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This is the second in a series of papers dealing with the sets of orthogonal polyno-
mials generated by a trigonometric Hamiltonian. In the first of this series, a subclass of
the Jacobi polynomials denoted by T (µ)

n (x) and referred to as the T -polynomial of the
first kind, which arises in the investigation of the symmetric state eigenfunctions of the
Hamiltonian under consideration, was examined. Another subclass of the Jacobi poly-
nomials denoted by U (µ)

n (x) is introduced here representing the antisymmetric states,
and is called in accordance the T -polynomial of the second kind. Moreover, by the
derivation of the ultraspherical polynomial wavefunctions, interrelations between the
T -polynomials of the first and second kinds as well as the other orthogonal polynomial
systems are also emphasized.
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1. Introduction

The investigation of exactly solvable systems in quantum mechanics, such
as the Schrödinger equation H� = E� with a trigonometric Hamiltonian

H(θ; µ) = − d2

dθ2
+ v(θ; µ), v(θ; µ) = 1

4µ(µ + 1) sec2 1
2θ, µ > 0 (1)

over θ ∈ (−π, π), is interesting due to their several applications [1–3]. In most
cases, analytical solutions are expressible in terms of special functions of math-
ematical physics and chemistry [3,4]. Therefore, they are also important in the
study and use of special functions. In the first of this series [1] (hereafter referred
to as PI), the symmetric state eigenfunctions �2n(θ; µ) and eigenvalues E2n(µ) of
the trigonometric Hamiltonian (1) were examined in detail by starting with the
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particle-in-a-box potential for which µ = 0. For this limit potential, the norma-
lised antisymmetric state eigenfunctions are written as

�2n+1(θ; 0) = 1√
π

sin(n + 1)θ = 1√
π

sin θ Un(cos θ) (2)

corresponding to the eigenvalues

E2n+1(0) = (n + 1)2 = 1
4

[(2n + 1) + 1]2, (3)

where

Un(x) = sin(n + 1)θ

sin θ
, x = cos θ (4)

denotes the Chebyshev polynomial of the second kind, which is indeed a polyno-
mial of degree n in x when x = cos θ [5]. With the help of simple trigonometric
manipulations, this eigensolution may be put in an alternative form

√
π�2n+1(θ; 0) = sin(n + 1)θ = sin

[(
n + 1

2

)
θ + 1

2
θ

]

= sin 1
2θ cos 1

2θ

[
cos(n + (1/2))θ

cos(1/2)θ
+ sin(n + (1/2))θ

sin(1/2)θ

]

= 1
2 sin θ [Vn(cos θ) + Wn(cos θ)] , (5)

where

Vn(x) = cos(n + (1/2))θ

cos(1/2)θ
and Wn(x) = sin(n + (1/2))θ

sin(1/2)θ
(6)

stand for Chebyshev polynomials of the third and fourth kinds, respectively,
which are both polynomials of degree n in x = cos θ [6]. Comparing (2) and
(5), we get easily the connection formula

Un(x) = 1
2 [Vn(x) + Wn(x)] (7)

between the Chebyshev polynomials of the second, third and fourth kinds.
The particle-in-a-box wavefunction in (2) now suggests the transformation

of the dependent variable

�as(θ; µ) = sin θ �(θ; µ) (8)

and then the change of the independent variable from θ to x = cos θ , for an
appropriate treatment of the odd-parity state eigenfunctions �as. Note here that
� should remain bounded at the boundaries θ = ±π , or at x = −1. After stan-
dard calculations, we see that �(x; µ) satisfies the equation[

(1 − x2)
d2

dx2
− 3x

d
dx

+ E − 1 − µ(µ + 1)

2(1 + x)

]
�(x; µ) = 0 (9)
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and that a more tractable differential equation

(1 − x2)y ′′ + [µ − (µ + 3)x]y ′ + [
E − 1

4 (µ + 2)2] y = 0 (10)

is obtainable if

�(x; µ) = (1 + x)µ/2y(x). (11)

By completely the same mathematical arguments made in PI, it is possible to
deduce that the required solution of the quantum mechanical problem can be
established if and only if

E − 1
4 (µ + 2)2 = n(n + 2 + µ), n = 0, 1, . . . , (12)

which implies the analytical formula

E(µ) := E2n+1(µ) = 1
4 [(2n + 1) + 1 + µ]2 (13)

for the antisymmetric state energy eigenvalues.
The condition (12) is equivalent to seek polynomial solutions of the differ-

ential equation (10). By introducing (13) into (10), we have

(1 − x2)y ′′ + [µ − (µ + 3)x]y ′ + n(n + 2 + µ)y = 0, (14)

whose polynomial solutions are nothing but the Jacobi polynomials P
(α,β)
n (x)

with the parameter values α = 1/2 and β = µ + 1/2 [5]. In fact, we may adapt
one of the following variables:

ξ = 1
2(1 + x) = 1

2(1 + cos θ) = cos2 1
2θ = u2 (15)

or

1 − ξ = 1
2(1 − x) = 1

2(1 − cos θ) = sin2 1
2θ = t2 (16)

to express the analytical solutions in terms of various special functions. In accor-
dance with (11), (14) and (15), we first specialize � to the form

�(θ; µ) := �2n+1(θ; µ) = Bn(µ) cosµ 1
2θP

( 1
2 ,µ+ 1

2 )
n (cos θ), (17)

where Bn is some normalisation constant. Hence the odd function in (8)

�as(θ; µ) := �2n+1(θ; µ) = sin θ �2n+1(θ; µ) (18)

now describes an eigenfunction of the original Hamiltonian (1) corresponding to
an eigenvalue E2n+1 given by (13), for every n. By making use of the variable ξ

we find, after some manipulation, that

�2n+1(ξ ; µ) = Bn(µ)
(−1)n

n!
(µ + 3/2)n ξµ/2

2F1(−n, n + 2 + µ; µ + 3/2; ξ) (19)
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and that

�2n+1(ξ ; µ) = Bn(µ)
(3/2)n

n!
ξµ/2

2F1(−n, n + 2 + µ; 3/2; 1 − ξ), (20)

wherein each Gauss hypergeometric function 2F1 reduces to a polynomial, for
each has a first parameter equal to a negative integer −n.

In section 2, the basic properties of the polynomials so obtained are studied
under the name T -polynomials of the second kind. In section 3, we employ the
variable t in (16) and show that the polynomial factors of solutions with this var-
iable are expressible in terms of the ultraspherical or Gegenbauer polynomials.
The last section includes the derivations of further functional equations, which
exist between the T -polynomials of the two kinds and other classical orthogo-
nal polynomials (COPs) as well as the concluding remarks.

2. The T -polynomials U (µ)
n of the second kind

In analogy with the case of the symmetric states in PI, we update the nor-
malisation constant to be

Bn(µ) := n!
(µ + 3/2)n

Bn(µ) (21)

and express the antisymmetric wavefunctions in the form

�2n+1(θ; µ) = Bn(µ) sin θ cosµ 1
2θ U (µ)

n (cos θ) (22)

or

�2n+1(x; µ) = Bn(µ)
√

1 − x2 [(1 + x)/2]µ/2 U (µ)
n (x) (23)

in which

U (µ)
n (x) := n!

(µ + 3/2)n
P

( 1
2 , µ+ 1

2

)
n (x) (24)

has been recognized as the T -polynomials of the second kind of order µ and
degree n. The hypergeometric representations of the U (µ)

n (x),

U (µ)
n (x) = (−1)n 2F1(−n, n + 2 + µ; µ + 3/2; ξ) (25)

and

U (µ)
n (x) = (3/2)n

(µ + 3/2)n
2F1(−n, n + 2 + µ; 3/2; 1 − ξ) (26)
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with argument ξ = (1 + x)/2 introduced by (15), follow directly from (19) and
(20), respectively. Using for example (25), we may also define these polynomials
explicitly

U (µ)
n (x) = (−1)n

n∑
k=0

(−n)k(n + 2 + µ)k

(µ + 3/2)k2kk!
(1 + x)k (27)

the first few of which are

U (µ)

0 (x) = 1,

U (µ)

1 (x) = 1
2µ + 3[(µ + 3)x − µ], (28)

U (µ)

2 (x) = 1
(2µ + 3)(2µ + 5)

[(µ + 4)(µ + 5)x2 − 2µ(µ + 4)x + µ2 − µ − 5].

On the other hand, if we consider the inner product

〈�2m+1, �2n+1〉 = BmBn

∫ π

−π

sin2
θ cos2µ 1

2θ U (µ)
m (cos θ) U (µ)

n (cos θ)dθ

= 21−µBmBn

∫ 1

−1
ρ(x) U (µ)

m (x) U (µ)
n (x)dx (29)

then the orthogonality of the eigenfunctions allows us to compute the normali-
sation constant

B2
n(µ) = (µ + 3/2)n

n!(3/2)n

	(µ + 2 + n)

	(1/2)	(µ + 1/2)

(2 + µ + 2n)

2(1 + 2µ)
, (30)

where

ρ(x) = (1 − x)1/2(1 + x)µ+1/2. (31)

Furthermore, the Rodrigues’ formula for U (µ)
n (x)

U (µ)
n (x) = (−1)n

2n(µ + 3/2)n

1
ρ(x)

dn

dxn

[
ρ(x)(1 − x2)n

]
(32)

can be determined in a straightforward manner.
In the particular case of the particle-in-a-box potential where µ = 0, we see

that the normalisation constant simplifies into

B2
n(0) = (n + 1)2/π (33)

and the wavefunction (22) takes the form

�2n+1(θ; 0) = 1√
π

(n + 1) sin θ U (0)
n (cos θ). (34)
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Thus a comparison with (2) shows that

Un(x) = (n + 1) U (0)
n (x) (35)

i.e., the T -polynomials of the second kind reduces to a multiple of the
Chebyshev polynomials of the second kind when µ = 0. Alternatively, this rela-
tion may also be verified directly from the Rodrigues’ formula (32) by putting
µ = 0 throughout.

A typical three term relation of the form

U (µ)

n+1(x) = [an(µ)x − bn(µ)] U (µ)
n (x) − cn(µ) U (µ)

n−1(x), (36)

which is necessarily satisfied by each COP can derived by means of the explicit
formula (27), or otherwise, where the coefficients an(µ), bn(µ) and cn(µ) are

an(µ) = (2n + µ + 2)(2n + µ + 3)

(n + µ + 2)(2n + 2µ + 3)
, (37)

bn(µ) = µ(µ + 1)(2n + µ + 2)

(n + µ + 2)(2n + µ + 1)(2n + 2µ + 3)
(38)

and

cn(µ) = n(2n + 1)(2n + µ + 3)

(n + µ + 2)(2n + µ + 1)(2n + 2µ + 3)
, (39)

respectively. Again, when µ = 0, we have

(n + 2)U (0)

n+1(x) = 2x(n + 1)U (0)
n (x) − nU (0)

n−1(x) (40)

leading to the simple result Un+1(x) = 2xUn(x) − Un−1(x) on using (35), which
is the usual recurrence relation valid for Chebyshev polynomials of all kinds.

3. Ultraspherical polynomial wavefunctions and interrelations

The symmetric

�2n(x; µ) = An(µ)[(1 + x)/2](µ+1)/2 T (µ)
n (x) (41a)

and antisymmetric state wavefunctions

�2n+1(x; µ) = Bn(µ)
√

1 − x2 [(1 + x)/2]µ/2 U (µ)
n (x) (41b)

of the trigonometric Hamiltonian have been introduced in PI and here, in
terms of the T -polynomials depending on x = cos θ , which does not represent a
one-to-one transformation from the original domain of θ , θ ∈ (−π, π), to the
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x-interval (−1, 1). If we look at the alternative variables in (16), it is an easy
matter to see that

t = sin 1
2θ, t ∈ (−1, 1) (42)

provides a one-to-one mapping with which the Hamiltonian H(θ; µ) becomes

H(t; µ) = −1
4

[
(1 − t2)

d2

dt2
− t

d
dt

− µ(µ + 1)

1 − t2

]
, (43)

so that the reflection symmetry H(θ; µ) = H(−θ; µ) of the system is preserved
since

H(t; µ) = H(−t; µ) (44)

also holds. As a result, we may deal with a wavefunction of the type

�(t; µ) = (1 − t2)(µ+1)/2 G(t) (45)

satisfying the boundary conditions �(±1; µ) = 0 and seek bounded solutions of
the differential equation

(1 − t2)G′′ − (2µ + 3)tG′ + [
4E − (µ + 1)2] G = 0 (46)

for G(t). Thus polynomial solutions are the required solutions existing actually
under the assumption that

4E − (µ + 1)2 = k(k + 2 + 2µ), (47)

which generates the complete spectrum

E(µ) := Ek(µ) = 1
4 (k + 1 + µ)2, k = 0, 1, . . . (48)

i.e. both even and odd indexed spectral points, of the eigenvalue problem.
Clearly, this formula agrees correctly with E2n of PI (see equation (26) therein)
and E2n+1 in (13).

The substitution of (47) into (46) leads to the well-known equation

(1 − t2)G′′ − (2λ + 1)tG′ + k(k + 2λ)G = 0, λ = µ + 1, (49)

whose polynomial solutions are constant multiples of the Jacobi polynomials
P

(α,β)

k (t) having equal parameter values α = β = λ − 1/2 = µ + 1/2. Moreover,
a rescaling of these polynomials chosen for historical reasons makes it possible
to introduce the celebrated ultraspherical or Gegenbauer polynomials denoted by
C(λ)

k [7]. To be more specific, recalling the fact that [5]

G(t) � P
(µ+(1/2),µ+(1/2))

k (t) = (µ + 3/2)k

(2µ + 2)k
C(µ+1)

k (t) (50)
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there follows:

�k(t; µ) = (−1)[[k/2]]Nk(µ)(1 − t2)(µ+1)/2 C(µ+1)

k (t), (51)

where [[z]] denotes the integer part of z, and Nk is a normalisation constant to
be determined by the condition

〈�j, �k〉 =
∫ π

−π

�j(θ; µ)�k(θ; µ)dθ = δjk. (52)

With the variable t in (42), the inner product integral

〈�j, �k〉 = 2Nj (µ)Nk(µ)

∫ 1

−1
(1 − t2)µ+1/2 C(µ+1)

j (t) C(µ+1)

k (t)dt (53)

on the left-hand side of (52) can easily be evaluated, so that

N 2
k (µ) = (1 + µ + k) 22µ k!

	2(1 + µ)

	2(1/2)	(2 + 2µ + k)
, (54)

where we have used the L2-norm of the Gegenbauer polynomials [5].
It is worth mentioning that �k(t; µ) in (51) consists in both symmetric and

antisymmetric state eigenfunctions. Therefore, we deduce from (41a) and (51)
with k = 2n, that

�2n(t; µ) = (−1)nN2n(µ)(1 − t2)(µ+1)/2 C(µ+1)

2n (t)

= An(µ)[(1 + x)/2](µ+1)/2 T (µ)
n (x), x = 1 − 2t2, (55)

which leads to the functional equations

C(µ+1)

2n (t) = (−1)n

(2n)!
(2µ + 1)2n T (µ)

n (1 − 2t2) (56)

= (−1)nn!
(2n)!

22n(µ + 1)n P (−(1/2),µ+(1/2))
n (1 − 2t2) (57)

among orthogonal polynomials of different families. Notice here that An(µ) is
taken as the positive root of A2

n(µ) in equation (43) of PI. Likewise N2n(µ)

stands for the positive root of N 2
k (µ) in (54) with k = 2n. In addition, by making

appropriate use of the formula (56), we obtain

T (µ)
n (x) = (−1)n(2n)!

(2µ + 1)2n

C(µ+1)

2n (t), t =
√

(1 − x)/2, (58)

which is, precisely, an interrelation between the T -polynomial of the first kind of
order µ and degree n and the Gegenbauer polynomial of order µ+1 and degree
2n, each depending on a different argument.
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On the other hand, the odd-indexed eigenfunctions �2n+1(t; µ) in (51) are
related to the T -polynomials of the second kind. Actually, we may find out in a
similar fashion that

C(µ+1)

2n+1 (t) = (−1)n

(2n + 1)!
(2µ + 2)2n+1 t U (µ)

n (1 − 2t2) (59)

= (−1)nn!
(2n + 1)!

22n+1(µ + 1)n+1 t P

( 1
2 ,µ+ 1

2

)
n (1 − 2t2) (60)

and that

U (µ)
n (x) = (−1)n(2n + 1)!

(2µ + 2)2n+1

1
t

C(µ+1)

2n+1 (t), t =
√

(1 − x)/2 (61)

connecting the T -polynomials of the second kind and others. Notice once more
that all of such functional equations are the consequences of taking into account
various forms of the normalised eigensolutions of the same differential operator.

In the special case of µ = 0, the normalisation constant (54) is simply
N 2

k (0) = 1/π , as well as A2
n(0), so that particle-in-a-box wavefunctions can also

be expressed in the form

�k(t; 0) = 1√
π

(−1)[[k/2]]
√

1 − t2 C(1)
k (t), (62)

which could be used to reproduce the known relationships between certain
Chebyshev polynomials and the Gegenbauer polynomial of the first order.

4. More on the functional equations and remarks

In this series of two papers, we discuss the orthogonal polynomials encoun-
tered in the exact analytical solution of the quantum mechanical system with
Hamiltonian (1). To sum up, the polynomials T (µ)

n (x),

T (µ)
n (x) = (−1)n

(µ + 3/2)n

(µ + 1/2)n
2F1(−n, n + 1 + µ; µ + 3/2; ξ)

= (1/2)n

(µ + 1/2)n
2F1(−n, n + 1 + µ; 1/2; 1 − ξ)

= n!
(µ + 1/2)n

P

(
− 1

2 ,µ+ 1
2

)
n (x) (63)
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and U (µ)
n (x),

U (µ)
n (x) = (−1)n 2F1(−n, n + 2 + µ; µ + 3/2; ξ)

= (3/2)n

(µ + 3/2)n
2F1(−n, n + 2 + µ; 3/2; 1 − ξ)

= n!
(µ + 3/2)n

P

( 1
2 ,µ+ 1

2

)
n (x), (64)

which are, evidently, rescalings of two particular subclasses of Jacobi polyno-
mials, have been investigated under the titles of T -polynomials of the first and
second kinds, respectively. If use is made of the derivative formula of Gauss
hypergeometric function [5]

dn

dzn 2F1(a, b; c; z) = (a)n(b)n

(c)n
2F1(a + n, b + n; c + n; z) (65)

and the recurrance relation (a)n = a(a+1)n−1 for the Pochhammer’s symbol, the
differential-difference equation

n(n + µ + 1)(2n + 2µ + 1)

(2µ + 1)(2µ + 3)
U (µ+1)

n−1 (x) = d
dx

T (µ)
n (x) (66)

is obtained, which establishes a link between the T -polynomials. Also, making
use of the hypergeometric representations of T (µ)

n , U (µ)
n and U (µ)

n−1 in connection
with the so-called contiguity relation [5]

(a − b) 2F1(a, b; c; z) = a 2F1(a + 1, b; c; z) − b 2F1(a, b + 1; c; z) (67)

we may derive

(n + µ + 1) U (µ)
n (x) − n U (µ)

n−1(x) = (2µ + 1)(2n + µ + 1)

2n + 2µ + 1
T (µ)

n (x) (68)

as being another functional equation. For µ = 0, we get

T (0)
n (x) = (n + 1) U (0)

n (x) − n U (0)

n−1(x) (69)

or, after using (35) and identity (53) of PI,

T (0)
n (x) = Un(x) − Un−1(x) = Vn(x) (70)

that is, a connection between the zeroth-order T -polynomials and the Chebyshev
polynomials of the second and third kinds. As a matter of fact, if we recall the
equation 2Tn = Un − Un−2 [5], we write (70) in the form T (0)

n = [Un − Un−2] −
[Un−1 − Un−2] to obtain

2Tn(x) = T (0)
n (x) + T (0)

n−1(x), (71)
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which is now a link between the Chebyshev polynomials Tn(x) of the first kind
and T -polynomials of the first kind of the zeroth-order.

Finally, we introduce a limit relationship with the set of associated Laguerre
polynomials defined by

L(α)
n (x) = (α + 1)n

n! 1F1(−n; α + 1; x), α > − 1, (72)

which constitutes an independent system of COPs over the semi-infinite real axis
x ∈ (0, ∞) with respect to the weight e−xxα, where 1F1(a; c; z) stands for the con-
fluent hypergeometric function. The limit formula

lim
b→∞ 2F1(a, b; c; z/b) = 1F1(a; c; z) (73)

constructs a bridge between the two fundamental hypergeometric functions [4].
Now let us consider the hypergeometric form of T (µ)

n in (63)

T (µ)
n (1 − 2t2) = (1/2)n

(µ + 1/2)n
2F1(−n, n + 1 + µ; 1/2; t2) (74)

involving the argument t . If we replace µ by µ−n−1 and put s = t2, it is found
that

T (µ−n−1)
n (1 − 2s) = (−1)n(1/2)n

(3/2 − µ)n
2F1(−n, µ; 1/2; s), s ∈ [0, 1), (75)

where we have employed the identity (a)n = (−1)n(1 − n − a)n which follows
directly from the definition of the Pochhammer’s symbol. Furthermore, setting
s/µ in place of s and letting µ tends to infinity, we get

lim
µ→∞

[
(3/2 − µ)n T (µ−n−1)

n (1 − 2s/µ)
] = (−1)n(1/2)n 1F1(−n, 1/2; s)

= (−1)nn!L(−1/2)
n (s) (76)

in which the Laguerre polynomials at the last step have been identified from (72).
A similar limit relationship

lim
µ→∞

[
(3/2 − µ)n U (µ−n−2)

n (1 − 2s/µ)
] = (−1)nn!L(1/2)

n (s) (77)

for the T -polynomials of the second kind may be derived in the same way. These
limits are useful in finding asymptotic expansions for the T -polynomials. Note
that they could be verified easily for a few low-lying states, for instance, for
n = 0, 1 and 2 for illustration.
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