Modified Laguerre Basis for Hydrogen-like Systems

H. TAŞELI
Department of Mathematics, Middle East Technical University, 06531 Ankara, Turkey

Received 5 July 1996; revised 21 October 1996; accepted 12 December 1996

Abstract

N\)-dimensional Schrödinger equation with isotropic nonpolynomial perturbations is studied. A Laguerre basis, which is different from that of the hydrogen atom in nature, has been introduced and applied to screened Coulomb potentials. Certain very useful recurrence relations are developed for the evaluation of matrix elements analytically. Specimen eigenvalue calculations to illustrate the method as well as its extension to other potentials are presented. © 1997 John Wiley \& Sons, Inc. Int J Quant Chem 63: 949-959, 1997

Key words: Radial Schrödinger equation; screened Coulomb potential systems; Yukawa potential; exponential cosine screened Coulomb potential; Laguerre basis; accurate eigenvalue calculation

1. Introduction

T
he radial form of the Schrödinger equation in N dimensions

$$
\begin{align*}
& {\left[-\frac{1}{2} \frac{d^{2}}{d r^{2}}-\frac{N-1}{2 r} \frac{d}{d r}\right.} \\
& \left.\quad+\frac{l(l+N-2)}{2 r^{2}}+V(r)\right] \mathscr{R}(r) \\
& \quad=E \mathscr{R}(r), \quad \mathscr{R} \in L_{2}(0, \infty) \tag{1.1}
\end{align*}
$$

with a screened Coulomb potential has been the subject of many computational methods, where L_{2} is the Hilbert space of the square integrable func-
tions in the semi-infinite interval of $r, r \in[0, \infty)$. In this article, we mainly deal with such a potential which behaves like $-1 / r$ as $r \rightarrow 0$ and vanishes at infinity. In particular, the Yukawa potential,

$$
\begin{equation*}
V(r)=-\frac{Z}{r} e^{-\gamma r}, \quad \gamma>0 \tag{1.2}
\end{equation*}
$$

with the screening parameter γ and the exponential cosine screened Coulomb potential

$$
\begin{equation*}
V(r)=-\frac{Z}{r} e^{-\gamma r} \cos \lambda r \tag{1.3}
\end{equation*}
$$

with the two parameters γ and λ are the most studied systems of this kind. In (1.2) and (1.3) Z stands for the nuclear charge, which can be made unity by a simple scaling transformation.

The screened Coulomb potentials are of significant importance in atomic, plasma, and solid-state physics. In quantum chemistry, a linear combination of like potentials can be used to model the effect of core electrons on the valence levels. Therefore the Schrödinger equation in three dimensions, i.e., $N=3$ in (1.1), employing those potentials was investigated with considerable intensity in the last decades [1-17]. More specifically, the Yukawa potential has been treated by perturbation theory and resummation techniques such as Pade approximants [1, 2], by convergent Rayleigh-Schrödinger perturbation series [3, 4], by a scaling variational scheme $[5,6]$, by the Ecker-Weizel approximation [7], by a unified power series-Hill determinant approach [8], by a renormalized hypervirial perturbative method [9], and by various numerical algorithms [10-12]. Some of these procedures [8, 9, 13-15] as well as a dynamical group approach and an algebraic perturbation theory $[16,17]$ have been applied to the exponential cosine screened Coulomb potential in (1.3).

The wave function $\mathscr{R}(r)$ in (1.1) should behave like r^{l} as $r \rightarrow 0$ since the potential $V(r)$ grows no faster than $1 / r$ at the origin. Therefore, transforming the dependent variable from $\mathscr{R}(r)$ to $\Phi(r)$,

$$
\begin{equation*}
\mathscr{R}(r)=r^{l} \Phi(r), \tag{1.4}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\left[-r \frac{d^{2}}{d r^{2}}-\alpha \frac{d}{d r}+2 r V(r)\right] \Phi(r)=2 r E \Phi(r) \tag{1.5}
\end{equation*}
$$

which avoids the use of the term proportional to $1 / r^{2}$ [18]. Here, we have defined a generalized angular momentum α,

$$
\begin{equation*}
\alpha=2 l+N-1, \tag{1.6}
\end{equation*}
$$

depending on both the angular momentum l and the space dimension N. It is shown, from (1.5), that the spectrum of the eigenvalue problem remains unchanged for a prescribed value of the sum $2 l+N$. Hence the eigenvalues in N dimensions, denoted by $E_{n_{r} l}^{(N)}$ with the radial and angular quantum numbers n_{r} and l, are degenerate in such a way that

$$
\begin{align*}
& E_{n_{r_{1}}}^{(2)} \equiv E_{n_{r}, 0}^{(4)} \\
& E_{n_{r}, 2}^{(2)} \equiv E_{n_{r}, 1}^{(4)} \equiv E_{n_{r}, 0}^{(6)} \\
& \quad \vdots \tag{1.7}
\end{align*}
$$

$$
\begin{aligned}
E_{n_{r}, l}^{(2)} & \equiv E_{n_{r}, l-1}^{(4)} \equiv E_{n_{r}}^{(6)} l-2 \equiv \cdots \equiv E_{n_{r}, 2}^{(2 l-2)} \\
& \equiv E_{n_{r}, 1}^{(2 l)} \equiv E_{n_{r}, 0}^{(2 l+2)}
\end{aligned}
$$

when N is even, where $E_{n_{r}, 0}^{(2)}$ is single in the system. Likewise, if N is odd, then

$$
\begin{align*}
& E_{n_{r}, 1}^{(3)} \equiv E_{n_{r}, 0}^{(5)} \\
& E_{n_{r}, 2}^{(3)} \equiv E_{n_{r}, 1}^{(5)} \equiv E_{n_{r}, 0}^{(7)} \\
& \vdots \tag{1.8}\\
& E_{n_{r}, l}^{(3)} \equiv E_{n_{r}, l-1}^{(5)} \equiv E_{n_{r}}^{(7)}, l-2 \equiv \cdots \equiv E_{n_{r}, 2}^{(2 l-1)} \\
& \equiv E_{n_{r}, 1}^{(2 l+1)} \equiv E_{n_{r}, 0}^{(2 l+3)}
\end{align*}
$$

with $E_{n_{r}, 0}^{(3)}$ which is equivalent to the antisymmetric state eigenvalues of the relevant onedimensional equation. The degenerate structure of the spectrum of N-dimensional Schrödinger equation expressed by (1.7) and (1.8) now suggests evidently that we may consider only two- and three-dimensional cases, without any loss of generality.

The decaying behavior of the screened Coulomb potentials implies another characteristic property of (1.1) or (1.5) that E will have both continuous and discrete spectra. Furthermore, the problem yields a finite number of discrete eigenvalues provided that the screening parameters γ and λ are nonzero. It is well known that the case of $\gamma=\lambda=0$ corresponds to the electronic Schrödinger equation for a hydrogen atom, which is solvable analytically giving a countably infinite discrete states. It is perhaps this special case of (1.1) that inspired developing several works based on the use of hydrogenic wave functions. However, the expansion of the wave function in terms of the discrete eigenfunctions of the hydrogen atom shows dramatically slow convergence properties due to the nonexistence of the contributions coming from the continuous spectrum eigendistributions [6]. The consideration of the uncountable infinite set of eigendistributions corresponding to the continuous spectrum, on the other hand, creates many technical problems. To overcome this situation it is preferable to seek an appropriate way of dealing with an operator, which possesses solely a discrete spectrum with a complete set of eigenfunctions, instead of the Hamiltonian for the hydrogen atom.

In fact, there are excellent studies on how the problem of the continuous spectrum can be bypassed [19-22]. Especially, the "so(4,2) Lie algebra
technology," which consists of the operators T_{1}, T_{2}, and T_{3} satisfying certain commutation relations, reformulates hydrogenic problems over discrete Sturmian basis [19-21]. Before the developments of the so $(4,2)$ algebra, Löwdin and Shull had introduced an entirely discrete basis for performing various calculations on helium [23]. In Section 2, the required basis set is constructed in terms of the Laguerre functions, and its connections with the existing ones are given. The Rayleigh-Ritz variational calculations are carried out in Section 3 for the bound states of hydrogenlike atoms in a screened Coulomb potential field. The last section contains the conclusions and the motivation for extending the method to other systems, including Morse and Gaussian-type interactions.

2. Laguerre Basis Set

Rewriting Eq. (1.5) in the form

$$
\begin{equation*}
[T+2 r V(r)] \Phi(r)=2 r\left(E+\frac{1}{8}\right) \Phi(r) \tag{2.1}
\end{equation*}
$$

with

$$
\begin{align*}
T & =-r \frac{d^{2}}{d r^{2}}-\alpha \frac{d}{d r}+\frac{1}{4} r, \tag{2.2}\\
\lim _{r \rightarrow \infty} \Phi(r) & =0,
\end{align*}
$$

we may see that the operator T has purely a discrete spectrum corresponding to a complete sequence of eigenfunctions:

$$
\begin{align*}
& \phi_{n}^{(\alpha-1)}(r)=\mathscr{N}_{n}^{(\alpha-1)} e^{-(1 / 2) r} L_{n}^{(\alpha-1)}(r), \\
& n=0,1,2, \ldots, \tag{2.3}
\end{align*}
$$

where the $L_{n}^{(\alpha-1)}(r)$ are the associated Laguerre polynomials, $\mathscr{N}_{n}^{(\alpha-1)}$ is some normalization constant, and

$$
\begin{equation*}
T \phi_{n}^{(\alpha-1)}(r)=\left(n+\frac{1}{2} \alpha\right) \phi_{n}^{(\alpha-1)}(r) \tag{2.4}
\end{equation*}
$$

In general, if the normalization constant is specified by the formula

$$
\begin{equation*}
\mathscr{N}_{n}^{(p)}=\sqrt{n!/ \Gamma(n+p+1)}, \tag{2.5}
\end{equation*}
$$

then the Laguerre functions $\phi_{n}^{(p)}(r)$ become orthonormal relative to the weighting function r^{p} over the interval of r, satisfying the asymptotic bound-
ary condition at infinity. Thus we have

$$
\begin{equation*}
\int_{0}^{\infty} r^{p} \phi_{m}^{(p)}(r) \phi_{n}^{(p)}(r) d r=\delta_{m n}, \tag{2.6}
\end{equation*}
$$

where $\delta_{m n}$ is the Kronecker delta.
It may be shown that the Laguerre basis set so defined is quite similar to the hydrogenic one in form but has different spectral properties. In our previous communications [3, 4], the operator T was regarded as the unperturbed operator in a Rayleigh-Schrödinger perturbation method. So the present article will be another version of showing the performance of this basis in the Rayleigh-Ritz variational picture. Moreover, the operator T is closely related to the operator T_{3} appearing in the Lie algebra so $(2,1)$ for radial problems [19]. Actually, the so-called Sturmian basis associated with the T_{3} operator can be reproduced from (2.3) if n and r are replaced by $n-l-1$ and $2 r$, respectively, for $N=3$.

Now, postulating the wave function $\Phi(r)$ as the linear combination of the $\phi_{n}^{(\alpha-1)}(r)$ leads to the generalized matrix eigenvalue problem

$$
\begin{equation*}
\mathbf{A} \mathbf{c}=2\left(E+\frac{1}{8}\right) \mathbf{B} \mathbf{c} \tag{2.7}
\end{equation*}
$$

where

$$
\begin{align*}
A_{m n}= & \left(n+\frac{1}{2} \alpha\right) \delta_{m n} \\
& +2 \int_{0}^{\infty} r^{\alpha} V(r) \phi_{m}^{(\alpha-1)}(r) \phi_{n}^{(\alpha-1)}(r) d r \tag{2.8}
\end{align*}
$$

and

$$
\begin{equation*}
B_{m n}=\int_{0}^{\infty} r^{\alpha} \phi_{m}^{(\alpha-1)}(r) \phi_{n}^{(\alpha-1)}(r) d r \tag{2.9}
\end{equation*}
$$

within the vector \mathbf{c} containing the expansion coefficients. From the recurrence relation

$$
\begin{equation*}
L_{m}^{(p-1)}(r)=L_{m}^{(p)}(r)-L_{m-1}^{(p)}(r) \tag{2.10}
\end{equation*}
$$

for the Laguerre polynomials [24], we find that the weight or overlap matrix \mathbf{B} has the tridiagonal form,

$$
\begin{align*}
B_{m n}= & \frac{\mathscr{N}_{n}^{(\alpha-1)}}{\mathscr{N}_{m}^{(\alpha-1)}}\left[(2 m+\alpha) \delta_{m n}\right. \\
& \left.\quad-(m+\alpha) \delta_{m, n-1}-m \delta_{m-1, n}\right] \tag{2.11}
\end{align*}
$$

In spite of this simple banded structure of \mathbf{B} it is more convenient to cope with an unweighted
matrix eigenvalue problem. Since the set

$$
\begin{align*}
& \left\{e^{-(1 / 2) r} L_{0}^{(\alpha-1)}(r), e^{-(1 / 2) r}\right. \\
& \quad \times\left[L_{0}^{(\alpha-1)}(r)+L_{1}^{(\alpha-1)}(r)\right], \ldots, e^{-(1 / 2) r} \\
& \left.\quad \times \sum_{k=0}^{n} L_{k}^{(\alpha-1)}(r), \ldots\right\} \tag{2.12}
\end{align*}
$$

obtained from (2.3) comprises also a basis of $L_{2}(0, \infty)$, on recalling the identity [24]

$$
\begin{equation*}
\sum_{k=0}^{n} L_{k}^{(p-1)}(r)=L_{n}^{(p)}(r), \tag{2.13}
\end{equation*}
$$

we see that the functions

$$
\begin{align*}
\phi_{n}^{(\alpha)}(r)=\mathscr{N}_{n}^{(\alpha)} e^{-(1 / 2) r} L_{n}^{(\alpha)}(r) & \\
& n=0,1,2, \ldots \tag{2.14}
\end{align*}
$$

are now orthonormal with respect to r^{α}. In threedimensional case, $N=3$, this basis set may also be derived from the radial part of the Löwdin-Shull basis on setting the adjustable parameter η therein as $\frac{1}{2}$ and replacing n by $n+l+1$ [23]. As a result, interchanging $\phi_{n}^{(\alpha-1)}(r)$ in the above formulas by $\phi_{n}^{(\alpha)}(r)$, the weight matrix \mathbf{B} is reduced to the identity matrix. In fact, two Laguerre basis in (2.3) and (2.14) are equivalent; however, the latter yields a standard matrix eigenvalue problem

$$
\begin{equation*}
\mathbf{H c}=2\left(E+\frac{1}{8}\right) \mathbf{c}, \tag{2.15}
\end{equation*}
$$

which makes a considerable simplification in the numerical computations, where

$$
\begin{align*}
H_{m n}= & \int_{0}^{\infty} r^{\alpha-1} \phi_{m}^{(\alpha)}(r)\left[T \phi_{n}^{(\alpha)}(r)\right] d r \\
& +2 \int_{0}^{\infty} r^{\alpha} V(r) \phi_{m}^{(\alpha)}(r) \phi_{n}^{(\alpha)}(r) d r . \tag{2.16}
\end{align*}
$$

Note that \mathbf{H} and $\mathbf{B}^{-1} \mathbf{A}$ are similar matrices having the same eigenvalues so that, in a sense, we have defined the inverse of \mathbf{B} by employing the connection between (2.3) and (2.14).

The integrals in the symmetrical variational matrix \mathbf{H} are denoted by $D_{m n}$ and $V_{m n}$, respectively, to write

$$
\begin{equation*}
H_{m n}=D_{m n}+V_{m n} . \tag{2.17}
\end{equation*}
$$

The first integral can be evaluated explicitly, after some algebra, to give

$$
\begin{equation*}
D_{m n}=\mathscr{N}_{m}^{(\alpha)} \mathscr{N}_{n}^{(\alpha)} \sum_{k=0}^{K}\left(\frac{k+\alpha / 2}{k+\alpha}\right)\left[\mathscr{N}_{k}^{(\alpha)}\right]^{-2} \tag{2.18}
\end{equation*}
$$

where the upper limit K of the summation is equal to $\operatorname{Min}(m, n)$, i.e., the smaller one of the indices m and n. Furthermore, the second integral $V_{m n}$ containing the potential function may be shown to obey a recurrence relation. To this end, we use the identity for the Laguerre polynomials [24],

$$
\begin{array}{r}
(n+1) L_{n+1}^{(p)}(r)-(2 n+p+1-r) L_{n}^{(p)}(r) \\
+(n+p) L_{n-1}^{(p)}(r)=0 \tag{2.19}
\end{array}
$$

to obtain a functional relation, for the product of two Laguerre functions, of the form

$$
\begin{align*}
\sqrt{(m} & +1)(m+p+1) \\
& \phi_{m+1}^{(p)} \boldsymbol{\phi}_{n}^{(p)} \\
& -2(m-n) \boldsymbol{\phi}_{m}^{(p)} \boldsymbol{\phi}_{n}^{(p)}-\sqrt{n(n+p)} \phi_{m}^{(p)} \boldsymbol{\phi}_{n-1}^{(p)} \\
& -\sqrt{(n+1)(n+p+1)} \phi_{m}^{(p)} \boldsymbol{\phi}_{n+1}^{(p)} \tag{2.20}\\
& +\sqrt{m(m+p)} \phi_{m-1}^{(p)} \phi_{n}^{(p)}=0,
\end{align*}
$$

which implies immediately that

$$
\begin{align*}
V_{m+1, n}= & \frac{1}{\sqrt{(m+1)(m+\alpha+1)}} \\
& \times\left[\sqrt{(n+1)(n+\alpha+1)} V_{m, n+1}\right. \\
& +2(m-n) V_{m, n}+\sqrt{n(n+\alpha)} V_{m, n-1} \\
& \left.-\sqrt{m(m+\alpha)} V_{m-1, n}\right] \tag{2.21}
\end{align*}
$$

for $m, n=1,2, \ldots$, and

$$
\begin{gather*}
V_{1, n}=\frac{1}{\sqrt{\alpha+1}}\left[\sqrt{(n+1)(n+\alpha+1)} V_{0, n+1}\right. \\
\left.\quad-2 n V_{0, n}+\sqrt{n(n+\alpha)} V_{0, n-1}\right] \tag{2.22}
\end{gather*}
$$

for $n=1,2, \ldots$ It is noteworthy that these relations of determining the first and the following rows of $V_{m n}$ in turn are independent of the particular form of the potential function. To start using the recursions all that needs to be done is the calculation of the zeroth row (or column) entries

$$
\begin{align*}
& V_{0, n}=2 \int_{0}^{\infty} r^{\alpha} V(r) \phi_{0}^{(\alpha)}(r) \phi_{n}^{(\alpha)}(r) d r, \\
& \tag{2.23}\\
& V_{n, 0}=V_{0, n}, \quad n=0,1, \ldots
\end{align*}
$$

which is required as an initial condition for (2.21) and (2.22). Moreover, the labor involved in such a construction of the matrix may be considerably shortened by exploiting the symmetry, $V_{m n}=V_{n m}$.

3. Numerical Applications to Screened Coulomb Potentials

At the numerical side of this work, we assume the truncated wave function

$$
\begin{equation*}
\Phi(r)=\sum_{m=0}^{M-1} c_{m} \phi_{m}^{(\alpha)}(r), \tag{3.1}
\end{equation*}
$$

leading to the diagonalization problem of a variational matrix of finite order. In this case, a knowledge of $2 M-1$ integrals defined by (2.23) over a prescribed potential function is sufficient to form $M \times M\left[V_{m n}\right]$ and, hence, $\left[H_{m n}\right]$ matrices in (2.17). Therefore, the integrals (2.23), which may be written as

$$
\begin{equation*}
V_{0, n}=2 \mathscr{N}_{0}^{(\alpha)} \mathscr{N}_{n}^{(\alpha)} \int_{0}^{\infty} V(r) r^{\alpha} e^{-r} L_{n}^{(\alpha)}(r) d r \tag{3.2}
\end{equation*}
$$

are to be evaluated for $n=0,1, \ldots, 2 M-2$, with their respective potentials being considered.

If we recall the integral formula [24]

$$
\begin{align*}
& \int_{0}^{\infty} x^{\beta} e^{-s x} L_{n}^{(\alpha)}(x) d x \\
& \quad=\frac{\Gamma(\beta+1) \Gamma(\alpha+n+1)}{n!\Gamma(\alpha+1)} s^{-\beta-1} \\
& \quad \quad \times_{2} F_{1}\left(-n, \beta+1 ; \alpha+1 ; \frac{1}{s}\right), \tag{3.3}
\end{align*}
$$

then it follows that

$$
\begin{align*}
V_{0, n}=-\frac{2 Z}{\alpha} & \frac{\mathscr{N}_{0}^{(\alpha)}}{\mathscr{N}_{n}^{(\alpha)}}(1+\gamma)^{-\alpha} \\
& \quad \times_{2} F_{1}\left(-n, \alpha ; \alpha+1 ; \frac{1}{1+\gamma}\right) \tag{3.4}
\end{align*}
$$

for the Yukawa potential in (1.2), where ${ }_{2} F_{1}(a, b ; c ; x)$ stands for the Gauss hypergeometric function. Alternatively, it may be seen from (2.13) that

$$
\begin{align*}
V_{0, n}=-2 Z \mathcal{N}_{0}^{(\alpha)} \mathscr{V}_{n}^{(\alpha)} & \sum_{k=0}^{n} \\
& \times \int_{0}^{\infty} r^{\alpha-1} e^{-(1+\gamma) r} L_{k}^{(\alpha-1)}(r) d r \tag{3.5}
\end{align*}
$$

for which the formula (3.3) now implies the expression

$$
\begin{align*}
V_{0, n}=-2 Z & \mathscr{N}_{0}^{(\alpha)} \mathscr{N}_{n}^{(\alpha)}(1+\gamma)^{-\alpha} \\
& \times \sum_{k=0}^{n} \frac{\Gamma(\alpha+k)}{k!}\left(1-\frac{1}{1+\gamma}\right)^{k} \tag{3.6}
\end{align*}
$$

where we have used the identity

$$
\begin{equation*}
{ }_{2} F_{1}(-k, b ; b ; x)=(1-x)^{k} \tag{3.7}
\end{equation*}
$$

known for the hypergeometric function [25]. As a matter of fact, the hypergeometric series in (3.4) terminates to give a polynomial of degree n in inverse powers of $1+\gamma$, since its first parameter is equal to a negative integer $-n$. Thus for the Yukawa potential, $V_{0, n}$ is expressible as a finite sum in each case of (3.4) and (3.6), which can easily be evaluated.

A linear transformation on r shows that the Hamiltonian for the Yukawa potential has the scaling properties

$$
\begin{align*}
\mathscr{H}(r ; Z, \gamma Z) & =Z^{2} \mathscr{H}(r ; 1, \gamma), \tag{3.8}\\
E(Z, \gamma Z) & =Z^{2} E(1, \gamma),
\end{align*}
$$

and that the effective parameter in the system is γ, the screening constant. Therefore, setting $\mathrm{Z}=1$ it is enough to determine $E(1, \gamma) \equiv E(\gamma)$. However, the relation in (3.8), $E(\gamma)=E(Z, \gamma Z) / Z^{2}$, implies the use of the nuclear charge as a flexible convergence parameter in calculating $E(\gamma)$.

The exponential cosine screened Coulomb potential described by (1.3) admits similar scaling relationships

$$
\begin{align*}
\mathscr{H}(r ; Z, \gamma Z, \lambda Z) & =Z^{2} \mathscr{H}(r ; 1, \gamma, \lambda) \tag{3.9}\\
E(Z, \gamma Z, \lambda Z) & =Z^{2} E(1, \gamma, \lambda)
\end{align*}
$$

so that Z may be regarded again as an optimization parameter in the algorithm to determine $E(\gamma, \lambda)$ with two effective coupling constants. On the other hand, in evaluating the matrix elements $V_{m n}$ we take into account the complex-valued integral

$$
\begin{align*}
W_{n} & =I_{n}(\alpha, \gamma, \lambda)+i J_{n}(\alpha, \gamma, \lambda) \\
& =\int_{0}^{\infty} e^{-(1+\gamma+i \lambda) r} r^{\alpha-1} L_{n}^{(\alpha)}(r) d r, \quad i^{2}=-1 \tag{3.10}
\end{align*}
$$

whose real part I_{n},
$I_{n}(\alpha, \gamma, \lambda)=\int_{0}^{\infty} e^{-(1+\gamma) r} r^{\alpha-1} \cos \lambda r L_{n}^{(\alpha)}(r) d r$,
appears as a factor in $V_{0, n}$ such that

$$
\begin{equation*}
V_{0, n}=-2 Z \mathscr{N}_{0}^{(\alpha)} \mathscr{N}_{n}^{(\alpha)} I_{n}(\alpha, \gamma, \lambda) . \tag{3.12}
\end{equation*}
$$

Making use of (3.3) once more, we find that

$$
\begin{align*}
\alpha n!W_{n}=\Gamma(\alpha+ & n+1)(1+\gamma+i \lambda)^{-\alpha} \\
& \times{ }_{2} F_{1}\left(-n, \alpha ; \alpha+1 ; \frac{1}{1+\gamma+i \lambda}\right) \tag{3.13}
\end{align*}
$$

and that

$$
\begin{align*}
I_{n}= & \frac{(\alpha+1)_{n}}{n!} \sum_{k=0}^{n} \frac{\Gamma(\alpha+k)(-n)_{k}}{(\alpha+1)_{k} k!} \\
& \times\left[(1+\gamma)^{2}+\lambda^{2}\right]^{-(1 / 2)(\alpha+k)} \cos \Theta_{k}(\alpha, \gamma, \lambda), \tag{3.14}
\end{align*}
$$

where

$$
\begin{equation*}
\Theta_{k}(\alpha, \gamma, \lambda)=(\alpha+k) \arctan \left(\frac{\lambda}{1+\gamma}\right) \tag{3.15}
\end{equation*}
$$

and the $(a)_{k}$'s denote the Pochhammer's symbol. Clearly, (3.12) reduces to (3.4) when $\lambda=0$.

In the numerical Tables ($\mathrm{I}-\mathrm{V}$), we present the discrete eigenvalues $E_{n_{r}, l}$ of the aforementioned

TABLE I
The energy eigenvalues of the screened Coulomb potentials in three dimensions for 1 s state, where $n_{r}=I=0$, as a function of the parameters γ and $\lambda .{ }^{\text {a }}$

[^0]TABLE II
The energy eigenvalues of the screened Coulomb potentials in three dimensions for 2 s state, where $\boldsymbol{n}_{r}=1$ and $I=0$, as a function of the parameters γ and $\lambda .{ }^{\text {a }}$

${ }^{\text {a }}$ The results for which $\lambda=0$ correspond to that of the Yukawa potential.
screened Coulomb potentials as a function of the parameters γ and λ, only for $1 \mathrm{~s}\left(n_{r}=l=0\right)$, $2 s\left(n_{r}=1, l=0\right), 2 p\left(n_{r}=0, l=1\right), 3 s\left(n_{r}=2\right.$, $l=0)$, and $3 p\left(n_{r}=l=1\right)$ states. Further results, which have not been quoted in this article, are available from the author.

4. Further Applications and Discussion

Before discussing the numerical results yielded by the method for the Yukawa and the exponential cosine screened Coulomb potentials, it should be mentioned that some other systems may also be handled in this context. For instance, the wave function for the Schrödinger equation with the

Morse potential,

$$
\begin{equation*}
V(r)=c\left[e^{-2 a(r-b)}-2 e^{-a(r-b)}\right], \quad a, b, c>0 \tag{4.1}
\end{equation*}
$$

or with the Gaussian potential,

$$
\begin{equation*}
V(r)=-c e^{-\mu r^{2}}, \quad c, \mu>0 \tag{4.2}
\end{equation*}
$$

has virtually the same asymptotic form with those of the screened Coulomb potentials, which is reflected successfully by the present Laguerre basis.

The hydrogen-like systems consist of the infinite Coulomb well at $r=0$, whereas the Morse and the Gaussian potentials are both bounded below with a finite well of depth $-c$ situated at $r=b$ and $r=0$, respectively. However, this discrepancy is not expected to change the spectral properties to a

TABLE III
The energy eigenvalues of the screened Coulomb potentials in three dimensions for $2 p$ state, where $\boldsymbol{n}_{r}=0$ and $I=1$, as a function of the parameters γ and $\lambda .{ }^{\text {a }}$

${ }^{\text {a }}$ The results for which $\lambda=0$ correspond to that of the Yukawa potential.
large extent. Actually, all these potentials have a finite number of discrete states located specially on the negative real axis and a continuous spectrum which covers the entire positive real axis in the energy complex plane. Only the exponential cosine screened Coulomb potential may have some discrete energy levels which are positive, depending on the screening constants, γ and λ. Therefore, the present basis set seems to be applicable to the bound state investigations of the potentials in (4.1) and (4.2) as well.

The numerical analysis of the spectra of the Morse and the Gaussian potentials is left to a future study. We have, however, a couple of comments about the determination of their matrix ele-
ments. From (3.2), $V_{0, n}$ reads as

$$
\begin{align*}
& V_{0, n}=2 c \mathscr{N}_{0}^{(\alpha)} \mathscr{N}_{n}^{(\alpha)} \\
& \quad \times \int_{0}^{\infty}\left[e^{-2 a(r-b)}-2 e^{-a(r-b)}\right] r^{\alpha} e^{-r} L_{n}^{(\alpha)}(r) d r \tag{4.3}
\end{align*}
$$

for the Morse potential, which is evaluated analytically. Indeed, we find, from (3.3) and (3.7), that

$$
\begin{align*}
& V_{0, n}=2 c a^{n} e^{a b} \frac{\mathscr{N}_{0}^{(\alpha)}}{\mathscr{N}_{n}^{(\alpha)}} \\
& \quad \times\left[2^{n} e^{a b}(2 a+1)^{-\alpha-n-1}-2(a+1)^{-\alpha-n-1}\right] \tag{4.4}
\end{align*}
$$

TABLE IV
The energy eigenvalues of the screened Coulomb potentials in three dimensions for 3 s state, where $\boldsymbol{n}_{r}=2$ and $I=0$, as a function of the parameters γ and λ. ${ }^{a}$

${ }^{\text {a }}$ The results for which $\lambda=0$ correspond to that of the Yukawa potential.
with $n=0,1, \ldots$. However, similar calculations for the Gaussian potential lead to the integrals of the type

$$
\begin{equation*}
V_{0, n}=-2 c \mathscr{N}_{0}^{(\alpha)} \mathscr{N}_{n}^{(\alpha)} \int_{0}^{\infty} e^{-\mu r^{2}-r} r^{\alpha} L_{n}^{(\alpha)}(r) d r \tag{4.5}
\end{equation*}
$$

which cannot be expressed as a finite combination of elementary functions. As a result, numerical integration or other techniques will be necessary for obtaining the zeroth-row entries of the matrix [$V_{m n}$] in this case of the Gaussian potential.

The low-lying state eigenvalues $1 s, 2 s, 2 p, 3 s$, and $3 p$ of the screened Coulomb potentials are tabulated to 24 significant decimal points in Tables $\mathrm{I}-\mathrm{V}$. In the tables, M denotes the dimension of the subspace spanned by the Laguerre basis, or the
truncation order of the wave function. Meanwhile, we include also the effective charge parameters Z for which the best converged results are obtained. The three-dimensional calculations are presented setting the space dimension $N=3$, so that the eigenvalues are $E_{n_{r_{r}} l}^{(3)}$ in the notation of Section 1.

It is well known for the Yukawa potential, where $\lambda=0$, that there exists a threshold value of the screening parameter $\gamma, \gamma_{\text {thr }}$ say, beyond which the particular bound state being considered cannot survive anymore. It is worth mentioning here the exact threshold values listed in Table VI, which were calculated by Demiralp in [26]. Hence, the range of the parameter γ in our numerical tables has been specified according to Table VI, so as to cover roughly the region in which $0<\gamma<\gamma_{\mathrm{thr}}$.

TABLE V
The energy eigenvalues of the screened Coulomb potentials in three dimensions for $3 p$ state, where
$n_{r}=I=1$, as a function of the parameters γ and λ. ${ }^{\text {a }}$

${ }^{\text {a }}$ The results for which $\lambda=0$ correspond to that of the Yukawa potential.

On the other hand, for sufficiently small γ and large enough λ values, the exponential cosine screened Coulomb potential becomes nearly a periodic potential which is subjected to another course. The inspection of the references cited in

TABLE VI
The threshold values of γ in the case of the Yukawa potential, calculated by Demiralp in [21], for the states considered numerically in this work.

State	γ_{thr}	
$1 s$	1.190612421	
$2 s$	0.310209283	
$2 p$	0.220	216807
$3 s$	0.139	450294
$3 p$	0.112	710498

Section 1 shows that the main interest lies in the case of small λ regime, with $\lambda \approx \gamma$. We, therefore, consider the range $0 \leq \lambda \leq 0.10$ of the second screening parameter in the tables, where the exponential cosine screened Coulomb potential tends to zero with weak oscillations about r axis, as r increases.

The numerical results verify evidently that the present Laguerre basis is particularly efficient for all screening parameters γ, which are not in the near vicinity of γ_{thr}. In fact, most of the methods applied to a problem of this kind, wherein both discrete and continuous spectra appear, fail in finding the eigenvalues at the border of the continuum. We notice that for very weakly bound states, with E just below zero, the truncation order M required to achieve the convergence rises dramati-
cally. Furthermore, numerical experiments showed that the algorithm is very sensitive to numerical error accumulations for relatively large matrix sizes, typically, when $M>40$. This causes an oscillating character in the last decimal points of the calculated eigenvalues. For this reason, the selection of a suitable parameter Z, which yields a reasonable convergence in M, gains a lot of importance. However, using a multiprecision arithmetic on Mathematica, for example, reliable information and hence accurate results can be obtained almost everywhere in the domain of the screening constants for any value of Z.

Consequently, if we cite here a series of our articles on two- and N-dimensional isotropic polynomial oscillators [27, 28], this study may be regarded as a continuation of such strongly convergent variational methods for quantum problems, which deals with nonpolynomial potentials.

References

1. C. S. Lai, Phys. Rev. A 23, 455 (1981).
2. E. R. Vrscay, Phys. Rev. A 33, 1433 (1986).
3. H. Taşeli and M. Demiralp, Theor. Chim. Acta 71, 315 (1987).
4. M. Demiralp, N. A. Baykara, and H. Taşeli, Theor. Chim. Acta 74, 39 (1988).
5. C. C. Gerry and J. Laub, Phys. Rev. A 32, 709 (1985).
6. M. Demiralp, N. A. Baykara, and H. Taşeli, J. Math. Chem. 11, 311 (1992).
7. R. Dutt, A. Ray, and P. P. Ray, Phys. Lett. 83A, 65 (1981).
8. J. Killingbeck, J. Phys. A: Math. Gen. 21, 111 (1988).
9. M. R. M. Witwit, J. Phys. A: Math. Gen. 24, 304 (1991).
10. F. J. Rogers, H. C. Grahoshe, and D. J. Harwood, Phys. Rev. A 1, 1577 (1970).
11. M. Demiralp, Int. J. Quant. Chem. 29, 221 (1986).
12. N. A. Baykara and M. Demiralp, Int. J. Quant. Chem. 34, 231 (1988).
13. P. P. Ray and A. Ray, Phys. Lett. 78A, 443 (1980).
14. A. Ray and P. P. Ray, Phys. Lett. 83A, 383 (1981).
15. C. S. Lai, Phys. Rev. A 26, 2245 (1982).
16. H. De Meyer, V. Fack, and G. V. Berghe, J. Phys. A: Math. Gen. 18, L849 (1985).
17. V. Fack, H. De Meyer, and G. V. Berghe, J. Phys. A: Math. Gen. 19, L709 (1986).
18. J. Killingbeck, J. Phys. A: Math. Gen. 10, L99 (1977).
19. M. Bednar, Ann. Phys. 75, 305 (1973).
20. J. Cizek and J. Paldus, Int. J. Quant. Chem. 12, 875 (1977).
21. J. Cizek and E. R. Vrscay, Int. J. Quant. Chem. 21, 27 (1982).
22. E. R. Vrscay, Int. J. Quant. Chem. 32, 613 (1987).
23. P.-O. Löwdin and H. Shull, Phys. Rev. 101, 1730 (1956).
24. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1980) p. 843, 1037.
25. I. N. Sneddon, Special Functions of Mathematical Physics and Chemistry (Oliver and Boyd, Edinburgh, 1966) p. 19.
26. M. Demiralp, Theor. Chim. Acta 75, 223 (1989).
27. H. Taşeli and A. Zafer, Int. J. Quant. Chem. 61, 759 (1997).
28. H. Taşeli and A. Zafer, Int. J. Quant. Chem., to appear.

[^0]: ${ }^{\text {a }}$ The results for which $\lambda=0$ corresponds to that of the Yukawa potential.

