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Exact analytical solutions of the Hamiltonian with a
squared tangent potential
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In a very recent article (M.G. Marmorino, J. Math. Chem. 32 (2002) 303), exact ground
and first-excited state eigensolutions determined by trial and error have been introduced for
the one-dimensional Hamiltonian with a constant multiple of a squared cotangent potential
ν(ν − 1) cot2 x on the domainx ∈ (0, π). An explicit formula for the full spectrum was then
proposed by the help of numerical experiments. In the present study, the results of Marmorino
are mathematically justified and generalized by transforming the problem into an equivalent
hypergeometric form.
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1. Introduction

The dimensionless Schrödinger equation for a particle of unit mass moving in a
potentialV (x) [

− d2

dx2
+ V (x)− E

]
	(x) = 0, (1)

whose exact analytical eigensolutions are expressible in terms of elementary or special
functions of mathematical analysis, is of significant importance in quantum mechanics.
Many of these potentials can be found by perusing the literature [1].

Most recently, exact solutions for a squared cotangent potential (SCP)

V (x) = ν(ν − 1) cot2 x, x ∈ (0, π) (2)

have been proposed by Marmorino [2] for the real parameterν � 1. To be precise, the
lowest two eigenvalues and the corresponding eigenfunctions were determined by trial
and error. By means of numerical calculations, the complete spectrum was correctly
conjectured to be generated by a recursion relation


k+1−
k = 1 (3a)

for the
k, which is the difference between two consecutive eigenvaluesλk+1 andλk.
It is clear that (3a) is a linear, first order, non-homogeneous difference equation with
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constant coefficients, which can be solved explicitly on using the difference of the first
two known eigenvalues as an initial condition. After having determined the
k values,
the definition

λk+1− λk = 
k (3b)

is then used to find the desired eigenvalues.
In this work, we give mathematical evidence for the exact solutions of the afore-

mentioned system. First we modify the problem so as to get a symmetric structure by
shifting the coordinate axis fromx to x − π/2. Hence we now deal with a Hamiltonian
with the squared tangent potential (STP)

V (x) = ν(ν − 1) tan2 x, x ∈
(
−1

2
π,

1

2
π

)
(4)

on the symmetric domain having an obvious reflection symmetry under the replace-
ment ofx by −x. Since the STP grows unboundedly at the end points of the interval
(−π/2, π/2), the wave function	 should possess an appropriately vanishing behaviour
atx = ±π/2. Note that the energy eigenvaluesE, but not eigenfunctions, of the Hamil-
tonian with the STP on the symmetric interval(−π/2, π/2) are precisely the same as
those of the Hamiltonian with the SCP on the asymmetric interval(0, π) considered by
Marmorino in [2].

The plan of this paper is as follows. In section 2, we transform the problem into
a hypergeometric form. The anti-symmetric states, in which the eigenfunctions are odd
functions of the argumentx, are treated in section 3. The last section concludes the paper
with further remarks and comments.

2. The hypergeometric form of the problem

Let us consider the Schrödinger equation[
− d2

dx2
+ ν(ν − 1) tan2 x − E(ν)

]
	(x; ν) = 0 (5)

subject to the boundary conditions

	(x; ν) ∣∣
x=±(1/2)π= 0 (6)

for eachν � 1, describing a well potential problem for which a discrete positive spec-
trum is sure to exist. The reflection symmetry of the system (5)–(6) suggests that the
set of spectral points{Ek(ν)}, for k = 0,1, . . . , can be decomposed into two subsets
{E2k(ν)}, {E2k+1(ν)} in such a way that the eigenfunctions corresponding to the even
E2k and oddE2k+1 parity energy levels are even and odd functions ofx, respectively.
These are referred to as the symmetric and anti-symmetric states as well, and may be
treated separately without any trouble.
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In what follows, introducing the substitution

ξ = sin2 x, ξ ∈ [0,1) (7)

which is not one-to-one, we can deal only with the even parity states. With (7), we have
the operational equivalences

d

dx
≡ 2

√
ξ(1− ξ)

d

dξ
(8a)

and

d2

dx2
≡ 4ξ(1− ξ)

d2

dξ2
+ 2(1− 2ξ)

d

dξ
(8b)

so that the differential equation takes the form{
ξ(1− ξ)

d2

dξ2
+
(

1

2
− ξ

)
d

dξ
+�(ν,E)− 1

4

ν(ν − 1)

1− ξ

}
	s(ξ ; ν) = 0, (9)

where

�(ν,E) = 1

4

[
ν(ν − 1)+ E(ν)

]
(10)

and	s(ξ ; ν) denotes an eigenfunction which is even in the original variablex whenξ is
replaced by sin2 x.

Next, the regular singularity atξ = 1 of the differential operator in (9) implies the
search for a solution of the type

	s(ξ ; ν) = (1− ξ)ay(ξ ; ν), a ∈ R, (11)

which gives the possibility of determining the flexible parametera so as to get rid of the
last term in (9) proportional to(1−ξ)−1. Actually, if a is a root of the algebraic equation

a2 − 1

2
a − 1

4
ν(ν − 1) = 0 (12)

then the differential equation reduces to a Gauss hypergeometric equation

ξ(1− ξ)y′′ +
[

1

2
− (α + β + 1)ξ

]
y′ − αβy = 0 (13)

for the new dependent variabley, with the parametersα andβ satisfying

α + β = 2a (14a)

and

αβ = a2 −�(ν,E), (14b)
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simultaneously. Clearly, the roots of the quadratic equation (12) areν/2 and(1− ν)/2.
For a = ν/2, the hypergeometric equation (13) admits the pair of linearly independent
solutions [3]

y1(ξ ; ν) = 2F1

(
α, β; ν + 1

2
;1− ξ

)
(15a)

and

y2(ξ ; ν) = (1− ξ)(1/2)−ν
2F1

(
1

2
− α,

1

2
− β; 3

2
− ν;1− ξ

)
, (15b)

where2F1(α, β; γ ; z) stands for the Gauss hypergeometric function. Recall that this
function has the series expansion aboutz = 0

2F1(α, β; γ ; z) =
∞∑
i=0

(α)i(β)i

(γ )i

zi

i! = 1+ αβ

γ

z

1! +
α(α + 1)β(β + 1)

γ (γ + 1)

z2

2! + · · · (16a)

known as the hypergeometric series [3], in which the notation(p)i is the Pochhammer’s
symbol standing for

(p)i = p(p + 1) · · · (p + i − 1) (16b)

with (p)0 = 1.
It is seen from (14) that the parametersα andβ in the solutions (15) are written

as

α = 1

2
ν −√�(ν,E) (17a)

and

β = 1

2
ν +√�(ν,E) (17b)

which depend implicitly on the energy eigenvalues of the system. Thus we have the
fundamental solutions for the wave function	s in (11)

	(1)
s (ξ ; ν) = (1− ξ)(1/2)ν

2F1

(
α, β; ν + 1

2
;1− ξ

)
(18a)

and

	(2)
s (ξ ; ν) = (1− ξ)(1/2)(1−ν)

2F1

(
1

2
− α,

1

2
− β; 3

2
− ν;1− ξ

)
(18b)

for a prescribedν � 1.
On the other hand, the boundary conditions in (6) require that the true wave func-

tion must vanish asξ tends towards one, i.e.,

lim
ξ→1

	(ξ ; ν) = 0 (19)
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for all ν � 1. However, from (16) we observe that asξ → 1

	(2)
s (ξ ; ν) = (1− ξ)(1/2)(1−ν)[1+O(1− ξ)

]
(20)

and that it does not remain bounded atξ = 1, whereO is the usual big-O notation.
Hence, rejecting the second solution in (18b) we find that the desired solution can pos-
sibly be

	s(ξ ; ν) = 	(1)
s (ξ ; ν) = A(ν)(1− ξ)(1/2)ν

2F1

(
α, β; ν + 1

2
;1− ξ

)
, (21)

whereA is some normalization constant.
In like manner, it is not difficult to verify that the second roota = (1− ν)/2 of

(12) results exactly in the same solution. Furthermore, it is worth noting that, by the
trigonometric transformation in (7), both end points of the original domain(−π/2, π/2)
are taken into the point atξ = 1 on theξ -axis. As a result, the transformed system
obeys only one boundary condition. Nevertheless, we may prove that the hypergeometric
series in (21) converges for allξ ∈ [0,1] and is analytic in each ofα andβ parameters
and, therefore, does represent the physical solution if and only if it consists of a finite
number of terms [4, p. 262]. As a matter of fact, such a series terminates to yield simply
polynomials in 1− ξ of degreek, for k = 0,1, . . ., if eitherα or β is equal to−k, due
to its symmetric structure in the first two parameters. Thus, assuming such an analiticity
condition for the hypergeometric function in question that

α = −k, k = 0,1, . . . (22)

we obtain the eigenfunctions

	s(ξ ; ν) := 	2k(ξ ; ν) = Ak(ν)(1− ξ)(1/2)ν
2F1

(
−k, ν + k; ν + 1

2
;1− ξ

)
(23)

corresponding to the even parity energy levelsE := E2k. In addition, the significance of
(22) is that it can be regarded as a quantization condition to determine theE2k for all k.
To be more specific, we deduce from (10) and (17a) that

−k = 1

2

[
ν −√ν(ν − 1)+ E2k(ν)

]
(24a)

which leads to the explicit formula

E2k(ν) = 4k(ν + k)+ ν, k = 0,1, . . . (24b)

for the symmetric state eigenvalues valid for allν � 1. Returning back to the original
variablex we have the symmetric eigenfunctions

	2k(x; ν) = Ak(ν) cosν x2F1

(
−k, ν + k; ν + 1

2
; cos2 x

)
(25)

of the Schrödinger Hamiltonian with the STP in (4).
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3. Anti-symmetric states

A careful inspection suggests that the anti-symmetric state eigenfunctions, say	as,
can be expressed in the form

	as(x; ν) = sinx�(x; ν), (26)

where� is necessarily an even function ofx. It is straightforward to show that if	as is
any solution of the Schrödinger equation in (5), then� satisfies the differential equation[

− d2

dx2
− 2 cotx

d

dx
+ ν(ν − 1) tan2 x + 1− E(ν)

]
�(x; ν) = 0 (27)

which at first sight looks more complicated. However, the evenness of� implies that
the substitutionξ = sin2 x in (7) is again appropriate. Therefore, if we make use of the
additional operational equivalence

cotx
d

dx
≡ 2(1− ξ)

d

dξ
(28)

we arrive at the equation{
ξ(1− ξ)

d2

dξ2
+
(

3

2
− 2ξ

)
d

dξ
+�(ν,E)− 1

4
− 1

4

ν(ν − 1)

1− ξ

}
�(ξ ; ν) = 0 (29)

in the variableξ . Tracing a very similar procedure to that of section 2, we see that a
transformed dependent variableu, where

�(ξ ; ν) = (1− ξ)(1/2)νu(ξ ; ν), (30)

satisfies the Gauss hypergeometric equation

ξ(1− ξ)u′′ +
[

3

2
− (α̃ + β̃ + 1

)
ξ

]
u′ − α̃β̃u = 0 (31)

whose parameters̃α andβ̃ are defined by the relations

α̃ = 1

2
(ν + 1)−√�(ν,E) (32a)

and

β̃ = 1

2
(ν + 1)+√�(ν,E), (32b)

respectively. By an argument exactly the same as that used for the symmetric states, we
setα̃ = −k and deduce the formula

E2k+1(ν) = (2k + 1)(2ν + 2k + 1)+ ν, k = 0,1, . . . (33)

for the odd parity states eigenvalues corresponding to the eigenfunctions

	2k+1(ξ ; ν) = Bk(ν)
√
ξ(1− ξ)(1/2)ν

2F1

(
−k, ν + k + 1; ν + 1

2
;1− ξ

)
, (34)
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whereBk is a convenient normalization factor. In terms of the original variablex, the
anti-symmetric eigenfunctions are given by

	2k+1(x; ν) = Bk(ν) sinx cosν x2F1

(
−k, ν + k + 1; ν + 1

2
; cos2 x

)
(35)

in which the hypergeometric function is a polynomial of degreek in cos2 x.

4. Concluding remarks

We have elucidated exact analytical solutions of the quantum mechanical eigen-
value problem in (5)–(6) in the form of finite combinations of trigonometric functions,
which are valid for all values of the potential constantν � 1. First, it is easily shown
that the two separate formulas in (24b) and (33) for the even- and odd-indexed energy
levels can be combined in a single expression

Ek(ν) = k(2ν + k)+ ν, k = 0,1, . . . (36)

so as to give the full spectrum, which corroborates the somewhat experimental result of
[2]. Note the notational connection

Ek(ν) = 2λk+1(ν), k = 0,1, . . . (37)

between the eigenvalues denoted byλ in [2] and those of this work.
Second, taking advantage of having analytical solutions in terms of the Gauss hy-

pergeometric functions, we may derive alternative such solutions by means of certain
familiar relations which exist between them. For instance, it follows from the so-called
linear transformation formula,

2F1(α, β; γ ; z)=C(α, β, γ )2F1(α, β;α + β − γ + 1;1− z)

+ C(γ − α, γ − β, γ )(1− z)γ−α−β

× 2F1(γ − α, γ − β; γ − α − β + 1;1− z), (38a)

with

C(α, β, γ ) = �(γ )�(γ − α − β)

�(γ − α)�(γ − β)
(38b)

that the hypergeometric factor in (25) is equivalent to

2F1

(
−k, ν+k; ν+1

2
; cos2 x

)
= C

(
−k, ν+k, ν+1

2

)
2F1

(
−k, ν+k; 1

2
; sin2 x

)
(39)

since, in this case, the coefficient of the second term in (38a) containing certain gamma
functions becomes zero. Hence we may rewrite the symmetric state eigenfunctions in
the form

	2k(x; ν) = Ãk(ν) cosν x2F1

(
−k, ν + k; 1

2
; sin2 x

)
(40)
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now with a hypergeometric function of argument sin2 x, whereÃk is some other nor-
malization constant.

If the variablex + π/2 is inserted back into our results, we then obtain the eigen-
functions of the Hamiltonian with the SCP on the asymmetric domain(0, π). Actually,
we see from (25) that the symmetric states become

	2k

(
x + 1

2
π; ν

)
= sinν x2F1

(
−k, ν + k; ν + 1

2
; sin2 x

)
(41)

up to an inessential constant. For a particular case in whichν = 3, eigenfunctions of the
SCP problem were constructed successfully in [2] by means of symbolic computations
on Mathematica. In this particular case, we notice the relationship

ψ2k+1 = Nk	2k

(
x + 1

2
π;3

)
= Nk

k∑
j=0

(−k)j (k + 3)j
j !(7/2)j

sin2j+3 x (42)

for k = 0,1, . . ., where theψ2k+1 denote the eigenfunctions of [2], which were referred
to as the odd-indexed eigenfunctions there. Further, we perceive that exactly the same
eigenfunctions are regenerated if the constantNk is taken as

Nk = 4k+1 (7/2)k
(k + 3)k

(43)

for eachk. Note also that exploiting the standard trigonometric relation [5, p. 25]

sin2m+3 x = 1

4m+1

m+1∑
j=0

(−1)m+1+j
(

2m+ 3

j

)
sin(2m− 2j + 3)x (44)

we may express our results in terms of sin(2j + 1)x instead of sin2j+3 x. For example,
we have

ψ1 = N0	0

(
x + 1

2
π;3

)
= 4 sin3 x = 3 sinx − sin(3x) (45a)

for k = 0,

ψ3=N1	2

(
x + 1

2
π;3

)
= 14 sin3 x

(
1− 8

7
sin2 x

)

= 1

2
sinx + 3

2
sin(3x)− sin(5x) (45b)

for k = 1, and

ψ5=N2	4

(
x + 1

2
π;3

)
= 168

5
sin3 x

(
1− 20

7
sin2 x + 40

21
sin4 x

)

= 1

5
sinx + 3

5
sin(3x)+ sin(5x) − sin(7x). (45c)
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for k = 2. Observe once again that the coefficients of sin(2j + 1)x in (45) for j =
0,1, . . . , k + 1, reveal the same pattern as recorded in [2, table 3].

Finally, it is an easy task to verify that our results yield the known eigenvalues and
eigenfunctions of the particle-in-a-box Hamiltonian, where

V (x) =




0 for x ∈
(
−1

2
π,

1

2
π

)
,

∞ for |x| � 1

2
π ,

(46)

as the limiting case whenν = 1. More general properties of the exact analytical eigen-
functions will now be investigated and reported in due course.
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