Bessel Basis with Applications: N-Dimensional Isotropic Polynomial Oscillators

H. TAŞELI, A. ZAFER
Department of Mathematics, Middle East Technical University, 06531 Ankara, Turkey

Received 22 July 1996; accepted 12 December 1996

Abstract

The efficient technique of expanding the wave function into a Fourier-Bessel series to solve the radial Schrödinger equation with polynomial potentials, $V(r)=\sum_{i=1}^{K} v_{2 i} r^{2 i}$, in two dimensions is extended to N-dimensional space. It is shown that the spectra of two- and three-dimensional oscillators cover the spectra of the corresponding N-dimensional problems for all N. Extremely accurate numerical results are presented for illustrative purposes. The connection between the eigenvalues of the general anharmonic oscillators and the confinement potentials of the form $V(r)=-Z / r$ $+\sum_{i=1}^{K-1} c_{i} r^{i}$ is also discussed. © 1997 John Wiley \& Sons, Inc. Int J Quant Chem 63: 935-947, 1997

Key words: Radial Schrödinger equation; polynomial oscillators; Bessel basis; integrals containing Bessel functions; perturbed Coulomb potentials; accurate eigenvalue calculations

1. Introduction

The dimensionless form of the Schrödinger equation written in N -dimensional Cartesian coordinates

$$
\begin{align*}
{\left[-\sum_{i=1}^{N} \frac{\partial^{2}}{\partial x_{i}^{2}}+V(\right.} & \left.\left.x_{1}, x_{2}, \ldots, x_{N}\right)-E\right] \\
& \times \Psi\left(x_{1}, x_{2}, \ldots, x_{N}\right)=0 \tag{1.1}
\end{align*}
$$

Correspondence to: H. Taşeli.
where

$$
\begin{equation*}
\lim _{\left|x_{i}\right| \rightarrow \infty} \Psi\left(x_{1}, x_{2}, \ldots, x_{N}\right)=0 \tag{1.2}
\end{equation*}
$$

has attracted the attention of scientists for a long time due to its application in quantum field theory and molecular physics. The corresponding equation in one dimension has been studied very extensively. However, there is a limited number of works on multidimensional systems. Before entering the complexity of the general N -dimensional oscillators it is perhaps more reasonable to deal with the spherically symmetric states for which the
potential function is of the form

$$
\begin{equation*}
V\left(x_{1}, x_{2}, \ldots, x_{N}\right)=V\left(\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{N}^{2}}\right) . \tag{1.3}
\end{equation*}
$$

Therefore, introducing the N -dimensional spherical coordinates

$$
\begin{equation*}
r^{2}=\sum_{i=1}^{N} x_{i}^{2} \tag{1.4}
\end{equation*}
$$

the radial part of the Schrödinger equation (1.1) becomes

$$
\begin{gather*}
{\left[-\frac{d^{2}}{d r^{2}}-\frac{N-1}{r} \frac{d}{d r}+\frac{l(l+N-2)}{r^{2}}+V(r)\right]} \\
\times \Psi(r)=E \Psi(r), \quad r \in[0, \infty), \tag{1.5}
\end{gather*}
$$

where

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \Psi(r)=0 \tag{1.6}
\end{equation*}
$$

Additionally, the wave function must behave like r^{l} as $r \rightarrow 0$ to have a regular solution.

We study here the generalized anharmonic oscillator in N dimensions described by the potentials of the form

$$
\begin{equation*}
V(r)=\sum_{i=1}^{K} v_{2 i} r^{2 i}, \quad v_{2 K}>0 \tag{1.7}
\end{equation*}
$$

with $K=1,2, \ldots$, where the $v_{2 i}$ are the coupling constants. As is well known, the trivial case of the harmonic oscillator when $K=1$, i.e., $V(r)=v_{2} r^{2}$, admits exact solutions in terms of the associated Laguerre polynomials,

$$
\begin{equation*}
\Psi_{n, l}^{(N)}(r)=r^{l} e^{-(1 / 2) \sqrt{v_{2}} r^{2}} L_{n}^{(1 / 2) N+l-1}\left(\sqrt{v_{2}} r^{2}\right) \tag{1.8}
\end{equation*}
$$

for the eigenfunctions while the eigenvalues are specified by

$$
\begin{equation*}
E_{n, l}^{(N)}=\sqrt{v_{2}}(N+4 n+2 l), \quad n, l=0,1, \ldots \tag{1.9}
\end{equation*}
$$

in N -dimensional space. Moreover, it can be deduced that, if $K=2 K^{\prime}+1, K^{\prime}=1,2, \ldots$, explicit solutions in closed form may be constructed whenever certain algebraic relations between the coupling constants hold [1, 2]. For instance, the ground-state wave function of the sextic oscillator, $V(r)=v_{2} r^{2}+v_{4} r^{4}+v_{6} r^{6}$, is expressible as

$$
\begin{equation*}
\Psi_{0,0}^{(N)}(r)=e^{-(1 / 4) a r^{4}-(1 / 2) b r^{2}}, \quad a>0 \tag{1.10}
\end{equation*}
$$

which satisfies the boundary condition (1.6). Substituting into (1.5), we see that (1.10) is indeed an exact eigenfunction with the corresponding eigenvalue,

$$
\begin{equation*}
E_{0,0}^{(N)}=N b, \tag{1.11}
\end{equation*}
$$

subject to a constraint on v_{2} that

$$
\begin{equation*}
v_{2}=b^{2}-(N+2) a, \tag{1.12}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\sqrt{v_{6}}, \quad b=\frac{1}{2} \frac{v_{4}}{\sqrt{v_{6}}} . \tag{1.13}
\end{equation*}
$$

The other states are characterized exactly by exponentially weighted polynomial wave functions. This class of exact solutions is enumerably infinite but not complete. However, if $K=2 K^{\prime}$, such a construction of exact eigensolutions is not possible. The quartic anharmonic oscillator, $V(r)=v_{2} r^{2}+$ $v_{4} r^{4}$ is the simplest example to this case [3-5].

An exponential part in the solution is necessary owing to the essential singularity at infinity, which is controlled mainly by the dominant coupling $r^{2 K}$. It is a simple matter to find out the correct asymptotic form of the wave function as $r \rightarrow \infty$, but the introduction of an orthonormal basis set reflecting the required asymptotic behavior is the problem. In a recent study [6] by the same authors, it is shown that the modification of the asymptotic boundary condition (1.6) such that $\Psi(L)=0$, where L is finite, enables to use Bessel functions of the first kind as a basis set in the Rayleigh-Ritz variational method for solving very accurately the two-dimensional radial Schrödinger equation with any polynomial potential in (1.7).

In this article we truncate again the semiinfinite interval of r and consider the Dirichlettype boundary condition

$$
\begin{equation*}
\left.\Psi(r)\right|_{r=L}=0 \tag{1.14}
\end{equation*}
$$

over a spherical surface of radius L. The unperturbed Schrödinger equation is defined as

$$
\begin{array}{r}
{\left[-\frac{d^{2}}{d r^{2}}-\frac{N-1}{r} \frac{d}{d r}+\frac{l(l+N-2)}{r^{2}}\right] \Psi(r)} \\
=\lambda^{2} \Psi(r) \tag{1.15}
\end{array}
$$

in which a zero potential energy, i.e., $V(r) \equiv 0$, is assumed, where λ is a constant. When $N=2$ the unperturbed equation so defined is directly equiv-
alent to Bessel's differential equation whose normalized eigenfunctions form a complete orthonormal set over the interval $0 \leq r \leq L$ with respect to the weighting function r [6]. In the general case of N dimensions we introduce a new dependent variable $\Phi(r)$ such that

$$
\begin{equation*}
\Psi(r)=r^{-(1 / 2)(N-1)} \Phi(r) \tag{1.16}
\end{equation*}
$$

where $\Phi(r)$ satisfies the differential equation

$$
\begin{equation*}
\frac{d^{2} \Phi}{d r^{2}}+\left(\lambda^{2}-\frac{\nu^{2}-\frac{1}{4}}{r^{2}}\right) \Phi(r)=0 \tag{1.17}
\end{equation*}
$$

with

$$
\begin{equation*}
\nu=l+\frac{1}{2}(N-2) \tag{1.18}
\end{equation*}
$$

which can be solved analytically as well. It is clear that if $N=1$, then $\Phi(r)$ is identical to $\Psi(r)$. As a result of (1.16), the solution of the transformed full Schrödinger equation

$$
\begin{align*}
{\left[\frac{d^{2}}{d r^{2}}+E-\frac{\nu^{2}-\frac{1}{4}}{r^{2}}-V(r)\right] \Phi(r) } & =0, \\
r & \in[0, L] \tag{1.19}
\end{align*}
$$

may be postulated to be an expansion in terms of the exact eigenfunctions of (1.17). Such an expansion is presented in Section 2. Note that the accompanying conditions with (1.19) are now

$$
\begin{equation*}
\Phi(r) \approx r^{\nu+(1 / 2)} \quad \text { as } r \rightarrow 0, \quad \Phi(L)=0 \tag{1.20}
\end{equation*}
$$

and that (1.5) and (1.19) have completely the same eigenvalues.

As a matter of fact, truncating the interval of r we consider an enclosed quantum mechanical system of multidimensional isotropic oscillators which also has received great interest in different fields of physics and astronomy [7]. Our strategy in this work, however, is to determine the spectrum of the corresponding unbounded system, where $L \rightarrow$ ∞, making use of the finite boundary as a nonlinear optimization parameter. This approach is justified analytically in Section 3.

Another remark is that the transformed equation (1.19) is concerned explicitly with the parameter ν rather than the angular quantum number l and the dimension of the space N, separately. In other words, Eq. (1.18) implies that any eigensolution of (1.19) denoted by $\left\{\Phi_{n, l}^{(N)}, E_{n, l}^{(N)}\right\}$ remains unchanged for a prescribed value of $2 l+N$. For instance, $\Phi_{n, 1}^{(2)}=\Phi_{n, 0}^{(4)}$ and $E_{n, 1}^{(2)}=E_{n, 0}^{(4)}$. However,
the situation with the eigenfunctions $\Psi_{n, l}^{(N)}$ of the original problem (1.5) is different. More specifically, we see from (1.6) that $\Psi_{n, 1}^{(2)}=r \Psi_{n, 0}^{(4)}$ and hence $\Psi_{n, 1}^{(2)} \neq \Psi_{n, 0}^{(4)}$, although the corresponding eigenvalues are equal to each other. The last section is, therefore, devoted to the discussion of these interesting degeneracies of the spectrum of N -dimensional polynomial potentials, and the numerical applications. Furthermore, we establish functional relationships between the anharmonic oscillators considered in this work and the perturbed Coulomb problem, which was studied especially from the view-point of the perturbation theory and Lie algebra technology $[8,9]$.

2. Eigenfunction Expansion

As is readily seen the Bessel functions of the first kind multiplied by $r^{1 / 2}$

$$
\begin{equation*}
\phi(r)=c r^{1 / 2} J_{\nu}(\lambda r) \tag{2.1}
\end{equation*}
$$

stands for the exact solution of (1.17) which behaves like $r^{\nu+(1 / 2)}$ at the origin. Then the second condition in (1.20) is fulfilled if λL is a positive root of the equation

$$
\begin{equation*}
J_{\nu}(\xi)=0 \tag{2.2}
\end{equation*}
$$

having a countable infinite set of distinct zeros, $\lambda L \equiv \alpha=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \ldots$ [10]. Furthermore, when c is properly chosen, the functions in (2.1) may be normalized so that

$$
\begin{equation*}
\left\langle\phi_{n}, \phi_{m}\right\rangle=\int_{0}^{L} \phi_{n}(r) \phi_{m}(r) d r=\delta_{n m} \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{n}(r)=\frac{\sqrt{2 r}}{L J_{\nu+1}\left(\alpha_{n}\right)} J_{\nu}\left(\alpha_{n} r / L\right), \quad n=1,2, \ldots \tag{2.4}
\end{equation*}
$$

and $\delta_{n m}$ is the Kronecker delta. Now according to the theory of orthogonal functions, an eigenfunction expansion of the form

$$
\begin{equation*}
\Phi(r)=\sum_{n=1}^{\infty} a_{n} \phi_{n}(r) \tag{2.5}
\end{equation*}
$$

is proposed to characterize the solution of (1.19) satisfying the conditions. The only thing which remains is the determination of the coefficients a_{n}.

To this end, the standard Rayleigh-Ritz method leads to the algebraic equations

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(H_{n m}-E \delta_{n m}\right) a_{n}=0, \quad m=1,2, \ldots \tag{2.6}
\end{equation*}
$$

where the matrix elements $H_{n m}$ are defined by

$$
\begin{equation*}
H_{n m}=\lambda_{n}^{2} \delta_{n m}+\sum_{j=1}^{K} v_{2 j} L^{2 j} I_{n m}^{(\nu, j)} \tag{2.7}
\end{equation*}
$$

for the polynomial potentials given in (1.7). Here the $I_{n m}^{(\nu, j)}$ denote the integrals of the type

$$
\begin{align*}
I_{n m}^{(\nu, j)} & =c_{n m}^{(\nu)} \int_{0}^{1} \xi^{2 j+1} J_{\nu}\left(\alpha_{n} \xi\right) J_{\nu}\left(\alpha_{m} \xi\right) d \xi, \\
c_{n m}^{(\nu)} & =\frac{2}{J_{\nu+1}\left(\alpha_{n}\right) J_{\nu+1}\left(\alpha_{m}\right)} \tag{2.8}
\end{align*}
$$

to be evaluated, provided $J_{\nu}\left(\alpha_{n}\right)=0$ for any ν fixed. In the exceptional case of $j=0, I_{n m}^{(\nu, 0)}=\delta_{n m}$ because of the orthonormality relation (2.3).

If the dimension of the space is even, $N=$ $2,4, \ldots$, then ν becomes an integer from (1.18), and we encounter integrals containing Bessel functions of integer order which have been treated in [6]. Actually, it has been shown that such integrals may be evaluated analytically by means of recursive relations. On the other hand, whenever N is odd, $N=3,5, \ldots$, Bessel functions of fractional order related to spherical Bessel functions appear in the integrand of (2.8). These functions can simply be expressed in terms of circular functions, the first three of which are

$$
\begin{align*}
& J_{1 / 2}(\xi)=\left(\frac{2}{\pi \xi}\right)^{1 / 2} \sin \xi \tag{2.9}\\
& J_{3 / 2}(\xi)=\left(\frac{2}{\pi \xi}\right)^{1 / 2}\left(\frac{\sin \xi}{\xi}-\cos \xi\right) \tag{2.10}\\
& J_{5 / 2}(\xi)=\left(\frac{2}{\pi \xi}\right)^{1 / 2}\left[\left(\frac{3}{\xi^{2}}-1\right) \sin \xi-\frac{3}{\xi} \cos \xi\right] \tag{2.11}
\end{align*}
$$

In general, for $m=0,1, \ldots$, we have
$J_{m+(1 / 2)}(\xi)=\left(\frac{2}{\pi \xi}\right)^{1 / 2}\left[f_{m}(\xi) \sin \xi-g_{m}(\xi) \cos \xi\right]$,
where $f_{m}(\xi)$ and $g_{m}(\xi)$ are polynomials in inverse powers of ξ [11].

As specific examples, let us first consider $\nu=\frac{1}{2}$, i.e., $N=3$ and $l=0$, so that, from (2.8),

$$
\begin{equation*}
I_{n m}^{(1 / 2, j)}=c_{n m}^{(1 / 2)} \int_{0}^{1} \xi^{2 j+1} J_{1 / 2}\left(\alpha_{n} \xi\right) J_{1 / 2}\left(\alpha_{m} \xi\right) d \xi \tag{2.13}
\end{equation*}
$$

where $J_{1 / 2}\left(\alpha_{n}\right)=0$. From (2.9) we have $\alpha_{n}=n \pi$, for $n=1,2, \ldots$, and therefore $I_{n m}^{(1 / 2, j)}$ reduces to

$$
\begin{align*}
I_{n m}^{(1 / 2, j)}= & \frac{2}{\pi^{2} \sqrt{n m}} c_{n m}^{(1 / 2)} \\
& \times \int_{0}^{1} \xi^{2 j} \sin (n \pi \xi) \sin (m \pi \xi) d \xi \tag{2.14}
\end{align*}
$$

Using (2.10) to calculate $c_{n m}^{(1 / 2)}$ it follows that

$$
\begin{array}{r}
I_{n m}^{(1 / 2, j)}=(-1)^{n+m}\left[S_{j}\left(\alpha_{n}-\alpha_{m}\right)-S_{j}\left(\alpha_{n}+\alpha_{m}\right)\right], \\
\alpha_{k}=k \pi \quad \tag{2.15}
\end{array}
$$

wherein the integral denoted by $S_{j}(\alpha)$,

$$
\begin{equation*}
S_{j}(\alpha)=\int_{0}^{1} \xi^{2 j} \cos \alpha \xi d \xi, \quad S_{j}(0)=\frac{1}{2 j+1} \tag{2.16}
\end{equation*}
$$

can be evaluated both recursively and explicitly. The recursion relation

$$
\begin{array}{r}
\alpha^{2} S_{j}(\alpha)+2 j(2 j-1) S_{j-1}(\alpha)= \\
\quad \alpha \sin \alpha+2 j \cos \alpha, \tag{2.17}\\
\\
j=1,2, \ldots
\end{array}
$$

with the initial condition $S_{0}(\alpha)=\sin \alpha / \alpha$ is the computationally more useful one.

For $\nu=\frac{3}{2}$, i.e., $N=3$ and $l=1$ or $N=5$ and $l=0$, we face the integral

$$
\begin{equation*}
I_{n m}^{(3 / 2, j)}=c_{n m}^{(3 / 2)} \int_{0}^{1} \xi^{2 j+1} J_{3 / 2}\left(\alpha_{n} \xi\right) J_{3 / 2}\left(\alpha_{m} \xi\right) d \xi \tag{2.18}
\end{equation*}
$$

where the α_{n} 's are now the positive roots of $J_{3 / 2}(\xi)=0$. Equation (2.10) implies that the $\alpha_{n}{ }^{\prime} s$ should satisfy the equation

$$
\begin{equation*}
\tan \xi=\xi \tag{2.19}
\end{equation*}
$$

In connection with (2.10) and (2.11), the integral in (2.18) may be written as

$$
\begin{align*}
I_{n m}^{(3 / 2, j)}= & \frac{2}{\sin \alpha_{n} \sin \alpha_{m}} \\
& \times \int_{0}^{1} \xi^{2 j}\left(\frac{\sin \alpha_{n} \xi}{\alpha_{n} \xi}-\cos \alpha_{n} \xi\right) \\
& \times\left(\frac{\sin \alpha_{m} \xi}{\alpha_{m} \xi}-\cos \alpha_{m} \xi\right) d \xi \tag{2.20}
\end{align*}
$$

resulting again an expression in terms of $S_{j}(\alpha)$,

$$
\begin{align*}
I_{n m}^{(3 / 2, j)}= & \frac{1}{\sin \alpha_{n} \sin \alpha_{m}} \\
& \times\left\{S_{j}\left(\alpha_{n}-\alpha_{m}\right)+S_{j}\left(\alpha_{n}+\alpha_{m}\right)\right. \\
& \left.+\frac{2 j}{\alpha_{n} \alpha_{m}}\left[S_{j-1}\left(\alpha_{n}-\alpha_{m}\right)-S_{j-1}\left(\alpha_{n}+\alpha_{m}\right)\right]\right\} \\
& -\frac{2}{\alpha_{n} \alpha_{m}} \tag{2.21}
\end{align*}
$$

with $j \geq 1$.
The integral $I_{n m}^{(\nu, j)}$ with a larger ν involves more labor in the calculations but can be evaluated in a similar fashion. However, a straightforward recursive evaluation of $I_{n m}^{(\nu, j)}$ is preferable. Therefore, using the general recurrence relations for the Bessel functions [12], we have derived that if $n \neq m$, then

$$
\begin{align*}
I_{n m}^{(\nu, j)}= & \frac{c_{n m}^{(\nu)}}{\alpha_{n}^{2}-\alpha_{m}^{2}}\left[\alpha_{n} J_{\nu+1}\left(\alpha_{n}\right) J_{\nu}\left(\alpha_{m}\right)\right. \\
& \left.-\alpha_{m} J_{\nu+1}\left(\alpha_{m}\right) J_{\nu}\left(\alpha_{n}\right)\right]+\frac{2 j c_{n m}^{(\nu)}}{\left(\alpha_{n}^{2}-\alpha_{m}\right)^{2}} \\
& \times\left[\left(\alpha_{n}^{2}+\alpha_{m}^{2}\right) J_{\nu}\left(\alpha_{n}\right) J_{\nu}\left(\alpha_{m}\right)\right. \\
& \left.+2 \alpha_{n} \alpha_{m} J_{\nu+1}\left(\alpha_{n}\right) J_{\nu+1}\left(\alpha_{m}\right)\right] \\
& -\frac{4 j}{\left(\alpha_{n}^{2}-\alpha_{m}^{2}\right)^{2}} \\
& \times\left[\left(\alpha_{n}^{2}+\alpha_{m}^{2}\right)^{2}(\nu+j) I_{n m}^{(\nu, j-1)}\right. \\
& \left.+2 \alpha_{n} \alpha_{m}(j-\nu-1) I_{n m}^{(\nu+1, j-1)}\right] \tag{2.22}
\end{align*}
$$

with

$$
\begin{align*}
I_{n m}^{(\nu, 0)}= & \frac{c_{n m}^{(\nu)}}{\alpha_{n}^{2}-\alpha_{m}^{2}}\left[\alpha_{n} J_{\nu+1}\left(\alpha_{n}\right) J_{\nu}\left(\alpha_{m}\right)\right. \\
& \left.-\alpha_{m} J_{\nu+1}\left(\alpha_{m}\right) J_{\nu}\left(\alpha_{n}\right)\right] \tag{2.23}
\end{align*}
$$

and if $n=m$, then

$$
\begin{align*}
I_{n n}^{(\nu, j)}= & \frac{c_{n n}^{(\nu)}}{2(2 j+1) \alpha_{n}^{2}} \\
& \times\left\{\left[\alpha_{n}^{2}+2 j(j-\nu)\right] J_{\nu}^{2}\left(\alpha_{n}\right)+\alpha_{n}^{2} J_{\nu+1}^{2}\left(\alpha_{n}\right)\right. \\
& \left.+j(j-\nu) \alpha_{n} J_{\nu}\left(\alpha_{n}\right) J_{\nu+1}\left(\alpha_{n}\right)\right\} \\
& +\frac{2 j\left(\nu^{2}-j^{2}\right)}{(2 j+1) \alpha_{n}^{2}} I_{n n}^{(v, j-1)} \tag{2.24}
\end{align*}
$$

with

$$
\begin{equation*}
I_{n n}^{(\nu, 0)}=\frac{c_{n n}^{(\nu)}}{2}\left[J_{\nu}^{2}\left(\alpha_{n}\right)+J_{\nu+1}^{2}\left(\alpha_{n}\right)\right] \tag{2.25}
\end{equation*}
$$

where $\nu \geq 0$. It should be noted that evaluating such integrals even numerically is not an easy task, and the above formulas being quite general in the sense that no assumption is made about α_{n} can be effectively used. As in our case, if $\alpha_{n}{ }^{\prime}$ s are zeros of $J_{\mu}(x)$ with a specific $\mu \geq 0$, then $J_{\nu}\left(\alpha_{n}\right)$ can be written in terms of $J_{\mu+1}\left(\alpha_{n}\right)$ for $\nu=\mu, \mu+$ $1, \ldots, \mu+k-j+1$ and $j=1,2, \ldots, k$, where k is a fixed positive integer, and therefore the integrals $I_{n m}^{(\mu, k)}$ are expressible in terms of the zeros α_{n} of J_{μ}. Thus, no evaluation of any Bessel function is required, which is of course computationally very efficient.

At the numerical side of the present study, (2.6) is truncated to a homogeneous system of M equations. Therefore the roots of the determinantal equation

$$
\begin{equation*}
\operatorname{det}\left[H_{n m}-E \delta_{n m}\right]_{M \times M}=0 \tag{2.26}
\end{equation*}
$$

then give approximately the eigenvalues $E_{n, l}^{(N)}$ of N -dimensional oscillators as a function of the boundary parameter L. The numerical algorithm requires only the zeros α_{n}, which are calculated on Mathematica, of the Bessel functions depending on ν and the potential coefficients $v_{2 i}$ as its input data.

3. Variation of Eigenvalues with Respect to L

In this section, we examine briefly the qualitative behavior of the energy eigenvalues with respect to the boundary parameter L. Regarded as $E=E(L)$ and $\Phi=\Phi(r, L)$, Eq. (1.19), satisfied by such a pair of eigensolution, may be reconsidered in the form

$$
\begin{align*}
\mathscr{L} \Phi & =0, \\
\mathscr{L} & =\frac{\partial^{2}}{\partial r^{2}}-\frac{\nu^{2}-\frac{1}{4}}{r^{2}}-V(r)+E(L) \tag{3.1}
\end{align*}
$$

subject to
$\left.\Phi(r, L)\right|_{r=0}=$ constant,$\left.\quad \Phi(r, L)\right|_{r=L}=0$.
In fact, the constant in (3.2) is zero from (1.20) unless the parameter ν is equal to $\pm \frac{1}{2}$. If we differentiate both sides of (3.1) with respect to L, there follows

$$
\begin{equation*}
\mathscr{L} \Phi_{L}+\Phi \frac{d E}{d L}=0 \tag{3.3}
\end{equation*}
$$

where $\Phi_{L}=\partial \Phi / \partial L$. The result of multiplying (3.3) by Φ and integrating over the interval $r \in[0, L]$ takes the form

$$
\begin{equation*}
\left\langle\mathscr{L} \Phi_{L}, \Phi\right\rangle+\frac{d E}{d L}=0, \tag{3.4}
\end{equation*}
$$

where we have assumed that the wave function is normalized to have $\langle\Phi, \Phi\rangle=1$. On integrating by parts and using (3.2) the last equation may be written as

$$
\begin{equation*}
\frac{d E}{d L}=\left.\frac{\partial \Phi}{\partial L} \frac{\partial \Phi}{\partial r}\right|_{r=0} ^{L}-\left\langle\frac{\partial \Phi}{\partial L}, \mathscr{L} \Phi\right\rangle \tag{3.5}
\end{equation*}
$$

in which the inner product on the right-hand side is zero from (3.1). The conditions in (3.2) imply that $d \Phi=0$ at $r=0$ and $r=L$. Thus we have

$$
\begin{align*}
\left.d \Phi\right|_{r=0} & =\left.\left(\frac{\partial \Phi}{\partial r} d r+\frac{\partial \Phi}{\partial L} d L\right)\right|_{r=0} \\
& =\left.\frac{\partial \Phi}{\partial L}\right|_{r=0} d L=0 \tag{3.6}
\end{align*}
$$

and

$$
\begin{align*}
\left.d \Phi\right|_{r=L} & =\left.\left(\frac{\partial \Phi}{\partial r} d r+\frac{\partial \Phi}{\partial L} d L\right)\right|_{r=L} \\
& =\left.\left(\frac{\partial \Phi}{\partial r}+\frac{\partial \Phi}{\partial L}\right)\right|_{r=L} d L=0 \tag{3.7}
\end{align*}
$$

to obtain the relations

$$
\begin{equation*}
\left.\frac{\partial \Phi}{\partial L}\right|_{r=0}=0,\left.\quad \frac{\partial \Phi}{\partial L}\right|_{r=L}=-\left.\frac{\partial \Phi}{\partial r}\right|_{r=L} \tag{3.8}
\end{equation*}
$$

which make it possible to express (3.5) in a more neat form

$$
\begin{equation*}
\frac{d E}{d L}=-\left.\left(\frac{\partial \Phi}{\partial r}\right)^{2}\right|_{r=L} \tag{3.9}
\end{equation*}
$$

showing that $d E / d \mathrm{~L}$ is always negative.
On the other hand, the limit energy $E(L)$ as L approaches zero may be determined analytically. Indeed, making use of the linear transformation, $r=L \xi$, Eq. (1.19) becomes

$$
\begin{align*}
& {\left[\frac{d^{2}}{d \xi^{2}}+L^{2} E(L)\right.}\left.-\frac{\nu^{2}-\frac{1}{4}}{\xi^{2}}-L^{2} V(L \xi)\right] \\
& \times \Phi(\xi)=0, \quad \xi \in[0,1] . \tag{3.10}
\end{align*}
$$

When $L \rightarrow 0$, we revert to the unperturbed Schrödinger equation (1.17) for which

$$
\begin{equation*}
\lim _{L \rightarrow 0} L^{2} E(L)=\alpha^{2}, \tag{3.11}
\end{equation*}
$$

where α is any root of (2.2). Thus $E(L)$ goes to infinity like $1 / L^{2}$ as L tends to zero and decreases monotonically, since $d E / d L<0$ from (3.9), as L increases. However, $E(L)$ must converge to a limit for sufficiently large values of L owing to the well-known fact that a discrete spectrum for each v exists in the case of the corresponding unbounded problem. Therefore, the eigenvalues $E(L)$ of a confined oscillator are upper bounds for the asymptotic eigenvalues $E(\infty)$.

From a computational point of view it is essential to find a specific boundary value, which may be referred to as the critical boundary parameter L_{cr}, such that for a given $\varepsilon>0$ as small as pleased,

$$
\begin{equation*}
E\left(L_{\mathrm{cr}}\right)-E\left(L_{\mathrm{cr}}+\delta\right)<\varepsilon \tag{3.12}
\end{equation*}
$$

for all (large) values of $\delta>0$. The strictly decreasing property of eigenvalues then implies that the absolute error in determining asymptotic eigen-
values $E(\infty)$ is less than ε, that is,

$$
\begin{equation*}
E\left(L_{\mathrm{cr}}\right)-E(\infty)<\varepsilon . \tag{3.13}
\end{equation*}
$$

It is clear that a critical value of L so defined represents numerically the infinity depending on ε, the quantum numbers and the potential function in question. Hence the present approach based mainly on estimating such $L_{\text {cr }}$ values by numerical experiments.

4. Results and Discussion

In this work, we explored a new way of computing the energy eigenvalues of N -dimensional polynomial oscillators. For a complete analysis of the system, let us first consider the exceptional case of one dimension. For $N=1$, it is shown from (1.5) that l is either 0 or 1 , and the equation reduces to the usual one-dimensional Schrödinger equation:

$$
\begin{gather*}
{\left[-\frac{d^{2}}{d x^{2}}+V(x)\right] \Psi(x)=E \Psi(x)} \\
x \in[-L, L], \quad \Psi(\pm L)=0 \tag{4.1}
\end{gather*}
$$

where r has been replaced by $x, x= \pm r$. Corresponding to $l=0$ and $l=1$, we see from (1.18) that $\nu= \pm \frac{1}{2}$, respectively, and hence that the unperturbed equation (1.17) is altered to the differential equation satisfied by the circular functions. Therefore, the one-dimensional problem may be treated applying trigonometric basis sets, as was done in three earlier studies of the first author [13-15]. Notice that such simple trigonometric functions can be derived within our general formalism since, for $\nu= \pm \frac{1}{2}$,

$$
\begin{align*}
\sqrt{\frac{\pi}{2} \lambda x} J_{-1 / 2}(\lambda x) & =\cos \lambda x \\
\sqrt{\frac{\pi}{2} \lambda x} J_{1 / 2}(\lambda x) & =\sin \lambda x \tag{4.2}
\end{align*}
$$

representing the symmetric and antisymmetric states, respectively.

It is important to observe that the symmetric energy levels $E_{2 n}^{(1)}$ of the one-dimensional problem are single in N -dimensional system. However, the antisymmetric levels $E_{2 n+1}^{(1)}$ are doubly degenerate since $\nu=\frac{1}{2}$ stands also for the three-dimensional oscillators with $l=0$. As outlined in the introduc-
tion, we deduce from (1.18) and (1.19) that

$$
\begin{align*}
& E_{n, 1}^{(3)}=E_{n, 0}^{(5)} \\
& E_{n, 2}^{(3)}=E_{n, 1}^{(5)}=E_{n, 0}^{(7)} \\
& \vdots \tag{4.3}\\
& E_{n, l}^{(3)}=E_{n, l-1}^{(5)}=E_{n, l-2}^{(7)}=\cdots \\
&=E_{n, 2}^{(2 l-1)}=E_{n, 1}^{(2 l+1)}=E_{n, 0}^{(2 l+3)}
\end{align*}
$$

when N is odd. In particular, we have $E_{n, 0}^{(3)}=$ $E_{2 n+1}^{(1)}$.

If N is even, it can be shown that $E_{n, 0}^{(2)}$ is single in the system, and the remaining eigenvalues are degenerate as follows:

$$
\begin{align*}
& E_{n, 1}^{(2)}=E_{n, 0}^{(4)} \\
& E_{n, 2}^{(2)}=E_{n, 1}^{(4)}=E_{n, 0}^{(6)} \\
& \vdots \tag{4.4}\\
& E_{n, l}^{(2)}=E_{n, l-1}^{(4)}=E_{n, l-2}^{(6)}=\cdots \\
&=E_{n, 2}^{(2 l-2)}=E_{n, 1}^{(2 l)}=E_{n, 0}^{(2 l+2)}
\end{align*} .
$$

As a significant consequence of (4.4) and (4.3), the full spectra of N -dimensional oscillators can be furnished by determining the spectra of two- and three-dimensional problems. The former rests on an expansion of the wave function in terms of the Bessel functions of integer order, whereas the latter is treated by an expansion of the spherical Bessel functions. We now understand that the spectrum of a two-dimensional system considered numerically in [6] is representative for 2 N dimensional spaces as well. We, therefore, present computer results here for $N=3$ to cope with also the ($2 N+1$)-dimensional spaces according to (4.3), for completion.

In Tables I-V, the eigenvalues accurate to 30 digits have been tabulated in a systematic manner to illustrate the efficiency of the present basis set, for a wide class of polynomial potentials of degree up to 20. In the tables, n and l stand for the quantum numbers of the state, and $L_{\text {cr }}$ denotes the radius of the finite spherical surface which represents numerically the unbounded domain to the accuracy quoted. The number of basis elements or the truncation order M of the variational matrix required to get the prescribed accuracy is also included in the tables.

Within the framework of the above general remarks, Table I tests the rate of convergence of the method in calculating the ground-state eigenvalue $E_{0,0}^{(3)}$ of the harmonic oscillator, which is known

TABLE I
Convergence rate of the method as functions of L and M for the ground-state energy $E_{0,0}^{(3)}$ of the three-dimensional harmonic oscillator, $V(r)=r^{2}$.
$\left.\begin{array}{rrrllll}\hline L & M & E_{0,0}^{(3)} & l \\ \hline 5 & 8 & 3.000 & 000 & 007 & 359 & \end{array}\right] l$
exactly from (1.9). It is shown that 30 significant digits have been achieved when $M=24$ and $L=$ 9. If we continue to increase L, we obtain the same accuracy at the cost of using a higher truncation size M. Thus, in this case, we identify 9 as the critical or optimum boundary value L_{cr}. In a general situation, the behavior of L_{cr} is virtually the same, further discussion on which can be found in [6].

In Table II, we consider a polynomial potential of degree 2 K containing only the dominant term,

$$
\begin{equation*}
V(r)=v_{2 K} r^{2 K} \tag{4.5}
\end{equation*}
$$

for $K=1,2,3,4$, and 10 . Since a linear scaling transformation transforms any case to $v_{2 K}=1$ via the relation,

$$
\begin{equation*}
E\left(v_{2 K}\right)=v_{2 K}^{1 /(K+1)} E(1), \tag{4.6}
\end{equation*}
$$

TABLE II
Critical values $L_{\text {cr }}$ and the energy eigenvalues $E_{n, l}^{(3)}$ of the potential, $V(r)=r^{2 K}$, as a function of K.

K	n	I		$E_{n, I}^{(3)}$						
1	0	0	3.000	000	000	000	000	000	000	000

TABLE III
Critical values I_{cr} and the energy eigenvalues $E_{n, I}^{(3)}$ of the potential, $V(r)=r^{2}+v_{4} r^{4}$, as a function of v_{4}.

v_{4}	n	1	$E_{n, 1}^{(3)}$							$L_{\text {cr }}$	M
10^{-3}	0	0	3.003	73974	748168	729	11648	488725	07463	9	24
	0	5	13.048	37806	068080	421	25418	187583	3067	9.5	28
	1	4	15.074	02096	969202	344	24596	961029	6237	9.8	30
	2	3	17.101	56917	170561	308	85477	770534	9872	10	30
	3	2	19.131	01751	513855	497	93460	607460	5195	10.3	32
	4	1	21.162	36087	877068	068	83976	761723	9594	10.4	34
	0	10	23.141	96306	064797	673	77480	804145	3094	10	34
	5	0	23.195	59417	174058	120	73813	137527	1473	10.5	36
	5	5	33.385	10954	542173	632	99192	924769	4468	11	38
	10	0	43.673	75514	145812	020	96203	037125	0611	12	44
1	0	0	4.648	81270	704212	077	53637	377032	91726	4.75	30
	0	5	26.528	91755	558123	923	94150	508340	2800	5	30
	1	4	33.212	19466	662929	070	57960	600705	8230	5.1	32
	2	3	39.889	92966	660067	122	40926	265080	0608	5.25	32
	3	2	46.589	46606	063451	956	06140	405768	4506	5.3	34
	4	1	53.331	11429	296954	178	530	932191	5861	5.4	36
	0	10	54.184	98461	610454	439	92412	123480	1757	5.25	34
	5	0	60.129	52295	959157	771	3158	848016	0599	5.5	36
	5	5	94.797	17504	049923	730	96126	266375	4573	5.5	38
	10	0	135.818	41732	325610	373	34045	451430	113	.	46
10^{3}	0	0	38.086	83345	459382	264	08497	978363	2123	1.6	32
	0	5	239.672	27452	524698	345	3599	912040	056	1.6	32
	1	4	305.336	77089	890603	425	275	221109	146	1.63	32
	2	3	370.654	73255	557085	375	8064	448040	350	1.65	32
	3	2	435.984	20950	509541	907	09508	088099	667	1.68	34
	4	1	501.595	87127	272387	416	84912	121622	403	1.69	34
	0	10	503.452	89901	010694	512	42958	587216	895	1.6	34
	5	0	567.686	24363	636190	200	54686	860732	547	1.7	36
	5	5	904.185	67435	358283	932	1928	842208	734	1.8	38
	10	0	1306.942	91107	074395	820	900	455242	36	1.9	48

we present eigenvalues of $r^{2 K}$ for some pairs of (n, l). It is seen that there is no accuracy loss for higher values of K although the required truncation sizes increase.

Tables III and IV are concerned with the potentials of the form, $V(r)=v_{2} r^{2}+v_{2 K} r^{2 K}$, with two limiting values of $K, 2$ and 10 . The eigenvalues $E\left(v_{2}, v_{2 K}\right)$ has the scaling property

$$
\begin{equation*}
E\left(v_{2}, v_{2 K}\right)=\sqrt{v_{2}} E\left(1, v_{2}^{-K-1} v_{2 K}\right) \tag{4.7}
\end{equation*}
$$

so that we set $v_{2}=1$ in our calculations and tabulate the results for a wide range of $v_{2 K}$ from 10^{-3} to 10^{3}.

The last table is devoted to a general polynomial potential, $V(r)=v_{2} r^{2}+v_{4} r^{4}+v_{6} r^{6}+v_{8} r^{8}$, with more than one effective coupling constants. Of course, there is a huge number of combinations
of the set of parameters $\left\{v_{2}, v_{4}, v_{6}, v_{8}\right\}$ so that only the ground-state energies of some selected potentials are recorded in order not to overfill the content of the study with tabular material anymore. Further results are available from the authors.

The potentials (1)-(4) and (5)- (10) in Table V are sextic and octic oscillators, respectively, in which the coupling constants differ from 10^{-3} to 10^{3}. It is noteworthy that the method is constantly efficient for any polynomial having small or large parameters. Furthermore, results with such a high accuracy are being reported for the first time, which may be used as a guide for future numerical calculations. The tabulated eigenvalues are in good agreement with those already available in the literature [2, 5, 16]. For a specific example, if we recall that the ground-state eigenvalue for the potential (4) was given to seven digits in Ref. [2], employ-

TAŞELI AND ZAFER
TABLE IV
Critical values $L_{c r}$ and the energy eigenvalues $E_{n, l}^{(3)}$ of the potential, $V(r)=r^{2}+v_{20} r^{20}$, as a function of v_{20}.

ing a Hill determinant of size 150×150, the success of our method becomes quite impressive as it uses only a truncation order of 34 in calculating the same eigenvalue to 30 digits.

The potentials (11- 16 in Table V are different in nature since they describe multiwell quartic, sextic, and octic oscillators in Cartesian coordinates. It should be mentioned that the variational method with Bessel basis set attains the same high accuracy for these potentials as well.

As another remark, the trivial eigenvalue ordering properties $E_{n, l_{2}}>E_{n, l_{1}} \Leftrightarrow l_{2}>l_{1}$ and $E_{n_{2}, l}>$ $E_{n_{1}, l} \Leftrightarrow n_{2}>n_{1}$ for all N have been confirmed by our calculations. Therefore, Eqs. (4.3) and (4.4) now
imply that

$$
\begin{equation*}
E_{n, l}^{\left(N_{2}\right)}>E_{n, l}^{\left(N_{1}\right)} \Leftrightarrow N_{2}>N_{1} \tag{4.8}
\end{equation*}
$$

for all pairs of (n, l). Furthermore, we deduce from computer experiments that, if we characterize the energy levels $E_{n, l}$ as groups denoted by the number m, where $m=n+l$, then the eigenvalues in such a group may be ordered according to the rule

$$
\begin{equation*}
E_{0, m}<E_{1, m-1}<\cdots<E_{m-1,1}<E_{m, 0} \tag{4.9}
\end{equation*}
$$

for all N.
The connection between hydrogen atom in three dimensions and the isotropic harmonic oscillator in two and four dimensions has been a subject

TABLE V
Specimen calculations for the ground-state eigenvalues $E_{0,0}^{(3)}$ of polynomial potentials
$V(r)=v_{2} r^{2}+v_{4} r^{4}+v_{6} r^{6}+v_{8} r^{8}$ as a function of the set $\left\{v_{2}, v_{4}, v_{6}, v_{8}\right\}$ of coupling constants.

of interest in the past [17]. In order to obtain explicit passage formulas between the spectra of hydrogen-like and anharmonic oscillator systems, we now recall the perturbed Coulomb problem with a general confinement potential defined by the equation

$$
\left[\begin{array}{l}
{\left[-\frac{1}{2} \frac{d^{2}}{d r^{2}}-\frac{N-1}{2 r} \frac{d}{d r}+\frac{l(l+N-2)}{2 r^{2}}\right.} \\
\left.\quad-\frac{Z}{r}+\sum_{i=1}^{K-1} c_{i} r^{i}\right] R(r)=\mathscr{E} R(r), \quad r \in[0, \infty) \tag{4.10}
\end{array}\right.
$$

where Z and the c_{i} are the nuclear charge parameter and the potential constants, respectively. In (4.10), \mathscr{E} denotes the eigenvalue of the problem in N -dimensional space for an angular-momentum state l. Transforming the independent variable from r to s, where

$$
\begin{equation*}
s=\sqrt{\mu r}, \quad \mu>0, \quad s \in[0, \infty) \tag{4.11}
\end{equation*}
$$

we obtain

$$
\begin{array}{r}
{\left[-\frac{d^{2}}{d s^{2}}-\frac{2 N-3}{s} \frac{d}{d s}+\frac{4 l(l+N-2)}{s^{2}}\right.} \\
\left.+\sum_{i=1}^{K} v_{2 i} s^{2 i}\right] R(s)=E R(s) \tag{4.12}
\end{array}
$$

in which a new eigenvalue parameter E has been defined by the parameter μ such that

$$
\begin{equation*}
\mu=8 Z / E, \tag{4.13}
\end{equation*}
$$

and that the potential has been rearranged with the coefficients

$$
\begin{equation*}
v_{2}=-8 \mathscr{E} / \mu^{2}, \quad v_{2 i}=8 c_{i-1} / \mu^{i+1}, \quad i=2,3, \ldots, K . \tag{4.14}
\end{equation*}
$$

Note also that the sign, positive or negative, of μ depends on E. Thus, for negative values of E we may replace μ by $-\mu$ in (4.11) without any further modification. Now, introducing a new wave function $\Psi(s)$ such that $\Psi(s)=s R(s)$, Eq. (4.12) takes
the form

$$
\begin{array}{r}
{\left[-\frac{d^{2}}{d s^{2}}-\frac{N^{\prime}-1}{s} \frac{d}{d s}+\frac{l^{\prime}\left(l^{\prime}+N^{\prime}-2\right)}{s^{2}}\right.} \\
\left.+\sum_{i=1}^{K} v_{2 i} s^{2 i}\right] \Psi(s)=E \Psi(s), \tag{4.15}
\end{array}
$$

which is equivalent completely to (1.5) with

$$
\begin{equation*}
N^{\prime}=2 N-4, \quad l^{\prime}=2 l+1 \tag{4.16}
\end{equation*}
$$

This connection in a higher-dimensional space between the anharmonic oscillators and the confinement potentials suggests evidently that, after solving Eq. (4.15), we may generate accordingly some solutions for the perturbed Coulomb potential (4.10) as well. Actually, from (4.13), (4.14), and (4.16), we see that any eigenvalue $E_{n, 2 l+1}^{(2 N-4)}$ of a polynomial oscillator of degree 2 K is related explicitly to an eigenvalue $\mathscr{E}_{n, l}^{(N)}$ of a confinement potential of degree $K-1$ by the expression.

$$
\begin{align*}
& \mathscr{C}_{n, l}^{(N)}\left(Z ; c_{1}, c_{2}, \ldots, c_{K-1}\right)=-8 v_{2} Z^{2} \\
& \quad \times\left[E_{n, 2 l+1}^{(2 N-4)}\left(v_{2} ; v_{4}, v_{6}, \ldots, v_{2 K}\right)\right]^{-2} \tag{4.17}
\end{align*}
$$

with

$$
\begin{equation*}
c_{i-1}(E)=8^{i} v_{2 i}(Z / E)^{i+1}, \quad i=2,3, \ldots, K . \tag{4.18}
\end{equation*}
$$

The relation in (4.17) needs a correct interpretation. It should be noticed that every eigenvalue $E_{n, 2 l+1}^{(2 N-4)}$ of a polynomial oscillator with a fixed set of parameters $\left\{v_{2}, v_{4}, \ldots, v_{2 K}\right\}$ corresponds only to one eigenvalue $\mathscr{E}_{n, l}^{(N)}$ of various perturbed Coulomb problems whose potential constants are calculated by (4.18), except the charge parameter Z. Thus, there is no one-to-one correspondence between the eigenvalues of a prescribed general anharmonic oscillator and those of a perturbed Coulomb potential with a definite set of parameters $\left\{Z, c_{1}, c_{2}, \ldots, c_{K-1}\right\}$. The sole exceptional case is that of the harmonic oscillator, i.e., $v_{4}=v_{6}=$ $\cdots=v_{2 K}=0$ for which the hydrogen atom limit, $c_{1}=c_{2}=\cdots=c_{K-1}=0$, is determined uniquely from (4.18). In this case $E_{n, 2 l+1}^{(2 N-4)}\left(v_{2} ; 0,0, \ldots, 0\right) \equiv$ $E_{n, 2 l+1}^{(2 N-4)}\left(v_{2}\right)=2 \sqrt{v_{2}}(2 n+2 l+N-1)$ from (1.9), and hence the discrete spectrum of N -dimensional
hydrogen atom,

$$
\begin{align*}
\mathscr{E}_{n, l}^{(N)}(Z ; 0,0, \ldots, 0) & \equiv \mathscr{E}_{n, l}^{(N)}(Z) \\
& =-\frac{Z^{2}}{2[n+l+(N-1) / 2]^{2}} \tag{4.19}
\end{align*}
$$

is obtainable exactly from (4.17). In particular, we reproduce the energy eigenvalues,

$$
\begin{equation*}
\mathscr{E}_{n, l}=-\frac{1}{2(n+l+1)^{2}}, \quad n, l=0,1, \ldots \tag{4.20}
\end{equation*}
$$

of the standard three-dimensional case when $Z=1$.

Finally, it should be stated that our main goal is to attack the more challenging problem of unisotropic potentials mentioned in the introduction. The first nontrivial problems of this kind are the two-dimensional

$$
\begin{align*}
& V(x, y)=v_{2}\left(x^{2}+y^{2}\right)+v_{4}\left(x^{4}+y^{4}+2 a x^{2} y^{2}\right), \\
& a>-1 \quad(4.21 \tag{4.21}
\end{align*}
$$

and three-dimensional

$$
\begin{align*}
V(x, y, z)= & v_{2}\left(x^{2}+y^{2}+z^{2}\right) \\
& +v_{4}\left(x^{4}+y^{4}+z^{2}+2 a x^{2} y^{2}\right. \\
& \left.+2 a x^{2} z^{2}+2 a y^{2} z^{2}\right), \quad a>-\frac{1}{2} \tag{4.22}
\end{align*}
$$

quartic oscillators. It is apparent that the case $a=1$ corresponds to the isotropic oscillators dealt with in the present article. Writing, for instance, (4.21) in the cylindrical polar coordinates

$$
\begin{equation*}
V(r, \theta)=v_{2} r^{2}+v_{4} r^{4}+2 v_{4}(a-1) r^{4} \cos ^{2} \theta \sin ^{2} \theta \tag{4.23}
\end{equation*}
$$

we may notice the importance of developing such an exact method for the isotropic case, which is necessary and very promising in the investigation of unisotropic potentials along this line as well. Work is in progress toward this aim and will be reported in due course.

References

1. A. Rampal and K. Datta, J. Math. Phys. 24, 860 (1982).
2. R. N. Chaudhuri and M. Mondal, Phys. Rev. A 52, 1850 (1995).
3. E. R. Vrscay and J. Cizek, J. Math. Phys. 27, 185 (1986).
4. E. R. Vrscay, Theor. Chim. Acta 73, 365 (1988).
5. H. Taşeli, Int. J. Quant. Chem. 57, 63 (1996).
6. H. Taşeli and A. Zafer, Int. J. Quant. Chem. 61, 759 (1997).
7. F. M. Fernandez and E. A. Castro, Phys. Rev. A 24, 2883 (1981).
8. E. R. Vrscay, Int. J. Quant. Chem. 22, 613 (1987).
9. B. G. Adams, J. Cizek, and J. Paldus, Int. J. Quant. Chem. 21, 153 (1986).
10. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University Press, Cambridge, 1962).
11. I. N. Sneddon, Special Functions of Mathematical Physics and Chemistry (Oliver and Boyd, Edinburgh, 1966).
12. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).
13. H. Taşeli, J. Comput. Phys. 101, 252 (1992).
14. H. Taşeli, Int. J. Quant. Chem. 46, 319 (1993).
15. H. Taşeli, Int. J. Quant. Chem. 60, 641 (1996).
16. M. Lakshmanan, P. Kaliappan, K. Larsson, F. Carlsson, and P. O. Fröman, Phys. Rev. A 49, 3296 (1994) (and references cited therein).
17. M. Kibler, A. Ronveaux, and T. Negadi, J. Math. Phys. 27, 1541 (1986) (and references cited therein).
