eckart-type basis set which looks promising 
near the critical screening region. 

1. Introduction 

Screened Coulomb potentials have received considerable interest among physical 
scientists since the early days of quantum mechanics. The most commonly used 
ones are those having spherical symmetry representing the presence of purely radial 
static screening. 

In this paper, we shall deal with the Yukawa potential: 

e-Yr 
V(T,r) = - ~ ,  (1.1) 

where y is a screening parameter. It arises in the solution of the Klein-Gordon 
equation for a static meson field [1,2]. It was also utilized in solid state [3,4] and 
plasma physics [5-9]  and is known in the latter as the Debye-Hfickel  potential. 
In quantum chemistry, a linear combination of Yukawa or similar potentials can be 
used to model the effect of core electrons on the valence levels, thereby reducing 
the size of the calculations considerably. Since the Schr0dinger equation employing 
the potential given by (1.1) is not analytically solvable, investigations have been 
carried out over the last couple of decades towards understanding and solving 
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this problem, using various techniques. Variational [3,4,6,7,10-14], perturbational 
[6-8,  11, 12, 15-22], group-theoretical [23-25] approaches, as well as numerical 
integration [26-31] and newly developed algebraic [32,33] methods have been 
utilized to this end. 

The Schr6dinger equation for a particle bound in a Yukawa potential is given 
by the following equation: 

1 V2~p e-~" . . . .  • = EW;, • e H ,  (1.2) 
2 r 

where His  the Hilbert space and r denotes the radial variable in spherical coordinates. 
As was previously stated, ~'characterizes the screening of the central force field by 
other electrically charged particles. It is clear that for the problem at hand, the 
amplitude of the screening is independent of direction. One can therefore, after 
separation of variables, arrive at the corresponding radial form of (1.2): 

1 d2l// 1 dl// + [ l ( l + l )  e? r] EV ' (1.3) 
2 dr2 r dr---T k ?r2 rJ~= 

where V, the radial part of the wave function, depends on r and l (=0, 1, 2 . . . .  ) 
denotes the eigenvalues of the system's angular momentum operator. The boundary 
conditions accompanying (1.3) are the regularity, the continuity and the vanishing 
behaviour of V as r approaches infinity. It is clear that V(0, r) is -1 / r ,  that is, as 
the screening parameter and hence the screening goes to zero one is left with the 
radial SchrOdinger equation of the hydrogen atom. It is perhaps this limiting behaviour 
of (1.3) that inspired considerable work using hydrogenic wave functions as bases 
for calculations. 

Some of the more interesting variational calculations were done using the 
wave functions arising from the analytical solution of a Hulthen-like effective 
potential [11,14,34] as trial functions. In fact, the earlier of these works, which 
deals with only the s-states, uses also the perturbation technique. However, the 
quality of their perturbation results is inferior to that of their variational results, as 
screening increases. 

It is well known by now that the presence of the continuum states complicates 
perturbation treatment of hydrogenic problems. An integration over the continuum 
would therefore be required for proper treatment of such problems. Perturbational 
methods which attempt to bypass this difficulty are logarithmic perturbation 
theory [18], Hel lman-Feynman and hypervirial theorems [16], and a very recent 
perturbational treatment employing a Laguerre basis set expansion in the procedure 
to obtain the inversion of the hydrogen-like operator [20-22]. In a recent attempt 
to analyze the behaviour of the Pad6 approximants of ref. [17], Vrscay gives energy 
values to twenty decimal points for a sizeable screening domain for the ls and 2s 
states with apparent loss of accuracy for large y-values of the 2p state [19]. However, 
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a multiple-precision floating-point arithmetic package was used to obtain these 
results and, moreover, the Stieltjes behaviour of the Pad6 series assumed by Lai 
proved to be false. This, of course, leaves open the question as to when and where 
the perturbation series of ref. [17] will converge. 

In a recent perturbational scheme by the present authors, utilization of the 
Laguerre basis set in the inversion of the hydrogen-like operator has led to values 
consistent to thirty decimal points for a wide domain of the screening value. This 
approach does not seem to present extra convergence difficulties for states with l 
values greater than zero. At this stage, we have decided to carry out variational 
calculations with the Laguerre basis set and, for comparative purposes, to also 
perform calculations, within the same machine accuracy, using the hydrogenic basis 
set. 

An alternative route to solving the Schr6dinger equations with screened Coulomb 
potentials has been to approximate these potentials, as best one can, with other 
potentials which can be analytically solved. One such paper we find of considerable 
interest is that of Dutt et al. [35-37]. They approximate the Yukawa potential 
together with the angularly-dependent term of eq. (1.3) by an Eckart-type potential 
[38], extending the Ecker-Weizel [5] approximation to the non-zero angular momentum 
states. We find the closeness of their energies to Yukawa energies to be encouraging. 
Taking our cue from this work, we have decided to make variational calculations 
also employing such a basis set, for comparison. 

In the light of the above discussions, a formulation of the variational scheme 
and matrix elements for various basis sets will be given in the next section. The 
third section will cover the results, while the final section will present the concluding 
results. 

2. Formulation 

The variational treatment of the eigenvalue equation (1.3) requires the selection 
of radial trial functions Zn, t(7, r) for a given state (n, l). Omitting the argument and 
the subscripts for the sake of convenience, and assuming the trial functions are 
normalized, that is, 

t o  

S Z*Z r2dr = 1, (2.1) 
0 

the variational energy is expressible as 

E =  * 

0 

1 d2z 1(l + 1) e -r~-  

2 2dr 2 r dr 
zlrZdr. (2.2) 
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Taking the trial functions as linear combinations of  known functions u will 
lead to the matrix eigenvalue problem: 

A C  = E B C ,  (2 .3)  

where 
o o  I Il 21d rl l+l, e ll 

Aij  = r 2 u i - 2  dr 2 r dr  [ ~72 r ujdr, 

0 

(2 .4 )  

Bi, j = f uiujr2dr, (2 .5)  
0 

and the matrix C contains the coefficients of  expansion. The symmetry constraints 
will allow the construct ion of a separate eigenvalue problem for each l value. 
Hence,  the index i starting from zero will be expressible as 

i = n - l -  1 (2.6) 

in terms of  the usual quantum numbers  n, l. 

2.1. HYDROGENIC BASIS SET 

An eigenfunction of  a state denoted by (n, l) for a hydrogen-like system 
with nuclear charge ~" is expressible in terms of the associated Laguerre poly- 
nomials  [39]: 

where 

u i = Niy" le-Y/2L~t+li ~y)r .,~, (2 .7 )  

y - (2 .8)  
( i + / + 1 )  

and the normalizat ion constant is given as [39]: 

i! ]1/2~3/2 
2 1 ( i  2 l +  1)!J (2 .9 )  Ni = (i + l + 1) 2 (i + 2l + 1)! + 

The wel l -known orthonormali ty  of  these functions under the weight  r 2 will cause 
the weight matrix of  eq. (2.3) to be a unit matrix, leading to the simpler diagonalization 
problem 

A C = E C. (2.10)  

Expressing the e lements  of  the matrix A as follows: 
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c o  

Ai'j = r2ui 2 dr  2 r dr  L 9-r2 ujdr 
0 

+ I ui(( - err)ujrdr' 

0 

(2.11) 

it is obvious that since u 's  are eigenfunctions of  the operator appearing in the first 
term of  eq. (2.11): 

e i Ai'j = 2(i + l + 1) 2 t~i'j Ui( ~ -  err)ujrdr. (2.12) 

0 

All that has to be done now is to calculate the integral containing the Yukawa 
potential. The Coulomb part of  the integral can be calculated simply by setting 7' 
equal to zero. Defining the quantities: 

A = (i + l + 1) -1, (2.13) 

# = ( j  + l + 1) -I , (2.14) 

v = (A +/.t + 9~]()]2, (2.15) 

;t # 
, ( 2 . 1 6 )  

r / =  (v  - ;t) ( v  - # )  

the Yukawa potential can be evaluated to yield [41]" 

0 

At# t ( i + j + 2 1 + l ) 1  ( v - ~ . ) i ( v - # )  j 'yr 
uiuje r d r =  NiN j ( 2 5 )  2 i! j!  V i+j+21+2 

2 F l ( - i , - j ; - i  - j - 2l - 1;1 - r/), (2.17) 

where the function 2Fl(a, b; c; z) is known in the literature as a hypergeometric 
function [39]. Since in this particular case the a and b value of  the function are 
negative integers, it reduces to a finite sum and can be easily evaluated. 

2.2. LAGUERRE BASIS SET 

An alternative basis set which shall be employed in the present variational 
treatment is, in a sense, quite similar to (2.7): 
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u I = NiY e-Y/2L 2t+l (y).  (2.18) 

Now, however,  

y = 2~r. 

This set is or thonormal  under the weight y, so that 

N i =  ( i + 2 l + 1 ) !  
(2.19)  

The existence of Kronecker ' s  deltas implies the weight matrix turns out to have a 
band structure, 

= (2 5) -3 NiN j [.(i Bi,j 
L 

+ 2l + 2)! 

i! 
(~i,j q" 

( i  + 2 l  + 2 )  v 
• ( ~ i j - 1  

i! 

( i + 2 l + 1 )  w 
- -  " ( ~ i - l , j - 1  

(i 1)! 

(i + 21 + 1) v "] 
(i - 1)! " gi-l.jJ. (2.20) 

Employment  of  this basis set in eq. (2.4) will give 

Ai, j = - ( ~ z / 2 ) B i , j  + 
(i + l + 1) 

~ a  

-- uiuje rdr.  

0 

(2.21)  

To evaluate the Yukawa part of the A matrix, the following definition can be made: 

f -'yr Di, j = uiuje rdr.  

o 

(2 .22)  

Using the recurrence formulae for Laguerre polynomials [39], a two-dimensional  
recursion relationship can be obtained [22]: 

Di+l, j = [ ( i  + 1) (i + 2l + 2]) -1/2([(j + 1) (i + 21 + 2)] 1/2 Di,j+l 

+ [(j + 1) (i + 2l + 1)]1/2Di,)_1 - [(i + 1) (i + 21 + 1)] 1/2Di_l, ) 

+ 2 ( i - j ) D i , j )  i , j  = 0,1,2 . . . . .  (2.23) 

To start using this recurrence, all that needs to be done is to calculate the 
zeroth row (or equivalently,  column) of  D, which can be easily evaluated as 
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where 

Do, j = NoN-f I (2 ~-)-2 7 j (1 + ~) j+2l+2 ' (2 .24)  

y = ~,/(2~'). (2 .25)  

This leaves one with the evaluation of  the eigenvalue problem of  (2.3). 
An equivalent choice is to consider 

U i = Niy le -Y/2L2l+Z(y) .  

Again, 

y = 2(r ,  (2.27) 

and the set is or thonormal  under  the weight y2, with 

Ni = ( i+21+2) !  (2 .28)  

(2 .26)  

The utilization of  (2.26) will result in time economy, computationally speaking, 
since it requires solving the unweighted problem of  eq. (2.9). These two Laguerre 
bases are equivalent and a well-known relationship between them [39] can be used 
to obtain a transformation from the (2l + 1) to the (2l + 2) set 

i 
L~+l(y) = ~., L~(y). (2 .29)  

k=O 

2.3. 

leads 

ECKART-TYPE BASIS SET 

The definit ion 

ui =fi/r 

to the eigenvalue problem of the form 

2 d r  2 L 2r2 f/ = Ef/. 

Defining 

y = (2e -~r - 1), 

the trial functions will be chosen as 

(2.3o) 

(2.31) 

(2.32) 

(1 + y)V(1 - y)t+l p/(2t+l,ZV)(y), 
f i  = Ni 21+l+v (2 .33)  
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where p[a,O)(y) is a Jacobi polynomial [39] and Ni is a parameter, arbitrarily chosen. 
This set will be chosen to be normalized under weight 1, so that: 

i ! F ( i  + 2 v + 2l + 2) (2i + 2 v + 2l + 2) . (2.34) 
Ni= F ( i + 2 1 + I ) F ( i + 2 v + I )  

The weight matrix elements are 

+1 

1 f fi(Y)fj(Y) 
Bi'j =-~ NiNj (1 + y) 

-1 

dy, (2.35) 

and the corresponding Hamiltonian matrix elements are 

Ai,j = -  

where 

+1 

52 f fi (Y) fj  (Y) Bi, j -~2 l(l + 1)NiN j (1 + y)dy 
2 2 (1 - y)2 

-1 

+1 

f fi(Y)fj(Y) dy - ~  [(j+v+l+l)2 -v2-(I+I)]NiNj ( l - y )  

-l  
+1 

f fi (Y) J~ (Y) + ~ [(/(l + 1)]NiN j dy 
2 (1 + y) ln2([1 + y]/2) 

-1 

+1 

1 f f.(y)fj(y) dy, 
+ 2 --~ NiNj (1 - y)l-~ In [1 + y] / 2) 

-1 

(2.36) 

= 7 / ( .  (2 .37)  

Using the recurrence formulae for Jacobi polynomials [39] leads to a two-dimensional 
recursion relationship [22] similar in form to that of the Laguerre basis set. To start 
using such a recurrence, all that needs to be done is to calculate the zeroth row (or 
column) of the individual integrals appearing in eqs. (2.35) and (2.36). 

An alternative route is to expand the Jacobi polynomials in terms of  their 
argument 

i (ika)('i+fl'~ l)i-k Pi(a'#)(y)=2-N• ~i_k)(Y+l)k(Y- (2.38) 
k=0 

and integrate the individual integrals. 
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We have decided to use the latter route to prevent error accumulations. The 
final formulation is, however,  quite long and rather tedious. Since this basis set is 
not within the main scope of  this paper, we shall restrict ourselves to only a rather 
preliminary investigation and hence will not elaborate any further on the calculation 
of  the Hamiltonian matrix elements. 

3. Results 

Numerical calculations have been carded out for all of  the three aforementioned 
basis sets. To this end, a VAX-780 was employed,  and programmes were executed 
in quadruple precision arithmetic. 

T a b l e  1 

R a t e  o f  c o n v e r g e n c e  o f  v a r i a t i o n a l  s c h e m e  u s i n g  a h y d r o g e n i c  

b a s i s  s e t  a s  a f u n c t i o n  o f  t h e  o r d e r  M f o r  t h e  I s  s t a t e .  

M 7 = 0 . 0 0 5  7 = 0 . I  7 = 0 . 5  7 = 1 . 0  

1 - 0 . 4 9 5 0  1 8 6 8 7 6 9 4  - 0 . 4 0 7 0 2 9  - 0 . 1 4 0 0 0 0  0 . 0 5 5 5 5 5  

2 - 0 . 4 9 5 0  1 8 6 8 7 8 2 2  - 0 . 4 0 7 0 4 5  - 0 . 1 4 5 4 5 7  - 0 . 0 0 7 7 6 7  

3 - 0 . 4 9 5 0  1 8 6 8 7 8 4 3  - 0 . 4 0 7 0 4 7  - 0 . 1 4 5 9 9 9  - 0 . 0 0 8 1 5 1  

4 - 0 . 4 9 5 0  1 8 6 8 7 8 5 0  - 0 . 4 0 7 0 4 8  - 0 . 1 4 6 1 7 6  - 0 . 0 0 8 2 8 7  

5 - 0 . 4 9 5 0  1 8 6 8 7 8 5 4  - 0 . 4 0 7 0 4 8 7 6 4  - 0 . 1 4 6 2 5 8  - 0 . 0 0 8 3 1 1  

1 0  - 0 . 4 9 5 0  1 8 6 8 7 8 5 8  - 0 . 4 0 7 0 4 9 3 3 5  - 0 . 1 4 6 3 6 6  - 0 . 0 0 8 3 4 9  

15  - 0 . 4 9 5 0  1 8 6 8 7 8 5 9  - 0 . 4 0 7 0 4 9 4 4 7  - 0 . 1 4 6 3 8 7  - 0 . 0 0 8 3 5 7  

2 0  - 0 . 4 9 5 0  1 8 6 8 7 8 5 9  - 0 . 4 0 7 0 4 9 4 8 7  - 0 . 1 4 6 3 9 5  - 0 . 0 0 8 3 6 0  

T a b l e  2 

R a t e  o f  c o n v e r g e n c e  o f  v a r i a t i o n a l  s c h e m e  u s i n g  a h y d r o g e n i c  

b a s i s  s e t  a s  a f u n c t i o n  o f  t h e  o r d e r  M f o r  t h e  2 s  s t a t e .  

M 7 = 0 . 0 0 5  7 = 0 . I  7 = 0 . 1 5  7 = 1 . 0  

2 - 0 . 1 2 0 0 7 4  1 3 3 3 9 2  - 0 . 0 8 1 7 0 2  - 0 . 0 2 4 3 0 0  0 . 0 1 0  

3 - 0 . 1 2 0 0 7 4  1 4 0 7 0 8  - 0 . 0 8 1 7 5 3  - 0 . 0 2 6 9 1 5  - 0 . 0 0 2  

4 - 0 . 1 2 0 0 7 4  1 4 1 6 9 6  - 0 . 0 8 1 7 6 0  - 0 . 0 2 7 0 1 2  - 0 . 0 0 3 2 0 6  

5 - 0 . 1 2 0 0 7 4  1 4 2 0 2 4  - 0 . 0 8 1 7 6 2  - 0 . 0 2 7 0 4 7  - 0 . 0 0 3 2 6 8  

1 0  - 0 . 1 2 0 0 7 4  1 4 2 3 7 1  - 0 . 0 8 1 7 6 4 5 0 3  - 0 . 0 2 7 0 8 4  - 0 . 0 0 3 2 8 0  

15  - 0 . 1 2 0 0 7 4  1 4 2 4 2 7  - 0 . 0 8 1 7 6 4 8 7 1  - 0 . 0 2 7 0 9 0  - 0 . 0 0 3 2 8 0  

2 0  - 0 . 1 2 0 0 7 4  1 4 2 4 4 7  - 0 . 0 8 1 7 6 4 9 9 8  - 0 . 0 2 7 0 9 2  - 0 . 0 0 3 2 8 4  

In tables 1 and 2, the ground and first excited states are consecutively given 
as examples to the convergence rate of  the Yukawa system when the hydrogenic 
set is employed as a basis. A reasonable selection of  the screening parameter 7 is  
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given for both of these states. As for the size of truncation M, 1-5, 10, 15 and 20 
are quoted to give a general feeling for what is a very slow convergence and is 
believed to be due to the non-existence of the contributions coming from the continuous 
spectrum eigenfunctions in the trial functions. No attempt was made to optimize any 
charge parameter; i.e. ~'= 1 was employed, since detailed work using various ~"s 
already exists in the literature for small M values [7] and a more complete analysis 
would have been but a diversion from the main scheme of this work. For accurate 
energy values, tables 1 and 2 of ref. [22] and table 3 of the present work can be 
referred to. 

Table 3 

Variational energy eigenvalues for various states calcu- 
lated using the Laguerre basis set as a function of 7. 

State ~' M Energy 

4f  0.045 50 - 0.001 487 359 743 334 720 048 551 730 070 

4d 0.05 55 - 0.001 580 871 626 871 004 952 883 948 070 

4p 0.05 55 - 0.002 598 058 852 571 853 965 261 191 255 

4s 0.05 55 - 0.003 091 659 900 161 321 484 658 950 292 

3d 0.05 35 - 0.016 915 570 569 815 842 886 114 758 244 

3p 0.05 40 - 0 . 0 1 8  557 751 883 405 996 604 893 993 884 

3p 0.1 70 - 0.001 589 001 525 867 560 267 558 634 938 

3s 0.05 40 - 0 . 0 1 9  352 554 814 752 342 295 397 996 789 

2p 0.1 35 - 0 . 0 4 6  534 390 486 724 608 383 600 840 395 

2p 0.15 40 - 0.021 104 888 927 736 242 916 943 382 961 

2p 0.2 65 - 0.004 101 646 530 784 090 388 446 910 214 

2s 0.005 10 - 0.120 074 143 345 598 522 611 020 393 630 

2s 0.05 25 - 0.081 771 195 795 253 124 173 489 413 770 

2s 0.15 45 - 0.027 222 190 725 688 518 250 187 267 589 

2s 0.25 70 - 0.003 395 906 283 239 307 796 442 264 449 

ls  0.005 8 - 0.495 018 687 925 632 530 667 468 329 152 

ls  0.1 20 - 0,407 058 030 613 403 156 754 507 070 361 

l s  0.5 50 - 0.148 117 021 889 932 616 711 758 220 725 

l s  1.0 85 - 0.010 285 789 990 017 696 804 774 214 

In table 3, energy values evaluated using the Laguerre basis set are given. 
To be reasonably concise, only a few examples are presented, and all in the same 
table. In the first column are the symbols ls, 2s, 2p, 3p, 3d, 4s, 4d and 4f, the states 
for which calculations have been made. The screening parameter 7, in the second 
column, has been varied over an important portion of its domain between threshold 
and zero. In the third column is given the size of truncation M necessary to obtain 
the quoted accuracy. The effective charge parameter 7turns out to be the same as 
those given in the previous perturbational treatment [22] and is therefore not employed 
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in table 3. The last column is devoted to the presentation of our results corresponding 
to the state 7, M and 5. Results are as good as those obtained via the perturbational 
scheme of ref. [22] and closer to the critical region, where the eigenvalues are close 
to the threshold of the continuous spectrum; the results are even much better, as can 
be noted for example for the ls states 7 = 1.0, where an additional five digit accuracy 
has been achieved. The most obvious advantages of variational calculations over the 
perturbational treatment of ref. [22] are the economy in computational time and that 
for former is less susceptible to error accumulations. Nevertheless, as 7 approaches 
its critical value the variational method using the Laguerre basis set starts to lose 
its efficiency. This possibly seems to hint at the inappropriateness of the structure 
of the Laguerres for the problem at hand when heavy screening effects exist. This 
suggests considering basis functions arising from a problem of similar structure. 

T a b l e  4 

C o n v e r g e n c e  r a t e  o f  v a r i a t i o n a l  s c h e m e  u s i n g  a n  E c k a r t -  

t y p e  b a s i s  s e t  as  a f u n c t i o n  o f  t h e  o r d e r  M f o r  t h e  l s  s t a t e .  

M 7 =  0 . 5  7 = 1 .0  7 = 1 . 1 5  7 = 1 . 1 9  

5 - 0 . 1 4 8  1 1 6 9 8  1 6 3 9  - 0 . 0 1 0 2 8 5 2 3 2 1 9 2  - 0 . 0 0 0 4 5 5 0 0  0 . 0 0 0 0 0 0 0  

1 0  - 0 . 1 4 8  1 1 7 0 2  1 5 8 4  - 0 . 0 1 0 2 8 5 5 7 7 2 9 2  - 0 . 0 0 0 4 5 5 2 5  0 . 0 0 0 0 0 0 0  

15 - 0 . 1 4 8  1 1 7 0 2  1 8 9 0  - 0 . 0 1 0 2 8 5 7 8 9 2 0 4  - 0 . 0 0 0 4 5 5 3 8  0 . 0 0 0 0 0 0 0  

2 0  - 0 . 1 4 8  1 1 7 0 2  1 8 9 0  - 0 . 0 1 0 2 8 5 7 8 9 9 9 0  - 0 . 0 0 0 4 5 5 8 8  - 0 . 0 0 0 0 0 0 1  

T a b l e  5 

C o n v e r g e n c e  r a t e  o f  v a r i a t i o n a l  s c h e m e  u s i n g  a n  E c k a r t -  

t y p e  b a s i s  s e t  as  a f u n c t i o n  o f  t h e  o r d e r  M f o r  t h e  2 s  s t a t e .  

M 7 = 0 . 1 5  7 = 0 . 2 5  7 = 0 . 3 0  7 = 0 . 3 1  

5 - 0 . 0 2 7 2 2 2  1 8 8 4 4 9  - 0 . 0 0 3 3 9 5 8 9 9 9 8 4  - 0 . 0 0 0 0 9  1 5 9  0 . 0 0 0 0 0 0 0 1  

1 0  - 0 . 0 2 7 2 2 2  1 9 0 7 2 6  - 0 . 0 0 3 3 9 5 9 0 4 4 8 6  - 0 . 0 0 0 0 9 1 6 0  0 . 0 0 0 0 0 0 0 0  

15  - 0 . 0 2 7 2 2 2  1 9 0 7 2 6  - 0 . 0 0 3 3 9 5 9 0 6 1 3 4  - 0 . 0 0 0 0 9 1 6 0  0 . 0 0 0 0 0 0 0 4  

2 0  - 0 . 0 2 7 2 2 2  1 9 0 7 2 6  - 0 . 0 0 3 3 9 5 9 0 6 2 8 3  - 0 . 0 0 0 0 9 1 6 0  - 0 . 0 0 0 0 0 0 0 4  

In tables 4 and 5, the ground and first excited states are consecutively given 
as examples to the convergence rate of the Yukawa system when the Eckart-type 
set is employed as a basis. The size of the truncation M, 5, 10, 15 and 20, is quoted 
to give a general feeling about the rate of convergence when this basis set is used. 
A specific selection of the screening parameter 7is made for both of these states, 
with special emphasis on values close to the threshold. The NAG Library routine 
E04CCF was utilized to optimize energies with respect to parameters 7 and v. 
Although the calculations to solve the eigenvalue problem were performed in quadruple 
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precision arithmetic to prevent error accumulations, optimizations were done in 
double precision since all available NAG routines were implicitly so. It is worth 
noting that this is a rather costly process and is in no way an ultimate goal. All in 
all though, the expectations are at least partially fulfilled and results accurate to 
eight decimal points are, for example, calculated for the 2s state 7= 0.31. This 
would have been quite unlikely with either of the two aforementioned bases. For 
these ?'values close to threshold, energies were checked with the results of  tables 
4 and 5 to the accuracy given in these tables. Although Vrscay's results are more 
accurate, the precision required seems to be much higher. 

4. Conclusion and remarks 

In this work, we have presented variational results for the Yukawa potential 
using Laguerre polynomials to form a basis set. The convergence rate is incomparably 
better than that of the hydrogenic basis set. This can be easily attributed to the 
different nature of  the H-atom and the Yukawa problems. In the former, infinitely 
many discrete states exist, whereas in the latter, as soon as screening is introduced, 
the number of states becomes finite. That is, there is a critical )' for each state 
beyond which that particular state can not survive. The Laguerre polynomial results 
are slightly better than the perturbational results of the present authors [22], and are 
almost likewise troublesome on a narrow 7 domain around the critical value of  the 
screening parameter. For the low-lying states, at least for those that are given in 
refs. [19,22], the variational treatment of the problem using Laguerre polynomials 
is preferable to the perturbational treatment [22], since numerical results are less 
t ime-consuming and less susceptible to error accumulations. In the neighbourhood 
of  the critical value, the present work gives better results although, especially for 
the s-states, they are lower in accuracy than Vrscay's results [19]. 

In this work, energy values evaluated using the Eckart-type basis set are also 
given. In the vicinity of the threshold, this basis set seems to be more appropriate 
than the Laguerre basis set. At the moment, however, calculations with this basis 
set require the optimization of  parameters ( and #, which makes them somewhat 
cumbersome, time consuming and inadequate in accuracy. 

To conclude, this work has been quite helpful in pointing out in which parts 
of the ? 'domain the different basis sets give better results, and also demonstrates 
the need to use this knowledge to try to construct new basis sets which will hopefully 
work in the whole domain. Work is in progress towards this aim. As a matter of  
fact, 7-threshold value calculations of  a Yukawa-type potential were presented by 
using a similar type of basis function in a variational scheme [42]. 
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