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A new subclass of the Jacobi polynomials arising in the exact analytical solution
of the one-dimensional Schrödinger equation with a trigonometric potential has been
introduced. The polynomials which consist of a free parameter are not ultraspherical
polynomials and have been simply named the T -polynomials since they are generated
by a trigonometric Hamiltonian. In certain sense, it is shown that the T -polynomials
can be regarded as a generalisation of the airfoil polynomials or the Chebyshev poly-
nomials of the third kind. This paper is intended to discuss the basic properties of the
polynomials so defined.
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1. Introduction

The classical orthogonal polynomials (COPs) associated with the names of
Hermite, Laguerre and Jacobi play a starring role in theoretical physics, applied
mathematics, numerical analysis and scientific computing. A sequence of real
polynomials pn(x) is orthogonal over (a, b) relative to a non-negative weighting
function ρ(x) if

〈pm, pn〉ρ :=
∫ b

a

ρ(x)pm(x)pn(x)dx = N 2
n δmn, n ∈ N, (1)

where Nn is the norm of pn(x), δmn the Kronecker’s delta symbol, and N denotes
the set of non-negative integers n = 0, 1, . . . The COPs satisfy second order
differential equations, and also have the striking feature that their derivatives
form again orthogonal systems. There are several additional properties common
to all COPs, however, an extensive review of orthogonal polynomials is outside
the scope of this work, and an excellent survey can be found in [1].

It is known that the two parameters family of Jacobi polynomials P
(α,β)
n (x)

for α and β both greater than −1, the one parameter family of Laguerre
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polynomials L(α)
n (x) for α > −1 and Hermite polynomials Hn(x) are the only

polynomial sets, which possess orthogonality in the sense of (1) over the real x-
intervals (−1, 1), (0, ∞), and (−∞, ∞), respectively, relative to certain weight
functions ρ(x). It is important to note that the COPs occur naturally in many
branches of physical sciences. Especially, there are many problems in quantum
mechanics leading to the COPs. For instance, Hermite polynomials arise in the
solution of the harmonic oscillator, which has applications to various types of
oscillations in crystals and molecules. As another typical example, the treatment
of the Schrödinger equation for a particle in a central force field, such as the
hydrogen atom, can be accomplished by means of the Laguerre polynomials.

On the other hand, the Jacobi polynomials appear in many cases with equal
integral parameters so that α = β = m, where m ∈ N. These polynomials are
faced, for example, in the study of Laplace’s equation in spherical coordinates
and are closely related to the spherical harmonics. The simplest case in which
m = 0 yields the famous Legendre polynomials Pn(x). More generally, the Jacobi
polynomials having two parameters equal to a number which is not necessarily
an integer, α = β = λ−1/2 say, where λ ∈ R, are frequently encountered in prac-
tice too, and known as the ultraspherical or Gegenbauer polynomials denoted by
C(λ)

n (x). Two celebrated examples are the Chebyshev polynomials of the first and
second kind, which are ultraspherical polynomials with λ = 0 and 1, respectively.

In recent articles, Marmorino [2] and Taşeli [3] dealt with the exact solutions
of squared cotangent and tangent potentials. In fact, if we recall the simple trig-
onometric identities tan2 x = sec2 x − 1 and cot2 x = csc2 x − 1 these poten-
tials could be regarded as special cases of the Pöschl–Teller potential hole [4]. The
main goal of this article is to examine the orthogonal polynomials appearing in
the analytical solutions of the associated eigenvalue problems. In section 2, the
one-dimensional Schrödinger operator with such a trigonometric potential and
its explicit eigensolutions in closed form are presented. The complete orthonor-
mal set of the symmetric state wavefunctions which consists of non-ultraspherical
Jacobi polynomials is then introduced. These polynomials are examined in section
3 under the title T -polynomials of the first kind. The last section is devoted to a
discussion of the limiting case of the potential parameter and concluding remarks.

2. The Hamiltonian with a trigonometric potential

Let us consider the one-dimensional Schrödinger equation H� = E� over
θ ∈ (−π, π), with a trigonometric Hamiltonian

H(θ; µ) = − d2

dθ2
+ v(θ; µ),

(2)

v(θ; µ) = 1
4
µ(µ + 1) sec2 1

2
θ = 1

2
µ(µ + 1)(1 + cos θ)−1
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in which µ(µ + 1) > 0 for a well potential. Thus the potential parameter µ can
be a real number either greater than 0 or less than −1, that is, µ �∈ (−1, 0). How-
ever, the differential operator has an obvious scaling relationship

H(θ; µ) = H(θ; −µ − 1) (3)

and, therefore, we may take µ > 0 without any loss of generality.
The mathematical problem in question is a singular Sturm–Liouville sys-

tem because of the unboundedness of the trigonometric potential at ±π , which
implies that the wavefunction �(θ; µ) must vanish at the boundaries. Clearly,
such a wavefunction will be square integrable over the θ -domain. Furthermore,
as a consequence of the reflection symmetry of the Hamiltonian under the
replacement of θ by −θ , i.e.,

H(θ; µ) = H(−θ; µ), θ ∈ (−π, π) µ > 0 (4)

the eigenfunctions are either even or odd functions of θ corresponding to the
symmetric and antisymmetric energy levels. Note that since v(θ; µ) � µ(µ +
1)/4 > 0 for all θ and µ, only positive values of E(µ) are admissible as the
energy eigenvalues. Note also that, in this article, we shall deal with the symmet-
ric state eigensolutions of the problem.

In the limiting case of the parameter µ → 0+, the Hamiltonian reduces to
the so-called particle-in-a-box model with

v(θ; 0) =
{

0 for θ ∈ (−π, π),

∞ for |θ | � π,
(5)

which is one of the elementary examples of an exactly solvable system. Indeed,
it is standard to find out that the normalised symmetric state eigenfunctions are
given by

�2n(θ; 0) = 1√
π

cos(n + 1
2)θ = 1√

π
cos 1

2θ Vn(cos θ) (6)

corresponding to the eigenvalues

E2n(0) = 1
4
(2n + 1)2 (7)

for each n ∈ N. In (6), we have set

Vn(x) := cos(n + 1
2)θ/ cos 1

2θ, V0(x) = 1, V1(x) = 2x − 1, (8)

which is a polynomial of degree n in x for all n, when x = cos θ . This
polynomial is sometimes referred to as the airfoil polynomial or, more appropri-
ately, the Chebyshev polynomial of the third kind [5]. Indeed, Vn(x) is directly
related to the Chebyshev polynomial of the first kind. It is seen from (8) that it
is defined trigonometrically parallel to the definition Tn(x) := cos n θ of the usual
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first-kind Chebyshev polynomials, and satisfies a recursion which is identical in
form to that of Tn(x).

The structure of the exact solutions of the particle-in-a-box model suggests
evidently the introduction of the non-one-to-one mapping

x = cos θ, x ∈ (−1, 1) (9)

for the treatment of the symmetric states, which transforms the differential equa-
tion into the form{

(1 − x2)
d2

dx2
− x

d
dx

+ E − µ(µ + 1)

2(1 + x)

}
�s(x; µ) = 0 (10)

subject to �s(−1; µ) = 0 for all µ, where �s denotes an even eigenfunction in θ .
Next proposing a wavefunction of the type

�s(x; µ) = (1 + x)(µ+1)/2y(x), (11)

we avoid the use of the term proportional to (1+x)−1 and arrive at the equation

(1 − x2)y ′′ + [µ + 1 − (µ + 2)x]y ′ +
[
E − 1

4
(µ + 1)2

]
y = 0 (12)

for y(x). However, it is more convenient to shift the argument from x to ξ

ξ = 1
2
(1 + x), ξ ∈ (0, 1) (13)

and obtain the hypergeometric equation

ξ(1 − ξ)y ′′ + [c − (a + b + 1)ξ ]y ′ − aby = 0 (14)

for the transformed dependent variable y(ξ). Here c = µ + 3/2, and the real
parameters a and b are to be taken as solutions of the non-linear system

a + b = µ + 1, ab = 1
4
(µ + 1)2 − E (15)

of two algebraic equations. This system has in fact only one significant solution
which consists of

a = 1
2
(µ + 1) −

√
E, b = 1

2
(µ + 1) +

√
E (16)

owing to the symmetric structure of (14) in the two parameters a and b. The
solution of the hypergeometric equation, which leads to a wavefunction �s van-
ishing at the origin of the ξ -axis, is given by

y(ξ) = 2F1(a, b; c; ξ) =
∞∑

k=0

(a)k(b)k

(c)k

ξ k

k!
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= 1 + ab

c

ξ

1!
+ a(a + 1)b(b + 1)

c(c + 1)

ξ 2

2!
+ · · · (17)

where (α)n = 
(α + n)/
(α) denotes Pochhammer’s symbol. Such a hypergeo-
metric series centered at the origin is convergent if |ξ | < 1, i.e., in the interval
(−1, 1), due to the fact that the nearest singularity is located at ξ = 1. Neverthe-
less, since c = µ+3/2 is never zero or a negative integer, and c−a−b = 1/2 > 0
it is easy to deduce from Gauss’s theorem that the series has a sum at ξ = 1,

C1 := lim
ξ→1− 2F1(a, b; c; ξ) = 
(c)
(c − a − b)


(c − a)
(c − b)
= 
(c)
( 1

2)


(c − a)
(c − b)
(18)

no matter what a and b are [6]. Therefore, it seems at first sight that the solu-
tion in (17) is valid on the whole physical domain ξ ∈ [0, 1] with no restriction
at all. However, the situation is completely different, and 2F1(a, b; c; ξ) describes
indeed the required solution by a supplementary condition. The reason for this
will become clear shortly.

It is a very well-known fact that the hypergeometric equation (14) possesses
another pair of linearly independent solutions containing hypergeometric func-
tions of argument 1 − ξ . In other words, it is possible to construct series solu-
tions about ξ = 1 converging in (0, 2) as the origin is also a singular point of the
differential equation. Therefore, for the hypergeometric function 2F1(a, b; c; ξ)

with c = µ + 3/2 and a + b = µ + 1, there is an identical form

2F1(a, b; c; ξ) = C1 2F1(a, b; 1
2
; 1 − ξ) + C2g(ξ) (19)

valid in the interval ξ ∈ (0, 1), where

C2 = 
(− 1
2)
(µ + 3

2)


(a)
(b)
,

g(ξ) =
√

1 − ξ 2F1(µ + 3
2

− a, µ + 3
2

− b; 3
2
; 1 − ξ). (20)

The relation in (19) represents a typical of a larger number known as the linear
transformation formulas which exist between the solutions of the hyprergeometric
equation [7].

It is readily seen that the expression in (19) is consistent as ξ → 1− confirm-
ing the definition in (16). However, a somewhat careful inspection shows that the
function g(ξ) stands out in the solution. First, the solution is no longer an even
function of the original variable θ because of the factor

√
1 − ξ in g(ξ), which

contradicts the decomposition property of the set of eigenfunctions in case of a
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Hamiltonian having a reflection symmetry as in (4). Moreover, it is natural to
expect that each side of (19) tends to the same limit as ξ → 0+. In what follows,
on utilising the functional equation [8]

2F1(a, b; c; z) = (1 − z)c−a−b
2F1(c − a, c − b; c; z), (21)

we find that the function g(ξ) is expressible as

g(ξ) = ξ−µ−1/2
√

1 − ξ 2F1(a − µ, b − µ; 3
2
; 1 − ξ) (22)

and that

g(ξ) ∼
√

π 
(µ + 1
2)

2
(µ + 3
2 − a)
(µ + 3

2 − b)
ξ−µ−1/2 (23)

as ξ → 0 by virtue of the Gauss’s theorem. Hence, it is shown that the func-
tion g(ξ) does not even remain bounded at the origin. In addition, equation (19)
can be made consistent if we impose the condition that the constant C2 therein
is zero. Making use of the formula 1/
(−n) = 0 for n = 0, 1, . . . , we see that
C2 = 0 if and only if a or b is a non-positive integer. In such a case in which

a = −n, b = n + 1 + µ, C2 = 0 (24)

for each n ∈ N, the constant C1 reduces to

C1 = (c − b)n

(c)n
= ( 1

2 − n)n

(µ + 3
2)n

= (−1)n( 1
2)n

(µ + 3
2)n

(25)

and equation (19) becomes uniformly an identity over ξ ∈ [0, 1]. In particular,
it is an easy matter to check that the two hypergeometric form of the desired
solution have been successfully matched at ξ = 0 as well.

In conclusion, we have the occasion of stating our main result. The supple-
mentary condition a = −n in (24), in accordance with (16), may be interpreted
as a quantisation condition from which we determine the even-parity state eigen-
values

E(µ) := E2n(µ) = 1
4
(2n + 1 + µ)2 (26)

and the corresponding eigenfunctions

�s(ξ ; µ) := �2n(ξ ; µ) = An(µ) ξ
1
2 (µ+1)

2F1(−n, n + 1 + µ; µ + 3
2
; ξ) (27a)

= An(µ)
(−1)n( 1

2)n

(µ + 3
2)n

ξ
1
2 (µ+1)

2F1

×(−n, n + 1 + µ; 1
2
; 1 − ξ) (27b)
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analytically for all µ � 0, 0 � ξ � 1 and n ∈ N, where An(µ) is some normalisation
constant. Returning back to the previous variables, we have

�2n(x; µ) = An(µ)

(
1
2

+ 1
2
x

) 1
2 (µ+1)

×2F1

(
−n, n + 1 + µ; µ + 3

2
; 1

2
+ 1

2
x

)
(28a)

= An(µ)
(−1)n( 1

2)n

(µ + 3
2)n

(
1
2

+ 1
2
x

) 1
2 (µ+1)

×2F1

(
−n, n + 1 + µ; 1

2
; 1

2
− 1

2
x

)
(28b)

for x = cos θ ∈ [−1, 1], and

�2n(θ; µ) = An(µ) cosµ+1 1
2
θ 2F1

(
−n, n + 1 + µ; µ + 3

2
; cos2 1

2
θ

)
(29a)

= An(µ)
(−1)n( 1

2)n

(µ + 3
2)n

cosµ+1 1
2
θ

×2F1

(
−n, n + 1 + µ; 1

2
; sin2 1

2
θ

)
(29b)

for θ ∈ [−π, π ]. Note the relations

ξ = 1
2
(1 + x) = 1

2
(1 + cos θ) = cos2 1

2
θ = u2 (30)

and

1 − ξ = 1
2
(1 − x) = 1

2
(1 − cos θ) = sin2 1

2
θ = t2 (31)

between the various variables. From now on, we assume that x is the main and
the others are auxiliary variables.

3. The T-polynomials of the first kind

The exact analytical solution for the symmetric states of the quantum
mechanical problem has been asserted in section 2. It is clear that the hyper-
geometric factors in the eigenfunctions �2n stand for polynomials of degree n in
the respective arguments. We introduce the name T -polynomials of the first kind
for these polynomials suggested by the trigonometric potential in (2), which are
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actually trigonometric in nature. Explicitly, if the normalising constant is speci-
fied to be

An(µ) := (−1)n
(µ + 3

2)n

(µ + 1
2)n

An(µ), (32)

we rewrite the wavefunction (28a) and (28b) in the form

�2n(x; µ) = An(µ)

(
1
2

+ 1
2
x

) 1
2 (µ+1)

T (µ)
n (x) (33)

in which the T -polynomials of order µ and degree n in x have been denoted and
defined by

T (µ)
n (x) := ( 1

2)n

(µ + 1
2)n

2F1

(
−n, n + 1 + µ; 1

2
; 1

2
− 1

2
x

)
(34a)

= (−1)n
(µ + 3

2)n

(µ + 1
2)n

2F1

(
−n, n + 1 + µ; µ + 3

2
; 1

2
+ 1

2
x

)
, (34b)

where n ∈ N and µ � 0. Using the finite sum formula for the hypergeometric
function in (34a), we have

T (µ)
n (x) = ( 1

2)n

(µ + 1
2)n

n∑
k=0

(−n)k(n + 1 + µ)k

( 1
2)k2kk!

(1 − x)k (35)

from which the first three T -polynomials

T (µ)

0 (x) = 1,

T (µ)

1 (x) = 1
2µ + 1[(µ + 2)x − (µ + 1)], (36)

T (µ)

2 (x) = 1
(2µ + 1)(2µ + 3)

[(µ + 3)(µ + 4)x2 − 2(µ + 1)(µ + 3)x + µ2 + µ − 3]

are listed at once. Furthermore, special values worth noting are

T (µ)
n (1) = ( 1

2)n

(µ + 1
2)n

, T (µ)
n (−1) = (−1)n

(µ + 3
2)n

(µ + 1
2)n

= (−1)n
(

1 + 2n
2µ + 1

)
, (37)

which can be derived immediately from the definition (34). Unlike the ultraspher-
ical polynomials, note that the T -polynomials are neither even nor odd in which
all powers of x are present.

Since the operator H in (2) is self-adjoint, the eigenfunctions of the original
variable θ

�2n(θ; µ) = An(µ) cosµ+1 1
2
θ T (µ)

n (cos θ) n ∈ N, (38)



H. Taşeli / A class of orthogonal polynomials 9

form an orthogonal sequence over θ ∈ (−π, π). The elements of this sequence
may be normalised if

〈�2m, �2n〉 = AmAn

∫ π

−π

cos2µ+2 1
2
θ T (µ)

m (cos θ) T (µ)
n (cos θ)dθ = δmn, (39)

which reads as

AmAn

∫ 1

−1
(1 − x)−

1
2 (1 + x)µ+ 1

2 T (µ)
m (x)T (µ)

n (x)dx = 2µδmn (40)

with the change of variable x = cos θ in (39). Consequently, the T -polynomials
are orthogonal on (−1, 1) with a continuous and non-negative weight of the
form

ρ(x) = (1 − x)α(1 + x)β, (41)

with α = −1/2 and β = µ+1/2. It is known from the theory of special functions
that the set of Jacobi polynomials

{
P

(α,β)
n

}
for α, β > −1 is the only orthog-

onal polynomial system over (−1, 1) relative to the weight ρ(x) [1]. More pre-
cisely, the T -polynomials should be Jacobi polynomials for which α = −1/2
and β = µ + 1/2 apart from a suitable multiplicative constant, i.e. T (µ)

n (x) =
dnP

(− 1
2 ,µ+ 1

2 )
n (x). Comparing the hypergeometric forms of the T -polynomials with

those of the Jacobi polynomials we can find out the rescaling constant dn and
establish the link

T (µ)
n (x) = n!

(µ + 1
2)n

P
(− 1

2 ,µ+ 1
2 )

n (x). (42)

The normalisation condition in (40) now gives

A2
n(µ) = (µ + 1

2)n

n!( 1
2)n


(µ + 1 + n)


( 1
2)
( 1

2 + µ)

( 1 + µ + 2n

1 + 2µ + 2n

)
(43)

on employing the orthogonality property of P
(− 1

2 ,µ+ 1
2 )

n (x) [9].
It is worthwhile to emphasize that the T -polynomials are not ultraspherical

polynomials; however, they represent another subclass in the most general class
of Jacobi polynomials. Recognition of this fact leads to an economical determi-
nation of the required properties of T (µ)

n (x). An alternative way is the use of the
explicit form (35) and the differential equation (12). Actually, substituting the
formula (26) for the eigenvalues E of the Schrödinger Hamiltonian into (12) we
see that the T -polynomials satisfy the equation

(1 − x2)y ′′ + [µ + 1 − (µ + 2)x]y ′ + n(n + 1 + µ)y = 0, (44)

which may be written in the self-adjoint form[
(1 − x2)ρ(x)y ′]′ + n(n + 1 + µ)ρ(x)y = 0, (45)



10 H. Taşeli / A class of orthogonal polynomials

where the weight ρ(x) = (1 − x)−1/2(1 + x)µ+1/2 is a solution of the separable
equation [

(1 − x2)ρ(x)
]′ = [µ + 1 − (µ + 2)x]ρ(x) (46)

of the first order. It follows then that the Rodrigues’ formula for T (µ)
n (x) is

T (µ)
n (x) = (−1)n

2n(µ + 1
2)n

1
ρ(x)

dn

dxn

[
ρ(x)(1 − x2)n

]
, (47)

which may also be verified directly, using the explicit formula (35). Similarly,
among the others, a recurrence relation of the form

T (µ)

n+1(x) = [ 2an(µ)x − bn(µ) ]T (µ)
n (x) − cn(µ)T (µ)

n−1(x) (48)

may be derived, in which the coefficients an(µ), bn(µ) and cn(µ) are

an(µ) = (2n + µ + 1)(2n + µ + 2)

(2n + 2µ + 1)(2n + 2µ + 2)
, (49a)

bn(µ) = µ(µ + 1)(2n + µ + 1)

(2n + µ)(2n + µ + 1)(2n + 2µ + 1)
, (49b)

and

cn(µ) = 2n(2n − 1)(2n + µ + 2)

(2n + µ)(2n + 2µ − 1)(2n + 2µ + 2)
, (49c)

respectively.

4. The limiting case µ → 0 and concluding remarks

We have investigated the exactly solvable quantum mechanical oscillator
with the trigonometric potential

v(θ) = 1
4
µ(µ + 1) sec2 1

2
θ = 1

2
µ(µ + 1)(1 + cos θ)−1, µ � 0 (50)

having an enumerable infinite set of discrete positive spectral points, which corre-
sponds to a complete sequence of orthonormal eigenfunctions over θ ∈ (−π, π).
Recall that most of the popular exactly solvable systems such as the Morse
potential, have only finitely many eigenvalues [4,10]. The spectral points given by
the formula (26) are well separated and the simplicity of eigenvalue differences is
quite similar to that of the classical harmonic oscillator.

It should be pointed out that any exactly solvable Hamiltonian is interesting
from a different point of view. For, such a system serves as a simple model for
understanding the more realistic and complex problems. Actually, the most pop-
ular harmonic oscillator models have played a tremendous role in the evolution



H. Taşeli / A class of orthogonal polynomials 11

of many fields of physics [11]. Furthermore, they may provide a basis for pseudo-
spectral, spectral and perturbation methods for differential eigenvalue problems.
To be specific, a more general problem with a potential function of the form

q(θ) = 1
4
µ(µ + 1) sec2 1

2
θ + εw(θ), ε ∈ R, (51)

is most easily attacked by considering w(θ) as a perturbation of our trigonomet-
ric potential, where ε is a parameter. In a perturbation series, it is generally the
existence of a closed form zeroth-order solution for ε = 0 which ensures that
the higher-order terms may also be determined as closed form analytical expres-
sions [12].

The limit particle-in-a-box potential as µ → 0 is of particular importance.
In this case, the normalisation constant (43) is simplified to A2

n(0) = 1/π , and
the eigenfunctions (38) becomes

�2n(θ; 0) = 1√
π

cos 1
2θ T (0)

n (cos θ). (52)

Comparing this with the exact solution (26) of the limit potential we infer that
there must be the interrelation

T (0)
n (x) = Vn(x) (53)

between the T -polynomials of the first kind of the zeroth-order and the
Chebyshev polynomials of the third kind. From (36) and (8) we have T (0)

0 (x) =
1 = V0(x) and T (0)

1 (x) = 2x−1 = V1(x). Since the coefficients are an(0) = cn(0) =
1 and bn(0) = 0 at µ = 0, the recurrence relation (48) of the T -polynomials turns
out to be

T (0)

n+1(x) = 2xT (0)
n (x) − T (0)

n−1(x), (54)

which is nothing but the recursion for the Chebyshev polynomials implying the
truth of the interrelation (53) for all n. Moreover, both Vn(x) and T (µ)

n (x) are
neither even nor odd, and the differential equation (44) for the T -polynomials
reduces to

(1 − x2)y ′′ + (1 − 2x)y ′ + n(n + 1)y = 0 (55)

for µ = 0, which is the equation satisfied by Vn(x) [5]. Thus the T -polynomials
of the first kind can be viewed as a generalisation of the Chebyshev polynomi-
als of the third kind. It is an easy matter to find the connection between T (µ)

n

and the Chebyshev polynomials Tn of the first kind as well. In fact, using the
definitions of Vn and Tn and the link in (53) we see that

T (0)
n (x) = 1

uT2n+1(u), (56)

where u is one of the auxiliary variables in (30).
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As a final remark, the treatment of the antisymmetric states of the present
trigonometric oscillator along the same lines is in progress. There is enough evi-
dence to claim that it will be possible to describe another class of polynomials in
this context, which may be called accordingly the T -polynomials of the second
kind.
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1988).
[9] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions (Dover, New York,

1972).
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