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Special values of monic polynomials yn(s), with leading coefficients of unity,
satisfying the equation of hypergeometric type

σ(s)y′′
n + τ(s)y′

n − n[τ ′ + 1
2 (n − 1)σ ′′]yn = 0, n ∈ N0

have been examined in its full generality by means of a unified approach, where σ(s)
and τ(s) are at most quadratic and a linear polynomial in the complex variable s,
respectively, both independent of n. It is shown, without actually determining the poly-
nomials yn(s), that the use of particular solutions of a second order difference equation
related to the derivatives y(m)

n (z) is sufficient to deduce special values for some appro-
priate s = z points. Hence the special values of almost all polynomials and their deriv-
atives can be generated by the universal formula

y(m)
n (θa) = m!

(
n

m

)
(ωa)n(ωa + ω−a + n − 1)m

(ωa)m(ωa + ω−a + n − 1)n
(θa − θ−a)n−m ,

in which a = ∓� �= 0 and θ∓a are the discriminant and the roots of σ(s), respec-
tively, and ω∓a denote a parameter depending on the coefficients of the differential
equation. Furthermore, the interrelations that arise between y(m)

n (θa) and y(m)
n (θ−a) are

also introduced. Finally, special values corresponding to the limiting and exceptional
cases have been presented explicitly for completeness.

KEY WORDS: Differential equation of the hypergeometric type, polynomial solutions,
special values, classical orthogonal polynomials, Bessel polynomials

AMS subject classification: 33C45, 33C05, 33C15

1. Introduction

It is well-known that the equation of hypergeometric type (EHT)

σ(s)y′′ + τ(s)y′ + λy = 0, s ∈ C, (1.1)

in which σ(s) �= 0 and τ(s) are polynomials of degree at most two and one,
respectively, has a polynomial solution of exact degree n denoted by yn(s) if and
only if
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λ = λn = −n[τ ′ + 1
2 (n − 1)σ ′′], τ ′ �= 0 (1.2)

for a prescribed nonnegative integer n [1]. The yn(s) are called here polynomi-
als of hypergeometric (HG) type. In particular, when s = x ∈ R, the classical
orthogonal polynomials associated with the names Hermite, Laguerre and Jacobi
belong to the class of polynomials of HG type, each of which is orthogonal over
specific (a, b) interval relative to a weighting function ρ(x) [2].

The coefficients of the EHT may be taken as

σ(s) = σ(0) + σ ′(0)s + 1
2σ ′′s2 (1.3)

and

τ(s) = τ(0) + τ ′s, (1.4)

however, we introduce their general Taylor polynomials

σ(s) = σ(z) + σ ′(z)(s − z) + 1
2 (s − z)2σ ′′ (1.5)

and

τ(s) = τ(z) + (s − z)τ ′ (1.6)

about s = z, keeping the point z completely arbitrary to get a flexibility, where τ ′
and σ ′′ are independent of z. Then the polynomials of HG type are expressible
accordingly as

yn(s) =
n∑

k=0

(
n

k

)
Φk(z)(s − z)n−k =

n∑
k=0

(
n

k

)
Φn−k(z)(s − z)k, (1.7)

in which the expansion coefficients can be defined formally by the relation

y(k)
n (z) = dk

dsk
yn(s)

∣∣∣
s=z

= k!
(

n

k

)
Φn−k(z), yn(z) = Φn(z) (1.8)

on using Taylor’s theorem. Clearly, Φk(z) stands for a polynomial of degree k in
z so that Φ0(z) is a constant, which can be set to unity, Φ0(z) = 1 for all z, to
consider a monic solution with a leading coefficient of unity. Meanwhile, by the
substitution of yn(s) into (1.1) it is straightforward to show that the Φk(z) satisfy
a second order difference equation

(λn − λn−k)Φk(z) + k
[
τ(z) + (n − k)σ ′(z)

]
Φk−1(z) + k(k − 1)σ (z)Φk−2(z) = 0,

(1.9)

subject to the initial conditions

Φ−1(z) = 0 and Φ0(z) = 1 (1.10)
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for all z ∈ C, n ∈ N0 and k = 1, 2, . . . , n. The difference equation consists of the
original coefficients of the EHT, which may be rewritten of the form

[
τ ′ + 1

2 (2n − k − 1)σ ′′]Φk(z) = [
τ(z) + (n − k)σ ′(z)

]
Φk−1(z)

+(k − 1)σ (z)Φk−2(z), (1.11)

where the eigenvalue parameter λ has been eliminated by virtue of (1.2).
The EHT is of importance due to its several applications in applied math-

ematics and theoretical physics and chemistry [1, 3]. For instance, the Schröding-
er equation resulting from the solution of boundary value problems of quantum
mechanics is often transformable to an EHT [1]. In addition, series of polyno-
mials of HG type occur in the evaluation of certain integrals involving special
functions. Such series also arise in the problem of finding the connection coeffi-
cients between two sequences of polynomials [4]. For these reasons it is desir-
able to have information about special values of solutions of the EHT, especially
when s = x is real. Generally, the required special values can be deduced by
making use of the integral representations of solutions. In this paper, releasing
the complex variable s and dropping the orthogonality restriction we follow an
alternative and easier way to generate special values not only for yn(s) but also
for y(m)

n (s). Actually, in section 2, we exploit a new parametrization of the main
difference equation corresponding to the most general form of EHT, in which
σ(s) is of degree two with distinct roots, and solve it for a pair of special values
of z. Section 3 is devoted to three limiting cases of (1.11), where σ(s) is a linear
polynomial, constant and a quadratic but having a double root. The last section
concludes the paper with additional results and comments.

2. Alternative parametrization and special values

The EHT (1.1) can be put into the formally self-adjoint form

{
d
ds

[
ρ(s)σ (s)

d
ds

]
+ λnρ(s)

}
yn(s) = 0, (2.1)

where ρ(s) is any non-trivial solution of the Pearson equation [σ(s)ρ(s)]′ =
τ(s)ρ(s) implying the integral

ln ρ(s) =
∫

τ(s) − σ ′(s)
σ (s)

ds, (2.2)

which is to be evaluated when the coefficients σ(s) and τ(s) are specified. We
call ρ(s) a Pearson function keeping in mind that it turns out to be a weight in
the particular case of orthogonal systems under auxiliary requirements.
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Let us consider the usual form of the EHT whose σ(s) is exactly a second
degree polynomial with a nonzero determinant

� =
√

[σ ′(0)]2 − 2σ(0)σ ′′ �= 0, σ ′′ �= 0 (2.3)

having distinct roots. To determine ρ(s), we first employ the factorization

σ(s) = 1
2σ ′′(s − θ−a

)(
s − θa

)
(2.4)

without regard to the point z in (1.5), where

θa := − 1
σ ′′

[
σ ′(0) + a

]
(2.5)

is a parameter function of a := ∓�. Then, in care of the partial fraction decom-
position of the integrand, it is found from (2.2) that

ρ(s) = (
s − θ−a

)ω−a−1(
s − θa

)ωa−1 (2.6)

with the exponents

ωa := τ ′

a

(
δ − θa

)
, a = ∓� (2.7)

in which

δ := −τ(0)

τ ′ (2.8)

denotes the root of linear coefficient in (1.4), i.e,

τ(s) = τ ′(s − δ). (2.9)

Recall that τ ′ can never be zero so that δ is always of finite modulus. On the
other hand, since

θa − θ−a = −2a

σ ′′ , (2.10)

we have

ωa + ω−a = 2τ ′

σ ′′ (2.11)

being independent of a, which is true in the sense of a limiting value as well,
when a → 0. Note also the identity

2τ ′

σ ′′ δ = (ωa + ω−a)δ = θaω−a + θ−aωa, (2.12)

which follows from the definitions of θ∓a and ω∓a .
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Now, after some algebraic manipulation, it is not difficult to convert the
original difference equation (1.11) into the more tractable form

Φk(z) = (ωa + n − k)(z − θ−a) + (ω−a + n − k)(z − θa)

ωa + ω−a + 2n − k − 1
Φk−1(z)

+(k − 1)
(z − θ−a)(z − θa)

ωa + ω−a + 2n − k − 1
Φk−2(z),

(2.13)

containing the new parameters θ∓a and ω∓a that are the roots of σ(s) and the
exponents in ρ(s), respectively. Observe that the new difference equation remains
invariant under the replacement of a by −a. Furthermore, because of the
flexibility of the point z, we can reduce it to a first order one

Φk(θa) = ωa + n − k

ωa + ω−a + 2n − k − 1
(θa − θ−a) Φk−1(θa), Φ0(θa) = 1 (2.14)

on setting z = θa , which is an analytically solvable recurrence relation for k =
1, 2, . . . , n. Actually, choosing successive values of k, we have in general

Φk(θa) = (1 − n − ωa)k

(2 − 2n − ωa − ω−a)k
(θa − θ−a)

k, k = 0, 1, . . . , n, (2.15)

where (α)k = α(α+1) · · · (α+k−1) = Γ (α+k)/Γ (α) is the Pochhammer symbol.
So, from (1.8), we obtain

y(m)
n (θa) = m!(n

m

)
Φn−m(θa) = m!

(
n

m

)
(1 − n − ωa)n−m

(2 − 2n − ωa − ω−a)n−m
(θa − θ−a)

n−m

(2.16)

for m = 0, 1, . . . , n, which may be written in a more neatly form

y(m)
n (θa) = m!

(
n

m

)
(ωa)n(ωa + ω−a + n − 1)m

(ωa)m(ωa + ω−a + n − 1)n
(θa − θ−a)

n−m (2.17)

by using the links

(α)n−k = (α)n
(−1)k

(1 − n − α)k
, (α)n = (−1)n(1 − n − α)n (2.18)

between the Pochhammer symbols. Because a and −a are interchangeable, we
also have

y(m)
n (θ−a) = m!

(
n

m

)
(ω−a)n(ωa + ω−a + n − 1)m

(ω−a)m(ωa + ω−a + n − 1)n
(θ−a − θa)

n−m, (2.19)
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standing for the solution of (2.13) at z = θ−a . The analytical results in (2.17) and
(2.19) imply immediately the simple interrelation

y(m)
n (θa) = (−1)n−m (ωa)n(ω−a)m

(ωa)m(ω−a)n
y(m)

n (θ−a), (2.20)

among the two special values. Note that y(n)
n (z) = n! for all z including θ∓a due

to the monic property of the polynomials.
In fact the EHT being considered, for which σ(s) is quadratic with distinct

roots, could be classified as the first category. Then, in general, we may denote
a polynomial of the first category by

pn(s) = pn(θa, θ−a, ωa, ω−a; s) (2.21)

to distinguish different cases. It is seen that it contains four parameter functions
θ∓a and ω∓a , all appearing in ρ(s), which are to be computed from (2.5) and
(2.7), respectively, for a = ∓�. Therefore, the special values of p(m)

n (s) at s =
∓θa are those of (2.17) and (2.19). In particular, from (2.17) and (2.20) we have

pn(θa) = pn(θa, θ−a, ωa, ω−a; s)
∣∣
s=θa

= (ωa)n

(ωa + ω−a + n − 1)n
(θa − θ−a)

n

(2.22)

and

pn(θ−a) = (−1)n (ω−a)n

(ωa)n
pn(θa), (2.23)

when m = 0. Moreover, the derivative values at s = θa ,

p(m)
n (θa) = m!

(
n

m

)
(ωa + ω−a + n − 1)m

(ωa)m
(θa − θ−a)

−m pn(θa) (2.24)

are expressible in terms of pn(θa) for all m = 1, 2, . . . , n. Remind that a similar
result holds for p(m)

n (s) at s = θ−a as well, if a is replaced by −a.
A little more careful inspection indicates that there is an exceptional case of

the first category in which special values are obtainable at an additional point.
Consider the difference equation (1.11) and choose z as a point representing the
common root of τ(s) and σ ′(s),

σ ′(s) = 1
2σ ′′(2s − θa − θ−a), (2.25)

which are both linear polynomials in s. From (2.9) and (2.25), then we must have

z = δ = 1
2 (θa + θ−a), (2.26)
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describing the midpoint of the line connecting the points θa and θ−a in the
complex plane. In such a situation, the exponents of ρ(s) are identical by
definition (2.7) so that ω−a = ωa , and (2.13) reduces to

Φk(δ) = k − 1
k + 1 − 2n − 2ωa

[1
2 (θa − θ−a)

]2
Φk−2(δ), Φ−1(δ) = 0, Φ0(δ) = 1

(2.27)

for z = δ, which is still second order but a simple recursion relating each coeffi-
cient to the second one before it. Thus, special values of polynomials of the spe-
cific form denoted and defined by

cn(s) := cn(θa, θ−a, ωa; s) = pn(θa, θ−a, ωa, ω−a; s)
∣∣
ω−a=ωa

(2.28)

can be determined at s = δ as well. Actually, we find from (2.27) that the
odd-numbered coefficients all vanish

Φ2k−1(δ) = 0, k = 1, 2, . . . , [[1
2 (n + 1)]] (2.29)

and that

Φ2k(δ) = (2k)!
k!22k(3

2 − n − ωa)k

[1
2 (θa − θ−a)

]2k
, k = 0, 1, . . . , [[1

2 n]], (2.30)

where [[α]] denotes the greatest integer function. In particular, from (1.8), we
obtain

c2n+1(δ) = 0 (2.31)

and

c2n(δ) = c2n(θa, θ−a, ωa; s)
∣∣
s=δ

= (−1)n(1
2 )n

(ωa + n − 1
2 )n

[1
2 (θa − θ−a)

]2n (2.32)

on replacing n by 2n+1 and 2n, respectively, by use of the last elements of (2.29)
and (2.30). On the other hand, it follows from (2.22) and (2.23) that

cn(θa) = cn(θa, θ−a, ωa; s)
∣∣
s=θa

= (ωa)n

(2ωa + n − 1)n
(θa − θ−a)

n (2.33)

and

cn(θ−a) = (−1)n cn(θa) (2.34)

due to the fact that cn(s) is no more than a polynomial pn(s) with ω−a = ωa .
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3. Limit forms of the difference equation

Consider an EHT having a linear σ(s),

σ(s) = σ(z) + (s − z)σ ′ = σ(0) + σ ′s = σ ′(s − θ
)

(3.1)

with the root

θ := −σ(0)

σ ′ (3.2)

in which σ ′ �= 0 does not depend on the point z any more. Clearly, in view
of (1.3), such an EHT may be regarded as a limiting case of the first category,
where σ ′′ → 0. Here, we classify it as the second category whose polynomial
solutions will be denoted by �n(s).

In this category, by examining the new parameters of Section 2 it is shown,
from (2.3) and (2.5) that � = σ ′ as σ ′′ → 0 and, therefore, θ−a has the limit which
is θ in (3.2), whereas θa tends to infinity. Besides, from (2.7), we deduce that ωa
approaches also infinity, like

ωa ∼ κθa as θa → ∞ (3.3)

and define ω,

ω := lim
θ−a→θ

ω−a = τ ′

σ ′

[
τ(0)

τ ′ − σ(0)

σ ′

]
= κ(δ − θ) (3.4)

as the existing limit of ω−a , where

κ := − τ ′

σ ′ �= 0 (3.5)

appears to be an additional parameter of finite modulus. Since, by definition, the
Pochhammer symbol (ωa +ω−a +n −1)k behaves like ωk

a for large enough values
of ωa , we first find the asymptotic form of (2.19)

y(m)
n (θ−a) ∼ m!

(
n

m

)
(ω−a)n

(ω−a)m

(
θa

ωa

)n−m (
θ−a

θa
− 1

)n−m

(3.6)

as ωa → ∞. Then passing to the limit we obtain

�(m)
n (θ) := lim

θa→∞
θ−a→θ

y(m)
n (θ−a) = m!

(
n

m

)
(ω)n

(ω)m

(
−1

κ

)n−m

(3.7)

by the help of (3.3) and (3.4), which stands for the special value of �
(m)
n (s) at

s = θ . In particular, the polynomials of the second category has the special value

�n(θ) = (−1)nκ−n(ω)n (3.8)



H. Taşeli / Monic polynomials of hypergeometric type 245

at the root θ of linear σ(s) implying the relation

�(m)
n (θ) = (−1)mm!

(
n

m

)
κm

(ω)m
�n(θ) (3.9)

for all m = 1, 2, . . . , n.
Alternatively, if we proceed with the difference equation (1.11) then we

would have

κ Φk(z) = [
k − n − ω + κ(z − θ)

]
Φk−1(z) − (k − 1)(z − θ) Φk−2(z) (3.10)

in accordance with (2.8), (3.1), (3.4) and (3.5), which is equivalent to the asymp-
totic form of (2.13) as θa → ∞. Setting z = θ , there follows

Φk(θ) = 1
κ

(k − n − ω) Φk−1(θ), Φ0(θ) = 1, (3.11)

provided that κ �= 0. Thus it is an easy matter to find the general solution

Φk(θ) = 1
κk

(1 − n − ω)k, k = 0, 1, . . . , n (3.12)

of the resulting simple recursion, which leads to

�(m)
n (θ) = m!

(
n

m

)
(1 − n − ω)n−m

κn−m
(3.13)

with the relation (1.8). This is precisely the same as (3.7) if we reuse the
connections between the Pochhammer symbols in (2.18). Difference equation
(3.10) implies also that the polynomials of the second category will be of the
form

�n(s) = �n
(
θ, ω, κ; s

)
, (3.14)

depending, in general, on three parameters. To identify these parameters, one can
check again an appropriate Pearson function

ρ(s) = (s − θ)ω−1 e−κs, (3.15)

corresponding to the present category, determined by (2.2).
Another limit form, namely the third category, is provided by an EHT for

which σ ′′ and σ ′ both vanish, i.e., σ(s) := σ ∈ C is merely a nonzero constant.
That is to say, the roots θ∓a in (2.5) are both undefined approaching infinity. An
EHT in the third category may also be regarded as a limiting case of the second
category in (3.1), where σ ′ = 0 and, hence, θ → ∞. As a result, it is impos-
sible to derive special values of a polynomial of the third category, denoted by
hn(s), from pn(θ∓a) or �n(θ) by means of a limiting process. Nevertheless, it is
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still possible to make use of the difference equation (1.11) to this end. Indeed, if
we define a new parameter

µ := − τ ′

2σ
�= 0, (3.16)

suggested by a Pearson function of the form

ρ(s) = e−µ(s−δ)2
, (3.17)

which has been found immediately from (2.2), the main difference equation then
becomes

2µΦk(z) = (z − δ) Φk−1(z) − (k − 1) Φk−2(z) (3.18)

for k = 1, 2, . . . , n. Thus the polynomials of the third category will have the form

hn(s) = hn(δ, µ; s), (3.19)

whose special values can be assigned for s = δ, that is, at the root of τ(s) in
(2.8). Actually, substituting z = δ into (3.18) we get a simple recursion with the
initial conditions

Φk(δ) = − 1
2µ

(k − 1) Φk−2(δ), Φ−1(δ) = 0, Φ0(δ) = 1 (3.20)

of type (2.27). Therefore, a similar treatment yields

Φ2k−1(δ) = 0, k = 1, 2, . . . , [[1
2 (n + 1)]] (3.21)

and

Φ2k(δ) = (−1)k

22k

(2k)!
k! µ−k = (−1)k(1

2 )kµ
−k, k = 0, 1, . . . , [[1

2 n]] (3.22)

from which we obtain

h2n+1(δ) = 0 (3.23)

and

h2n(δ) = h2n(δ, µ; s)
∣∣
s=δ

= (−1)n(1
2 )nµ

−n = (−1)n

22n

(2n)!
n! µ−n (3.24)

for all n.
Finally, let us introduce an EHT of the fourth category in which

σ(s) = 1
2σ ′′(s − θ0

)2 (3.25)
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has a double root at s = θ0,

θ0 = σ ′(0)

σ ′′ , (3.26)

calculated from (2.5) for a = ∓� = 0. The difference equation corresponding to
the present case is written as

Φk(z) = ν + (� + 2n − 2k)(z − θ0)

� + 2n − k − 1
Φk−1(z) + (k − 1)

(z − θ0)
2

� + 2n − k − 1
Φk−2(z),

(3.27)

where the constants

� := 2τ ′

σ ′′ , ν := 2τ ′

σ ′′

[
τ(0)

τ ′ − σ ′(0)

σ ′′

]
= �(θ0 − δ) (3.28)

have been defined for convenience. As a consequence, we infer that the polyno-
mials of the fourth category may be denoted by

bn(s) = bn(θ0, �, ν; s), (3.29)

depending on three parameters. The special values of these polynomials at s = θ0
are deduced from y(m)

n (θa) in (2.17) by a simple asymptotic analysis as a → 0. To
this end, first notice from (2.7) that, for sufficiently small values of a, ωa grows
unboundedly so that (ωa)k ∼ ωk

a . Second, consider the asymptotic form

y(m)
n (θa) ∼ m!

(
n

m

)
(ωa + ω−a + n − 1)m

(ωa + ω−a + n − 1)n

ωn
a(θa − θ−a)

n

ωm
a (θa − θ−a)m

(3.30)

of y(m)
n (θa) as ωa → ∞. Then combining this result with the limit relations

lim
a→0

(ωa + ω−a) = �, lim
a→0

[ωa(θa − θ−a)] = ν, (3.31)

suggested by (2.11), (2.7), and (2.10), we obtain

b(m)
n (θ0) = lim

a→0
y(m)

n (θa) = m!
(

n

m

)
(� + n − 1)m

(� + n − 1)n
νn−m, (3.32)

provided that ν �= 0. In fact, ν should not be zero because the EHT of the fourth
category with ν = 0 is degenerate reducing to a Cauchy–Euler equation. For m =
0, we have

bn(θ0) = νn

(� + n − 1)n
(3.33)

and, therefore,

b(m)
n (θ0) = m!

(
n

m

)
(� + n − 1)mν−mbn(θ0) (3.34)
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for m = 1, 2, . . . , n. Note that the same formulas could be derived from the
difference equation (3.27) with the initial condition Φ(θ0) = 1, when z = θ0.

4. Concluding remarks

In this paper, we have elucidated the formulas generating the special
values of the monic polynomials that satisfy the EHT in (1.1). Since the classical
polynomial systems of Jacobi, Laguerre, Hermite and generalized Bessel consist
of solutions of the same differential equation transformed into canonical forms,
their special values can be reproduced by making use of the present 4-categories
of polynomials for specific sets of parameters. For example, the Jacobi polyno-
mials P(α,β)

n (s) are solutions of an EHT of the first category

(1 − s2)y′′ + [
β − α − (α + β + 2)s

]
y′ + n(n + α + β + 1)y = 0 (4.1)

having the parameters

θ∓a = ∓1, ωa = α + 1, ω−a = β + 1, (4.2)

of section 2 with a = ∓2 as � = 2. Therefore, we find from (2.22) and (2.23)
that

P(α,β)
n (1) = kn(α, β) pn(1) = kn(α, β) pn(1, −1, α + 1, β + 1; s)

∣∣
s=1

= kn(α, β)
(α + 1)n2n

(α + β + n + 1)n
= 1

n!(α + 1)n (4.3)

and

P(α,β)
n (−1) = (−1)n (β + 1)n

(α + 1)n
P(α,β)

n (1) = (−1)n

n! (β + 1)n, (4.4)

where the monic polynomials of the first category have been multiplied by the
coefficient

kn(α, β) = (α + β + n + 1)n

2nn! (4.5)

of the leading term sn in P(α,β)
n (s) according to the historical normalization of

the Jacobi polynomials [5]. Furthermore, (2.24) leads to the interrelations

dm

dsm
P(α,β)

n (s)
∣∣∣
s=1

= m!
(

n

m

)
(α + β + n + 1)m

2m(α + 1)m
P(α,β)

n (1) (4.6)

and

dm

dsm
P(α,β)

n (s)
∣∣∣
s=−1

= (−1)mm!
(

n

m

)
(α + β + n + 1)m

2m(β + 1)m
P(α,β)

n (−1) (4.7)

between P(α,β)
n (s) and its derivative values of any order at s = ∓1.
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Now, recall that the ultraspherical or Gegenbauer polynomials C (α)
n (s) are

the renormalized Jacobi polynomials of the form [5]

C (α)
n (s) = (2α)n

(α + 1
2 )n

P

(
α− 1

2 ,α− 1
2

)
n (s), α �= 0 (4.8)

to find out the relation

C (α)
n (s) = kn(α)pn

(
1, −1, α + 1

2 , α + 1
2 ; s

) = kn(α)cn
(
1, −1, α + 1

2 ; s
)
,

kn(α) = 2n

n! (α)n (4.9)

in view of (2.28). As a result, the exceptional case in the first category states that
special values of the Gegenbauer polynomials can be assigned at the roots of
σ(s) as well as at the midpoint of the line joining the two roots. Specifically, the
special values

C (α)
n (1) = 22n

n!
(α)n(α + 1

2 )n

(2α + n)n
= 1

n!(2α)n, C (α)
n (−1) = (−1)nC (α)

n (1) (4.10)

at s = ±1 are found from (2.33) and (2.34). Also, it follows from (2.31) and
(2.32) that

C (α)

2n+1(0) = 0, C (α)

2n (0) = (−1)n22n

(2n)!
(α)2n(

1
2 )n

(α + n)n
= (−1)n

n! (α)n, (4.11)

where δ = 0 in (2.26) is clearly the center of the interval [−1, 1].
In a similar fashion, it is seen that the Laguerre polynomials L(α)

n (s)
satisfying

sy′′ + (α + 1 − s)y′ + ny = 0 (4.12)

are the special case of polynomials �n(θ, ω, κ; s) of the second category

L(α)
n (s) = kn�n(0, α + 1, 1; s), kn = (−1)n

n! (4.13)

with the parameters θ = 0, ω = α + 1 and κ = 1. Hence, from (3.9), we have

dm

dsm
L(α)

n (s)
∣∣∣
s=0

= m!
(

n

m

)
(−1)m

(α + 1)m
L(α)

n (0), (4.14)

in which

L(α)
n (0) = kn�n(0) = kn�n(0, α + 1, 1; s)

∣∣
s=0 = 1

n!(α + 1)n (4.15)

is defined by (3.8).
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The Hermite differential equation

y′′ − 2sy′ + 2ny = 0 (4.16)

is the canonical form of the EHT of the third category. In other words, we
identify the Hermite polynomials

Hn(s) = knhn(0, 1; s), kn = 2n (4.17)

by substituting δ = 0 and µ = 1 into (3.19), where kn is again the coefficient of
sn in Hn(s) [5]. Then the special values

H2n+1(0) = 0, H2n(0) = k2nh2n(0, 1; s)
∣∣
s=0 = (−1)n (2n)!

n! (4.18)

at the root s = δ = 0 of τ(s) = −2s, follow easily from (3.23) and (3.24).
Finally, it is readily shown that the generalized Bessel polynomials B(α)

n (s)
satisfying [6, 7]

s2 y′′ + (2 + αs)y′ − n(n + α − 1)y = 0, (4.19)

fall into the fourth category with θ0 = 0, � = α and ν = 2, confirmed by (3.26)
and (3.28). Next the expression

B(α)
n (0) = kn(α)bn(0, α, 2; s)

∣∣
s=0 (4.20)

is written at the double root θ0 = 0 of σ(s), where, by the help of (3.33), we
must require that

bn(0, α, 2; s)
∣∣
s=0 = 2n

(α + n − 1)n
= 1

kn(α)
, (4.21)

because the generalized Bessel polynomials are normalized to give

B(α)
n (0) = 1 (4.22)

for all n and α [8]. From (3.34), we also have

dm

dsm
B(α)

n (s)
∣∣∣
s=0

= m!
(

n

m

)
2−m(α + n − 1)m (4.23)

for the derivative values at s = 0.
In a very recent paper [9], Koepf and Masjad-Jamei considered the EHT

with a real variable and expressed the monic polynomial solutions yn(x) in terms
of HG functions. Then, by the evaluation of the resulting HG functions, they
presented a generic formula for the values at the boundary points of monic
orthogonal polynomials. However, we have shown here that the general solution
of the EHT and, hence, explicit definitions of polynomials of HG type are not
needed to obtain their special values at several points. If we restrict ourselves
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to the classical orthogonal polynomial systems of Jacobi, Laguerre and Hermite,
which are orthogonal on [−1, 1], [0, ∞) and (−∞, ∞) with respect to gamma,
beta and normal distributions, respectively, then some of the special values coin-
cide with values at the boundary points of orthogonality intervals. More specifi-
cally, P(α,β)

n (∓1) in (4.3) and (4.4), yield the values of the Jacobi polynomials
at the two boundary points of [−1, 1]. Also, L(α)

n (0) in (4.15) stands for the left
hand boundary value of the Laguerre polynomial. It is obvious that we can pres-
ent only the special values at the origin for the Hermite polynomials. On the
other hand, the generalized Bessel polynomials are not orthogonal on any real
x-interval. Nevertheless, the importance of these polynomials was first demon-
strated in [7] in their connection with the wave equation in spherical coordinates.
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