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ABSTRACT rn 
Trigonometric basis sets are used in a Rayleigh-Ritz variational method for computing 
two-sided eigenvalue bounds of the Schrodinger equation in one dimension. The method 
is based on truncating the infinite interval and solving an eigenvalue problem which 
obeys the von Neumann and the Dirichlet boundary conditions, respectively. Highly 
accurate numerical results are presented for the asymmetrical two-well oscillators. 
0 1996 John Wiley & Sons, Inc. 

1 .  Introduction 

n a recent article El], TaSeli presented an effi- I cient technique for solving the Schrodinger 
equation: 

where V ( x )  is a symmetrical, i.e., V ( - x )  = V ( x ) ,  
a multiminima potential. The approximation as- 
sumes a truncated symmetric interval [ - a, a] and 
utilizes simple trigonometric basis functions in the 
variational method. More recently, Zitnan 121 mod- 
ified the trigonometric functions given in [l] and 
proposed an extended Rayleigh-Ritz method with 
a B-spline approximation to calculate lower and 
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upper bounds of the eigenvalues E of (1.1). In his 
work [2], Zitnan found the accuracy of TaSeli’s 
approach very impressive with the reservation that 
it suffers from the lack of error estimates. 

In this study, we deduce that the simple 
trigonometric functions may be employed to com- 
pute lower bounds of the energy spectrum of (1.1) 
as well as the usual upper bounds yielded by the 
Rayleigh-Ritz method. At the same time, the pre- 
sent article is a completion of [ 11 which shows that 
the method therein can also be applied to the 
asymmetrical problems, with a natural rnodifica- 
tion. Therefore, we consider a general polynomial 
potential 

M 

V ( x ) =  c DiXi (1 2)  
i =  1 

containing both odd and even powers of x, where 
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the vi are the coupling constants. As a specific 
example, we solve the asymmetrical Schrodinger 
equation with 

(1.3) 

which is a double-well potential if the parameters 
satisfy the inequalities 

V(x) = V 2 X 2  + v3x3 + v4x4, 

v4 > 0, 9.3’ - 32v2v4 > 0. (1.4) 

Note that the absence of the linear term, u l x ,  in 
(1.3) does not cause any loss of generality since it 
can always be removed by shifting the coordinate 
axis. 

This type of oscillator is of practical interest for 
the protonic movement of hydrogen-bonded sys- 
tems [3]. It was considered numerically by Diaz et 
al. [41. Znojil [51 constructed Hill’s determinant of 
the problem by matching two suitable power se- 
ries valid for x < 0 and x > 0, respectively. How- 
ever, a systematic investigation of the energy spec- 
trum over a wide range of the coupling constants 
is not available in the literature. 

This article is organized as follows: Section 2 
enlights the theoretical background of determining 
error bounds for the eigenvalues when the 
Schrodinger equation is defined on a finite inter- 
val. Section 3 presents the trigonometric basis sets 
appropriate to the boundary conditions of the 
Dirichlet and von Neumann types. The last section 
contains the numerical results and the concluding 
remarks as usual. 

2. Lower and Upper Bounds for 
the Eigenvalues 

Whenever Eq. (1.1) is reconsidered over the 
truncated domain of x E [ -a,  p ] ,  the usual wave 
function V?(x) and the eigenvalues E‘”) may 
formally be written as 

* = *(x; a ,  PI, lim W x; a ,  p )  = W)( x )  

(2.1) 
a,  P - m  

and 

where the positive constants a and p are the 
boundary parameters. Thus, the wave function 
can be regarded as a function of several variables 

satisfying the condition 

A*( x ;  a ,  p )  + B ’ P , ( x ;  a ,  p )  = 0 (2.3) 

at x = -a and x = p, where the subscript x 
denotes partial derivative with respect to x. The 
constants A and B in (2.3) are either zero or unity 
so that a von Neumann or a Dirichlet boundary 
value problem is under discussion according to 
that A or B is equal to zero. 

Now, the differentiation of (1.1) with respect to 
a gives the equation 

d 2  

d X 2  

from which, on multiplying by 9 and integrating 
from -a  to p, it follows that 

( q , * ) E ,  = (9*,,*). (2.5) 

Here, subscripts denote again partial derivatives, 
and the ket and bra notation implies the inner 
product defined by the integral operation over the 
domain of x. We may assume that the wave func- 
tion is normalized and, after integration by parts, 
write (2.5) in the form 

E ,  = boundary terms + (q,,-Y**). (2.6) 

Since the operator 2 is formally self-adjoint, i.e., 
P* =9, the inner product in (2.6) vanishes from 
(1.1). We, therefore, have the result 

9’Pa = Em?, 9= -- + V(X) - E, (2.4) 

d E  
E = -  

a d a  

= [ * * ( x ;  a ,  p)T,(x; a ,  p )  
-WX; a ,  p)q , , ( x ;  a ,  p)I I ,= P -,. (2.7) 

The use of boundary conditions gives the possibil- 
ity of expressing Eq. (2.7) in a more appropriate 
form. To this end, let us consider the total differen- 
tial of a function of three independent variables, 
F = F(x, a, p )  say: 

d F  = F, dx + F, da + FB dp.  (2.8) 

However, if x is a function of a, for instance, 
x = -a,  then dx = -da and, hence, 

dF = ( F a  - F,) da + Fp d p .  (2 9) 

In this case, the partial derivative of such a func- 
tion with respect to a is clearly equal to F, - F,. 
Therefore, the partial differentiation of the bound- 
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ary conditions in (2.3) with respect to a yields the 
relations 

p ;  a ,  + B q a x (  p ;  a ,  /3> = 0. (2.11) 

Substituting (2.10) and (2.11) into (2.7) and using 
Eqs. (1.1) and (2.31, we finally obtain 

d E  

da 
_ -  - -*;(-a; a ,  p )  

+[V(-a) - E(a,  p ) ] * ’ ( - ( - ~ ;  a ,  p ) .  (2.12) 

The same procedure may be repeated for the other 
boundary parameter /3 to find 

= [ V( p )  - E ( a ,  p)IY”( p;  a ,  p ) .  (2.13) 

As a result, if the problem being considered 
obeys Dirichlet boundary conditions, i.e., 

* ( - a ;  01 ,  p )  = ‘4“ p ;  a ,  p )  = 0, (2.14) 

then (2.12) and (2.13) reduce to 

(2.15) 

showing that E( a,  p )  decreases monotonically to 
its limit E(”) as a and p increase. This is the 
well-known property which implies that the eigen- 
values of (1.1) satisfying Dirichlet boundary condi- 
tions (2.14) are upper bounds for the exact asymp- 
totic eigenvalues. 

Conversely, the von Neumann boundary value 
problem assumes that 

Yrx( -a ;  a ,  p )  = qX( p;  a ,  p )  = 0 (2.16) 

and, hence, that Eqs. (2.12) and (2.13) take the form 

d E  
- = [V(-a) - E(a,  /3)I*’(-a; 01 ,  /3>/ 
d a  

These relations suggest evidently that the eigen- 
values obtained by means of the von Neumann 
boundary value problem are lower bounds since 
they increase monotonically to E‘”) as a and p 
increase, provided that 

In other words, -a  and p must lie beyond the 
classical turning points to this end. It is worth 
mentioning that similar results were deduced by 
Fernandez and Castro in another context [6]. 

Consequently, the problem now turns out 
to solve Eq. (1.1) subject to both Dirichlet and 
von Neumann boundary conditions, which pro- 
vide us with a practical method of determining 
upper and lower bounds, respectively, for the un- 
bounded eigenvalues required. 

3. Trigonometric Basis Sets 

We generate normalized basis functions by con- 
sidering the unperturbed Schrodinger equation 
taken to be of the form 

in which a rectangular well potential, i.e., 

00, x <  -a  
V(x)= 0, - a < x < p  (3.2) i a, x 2 p  

is assumed. In [l], the trigonometric basis sets 
were derived by employing a similar problem de- 
fined necessarily on a symmetric interval x E 

[ - a, a ]  which yields even and odd trial solutions, 
separately. Owing to the asymmetric structure of 
the potentials concerned with in this study, how- 
ever, we cannot decompose the set of eigenlevels 
into two subsets representing, independently, the 
symmetric and antisymmetric levels. Fortunately, 
the mapping of the domain from x E [ -a, p ] to 
5 E [ O , ~ T ] ,  where 

(3.3) 

simplifies the eigensolutions of (3.1) and reflects 
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successfully the asymmetric character of the prob- 
lem for any choice of (Y and p even if a = p. 
Therefore, integrating Eq. (3.1) in the transformed 
interval accompanying with the boundary condi- 
tions 

W O )  = W7r) = 0 ,  8 ’ ( 0 )  = *’(T) = 0 (3.4) 

individually, we obtain 

+Iu)([) = - sink5, k = 1,2 ,... (3.5) K 
and 

As is readily seen, the +lu)( 5) and +IL)( 5) stand 
for the solutions satisfying, respectively, the 
Dirichlet- and von Neumann-type boundary value 
problems. It should be noticed that we have only 
one admissible sequence of eigenfunctions in each 
case. Furthermore, both { +lu )( 5 1) and {+lL)( 5 )I 
form complete orthonormal sets for 5 E [0,7r], i.e., 

(+f? +y> = 6 km <+l”, +p) = S k m r  

k ,  rn = 1,2 ,..., (3.7) 

where S,, is the Kronecker delta. 

the use of the trial functions 
Now, the theoretical results in Section 2 imply 

m 

*‘u’(t) = c f , + ! y 5 )  (3.8) 
k =  1 

and 
m 

qcLY 5 )  = c g, +p( 5 ) (3.9) 
k =  1 

in calculating upper and lower bounds eigenval- 
ues of the full Schrodinger equation, respectively, 
where the f, and g, are the linear combination 
coefficients. By the change of variable (3.31, the 
Schrodinger equation is unaltered in the form 

-2 -1 1 2 3  
-1 

~ -2 

FIGURE 1. Asymmetrical two-well oscillators: vp  < 0. 

with the potential replaced by 

(3.11) 

where I denotes the length of the original interval 
divided by T. 

Making use of expansions (3.8) and (3.9) for the 
wave function, the differential equation in (3.10) is 
reduced to two standard matrix eigenvalue prob- 
lems. More specifically, if we take the Dirichlet- 
type solution Yrcu)( 5 ), we then find that 

[ H k y )  - 12E6,,]f, = 0 ,  rn = 1,2 ,..., 
k =  1 

(3.12) 

where the variational matrix HA?) is given by 

By the von Neumann-type solution 9(L)( 5 ), on the 
other hand, we have 

m 

[HA;) - Z2E6,,] g, = 0 ,  rn = 1,2,. . ., 
k =  1 

(3.14) 

-1 1 2 3  

FIGURE 2. Asymmetrical two-well oscillators: vp > 0 
and vg < 0. 

644 VOL. 60, NO. 2 



LOWER- AND UPPER-BOUND EIGENVALUES 

with the coefficient matrix 
ible as 

which is express- 

Note that matrix elements can be evaluated analyt- 
ically in terms of the R y )  defined by the simple 
integral 

j = O , 1 ,  ...; p = O , T l , T 2  / . . .  (3.16) 

having the property that R'lL = R2', which im- 
plies immediately the symmetry of each matrix. 
Integrating by parts it follows that 

(3.17) 

where [ j ]  = ( j  - 1)/2 or ( j  - 2)/2 according as j 
is odd or even. A recursion relation of the form 

FIGURE 3. Asymmetrical two-well oscillators: v2 > 0 
and vg > 0. 

may also be introduced: 

for any p # 0 with the initial conditions Rk-') = 

R'p") = 0. 
From a computational viewpoint, if the secular 

equations in (3.12) and (3.13) are truncated to fi- 
nite-dimensional, N say, linear systems the roots 
of their characteristic equations then yield the 
upper- and lower-bound eigenvalues Ec') and 
E ( L ) I  respectively. In this way, we provide error 
estimates in the sense that 

to any desired accuracy, for the asymptotic eigen- 
values E(") by systematically increasing the 

TABLE I 
Lower and upper bounds to eigenvalues A, of asymmetrical doublewell oscillators for c, = 0.01, as a 
function of c,. 

c2 (Y N n A" 

0.25 10 50 0 0.220496933551383181 1805841 I42 
1 0.7990761 561 34041 0427563358 I 59 
2 1 57942587271 50421 868397882 I 83 
3 2.4752271262769579979403548 I56 

0.50 10 50 0 0.2182555367970654073539824 125 
1 0.79347585244935130071 84669 I70  
2 1 57'1 7267991 66984751 5874491 I92 
3 2.4655965377851385748576954 I57 

0.75 10 50 0 0.21 5207254047971 7488436246 I47 
1 1.7858678700085982553313958l59 
2 1.561 2866356953751 10776021 2 I 13 
3 2.452542721 4641 78763806091 8 1 19 
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TABLE II 
Lower and upper bounds to eigenvalues A,, of asymmetrical double-well oscillators for c1 = 1, as a 
function of c,. 

c2 a N n An 

0.25 

0.50 

0.75 

4.75 

4.75 

4.75 

52 

52 

52 

0 
1 
2 
3 

0 
1 
2 
3 

0 
1 
2 
3 

0.86969461 764731 87733457090 I91 
3.3587938284332880537010484 I85 
6.8590731 620561 962332569335 I44  

10.9037040681 3831 7871 260595 I604 

0.8201 5451 00282241 86451 8350 1 51 
3.23441 41 2631 92277422940691 I92  
6.691 15027529551 36276965453 154 

10.694056898461 01 499754281 9 1 21 

0.75231 374821 82902265081 869 I70  
3.0623718040642200853199345 146 
6.461 681 81 7708838046691 3991 192 

10.4080021 13532361 4859561 1 1 1 12 

truncation size N and the boundary parameters 
c1 and p. 

4. Results and Discussion 

The present method is applied to the asymmet- 
rical two-well potentials (1.3) as indicated previ- 
ously in the Introduction. The necessary and suffi- 
cient conditions to deal with a double-well 
oscillator are given by (1.4). An additional inspec- 
tion on such a polynomial of degree four shows 
that it possesses two real roots of opposite signs if 
vz < 0, except the double root at x = 0. Thus, two 
negative valued minima located asymmetrically 

about the origin appear to be independent of u3 
(Fig. 1). The deeper well occurs along the positive 
real axis when ug < 0 and vice versa. In this case 
of uz < 0, we have a local maximum at x = 0. 

If vz > 0, one minimum then appears at the 
origin, and the locations of the other extrema de- 
pend upon u3 (Figs. 2 and 3). These potentials 
have two nonzero real roots whenever ug > 4v2v4. 
By translating appropriately the origin of the coor- 
dinate system, however, the oscillators of the 
shapes illustrated by Figures 2 and 3 can be viewed 
as a member of the family sketched in Figure 1. 
Hence, without any loss of generality, the eigen- 
value calculations are carried out only for the 
asymmetrical problems in which v2 < 0. 

TABLE 111 
Lower and upper bounds to eigenvalues A,, of asymmetrical double-well oscillators for c1 = 100, as a 
function of cp. 

c2 a N n A" 

0.25 

0.50 

0.75 

2.5 

2.5 

2.5 

65 

65 

65 

0 
1 
2 
3 

0 
1 
2 
3 

0 
1 
2 
3 

- 4.2773448491 824741 668473488 I 87 
7.08051 7391 36415865609071 03 I04  

19.81 7761 50261 8821 3991 75325 1 26 
36.209337296287706584558242 I44  

- 6.81 6052047536736982561 4305 I04  
4.6756939305582900579971358 159 

15.9732041 3631 7836561 600922 I23  
31.50554663051 9551 260800075 I76  

- 9.45947921 222451 28585465626 1 25 
0.0105600727176196213798013 114 

10.866977233476768562653506107 
24.888991 17551 9381 7971 34001 I02  
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TABLE IV 
Lower and upper bounds to eigenvalues A,  of asymmetrical double-well oscillators for c, = 10000, as a 
function of c2. 

c2 a N n A" 

0.25 1.4 90 

0.50 1.4 90 

0.75 1.4 90 

The potential (1.3) with v2 < 0 (Fig. 1) is best 
characterized by the equation 

where a and b are positive parameters. Assuming 
that b > a, V(x) can be written as 

V ( X )  = b4u4( :)'( + t)( - I), (4.2) 

which implies transforming the variable from x to 
x / b .  Therefore, the Schrodinger equation takes the 
form 

+ C $ ( X  + c 2 ) ( x  - 1) W(x) = hW(x), 

(4.3) 
1 d 2  

[ -2 

TABLE V 
The rate of convergence of the method as a 
function of a, where V ( x )  = 0.01x2(x + 0.25)(x - 1). 

a N  A0 

4 10 
5 12 
6 15 
7 18 
8 26 
9 36 

10 50 
11 56 

0.20 I23 
0.22021 I73 
0.2204959 I79  
0.22049693320 I88  
0.220496933551 375 I91  
0.220496933551 3831 81 17 1 19 
0.2204969335513831 81 1805841 00 I02  
0.220496933551 3831 81 1805841 01 22 I23 

0 
1 
2 
3 

0 
1 
2 
3 

0 -2002.685368625287806885737 136 
1 - 1743.496266574938498655389 I 88 
2 - 1491.4834761 75760688786027 I26 
3 - 1247.271 556935708503649640 I39 

- 1296.408751 6951 6624941 6336 I35 
- 1074.5677752108728861 70689 / 88 
- 861.88668202891 7376301 7492 191 
- 659.51 54356829335920393668 1 67 

- 1647.93067529004550202851 8 1 17 
- 1407.01 71 25267978036042450 I49 
- 1 174.069091 277533492714275 I74 
- 949.8921 1226761 90060284722 / 21 

where 
a 

h = b2E. (4.4) 6 c1 = b v,, c2 = b,  
Now, the rescaled equation contains only two 
eigenvalue parameters c1 and c2 such that 

c1 > 0,  0 < c2 < 1, (4.5) 

giving the possibility of the systematic investiga- 
tion of the problem in a concise manner. We may 
return back to the original coupling constants by 
using the relationships 

v2 = -c,c2b-,, vU3 = -cI(l  - ~ , ) b - ~ ,  V, = Clb-6, 
(4.6) 

where the absolutely greater root b of the potential 
remains as a free parameter. Note also that if b < a 
then we are confronted with a potential which can 
be obtained by interchanging the two wells in 
Figure 1. As a results, there is no need to consider 
such an eigenvalue problem since its spectrum is 
obviously equivalent to that expressed by Eq. (4.31, 
in any symmetrical interval of x. 

Within this formalism, the infinite interval of 
x, x E ( - 00, a), is approximated by the finite one, 
x E [-a, a], setting p = a, which imitates the 
symmetry of the domain. The numerical results 
are reported in Tables I-IV for c1 values of 0.01, 1, 
100, and 10000 respectively, as a function of c2. 
The range of c2 is covered by choosing c2 = 0.25, 
0.5, and 0.75. It is clear that the left-hand limiting 
value of c2, c2 = 0, does not represent a double- 
well oscillator anymore where the potential has an 
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inflection point at x = 0. On the other hand, c2 = 1 
corresponds to a symmetrical two-well potential 
which was examined extensively in [l]. The 
last table (Table V) demonstrates the rate of 
convergence of the method in calculating error 
bounds for a specimen problem as the boundary 
parameter (Y varies. 

In the tables, n is the state number, and N 
stands for the number of basis functions required 
to get the recorded accuracy. The energy eigenval- 
ues are tabulated according to Zitnan’s [2] nota- 
tion. For instance, 0.22021/73 in Table V denotes 
two-sided eigenvalue bounds such that 

(4.7) 

where the lower bounds are truncated and the 
upper bounds are rounded up. An inverse proce- 
dure is adopted for negative eigenvalues. We no- 
tice from the listed energy eigenvalues that they 
are correct up to more than 20 digits. Furthermore, 
Table V implies evidently that the accuracy of the 
results may, step by step, be improved depending 
on the machine accuracy. 

The basis sets described in this work to deter- 
mine lower- and upper-bound eigenvalues lead to 

0.22021 I A, I 0.22073, 

very rapidly converging algorithms with almost 
the same rate. Consequently, we have shown, both 
analytically and numerically, that such simple 
trigonometric functions can be used effectively in 
solving asymmetrical problems as well. The results 
presented with this high degree of precision may 
be regarded as a guide to future numerical calcula- 
tions. Moreover, it is straightforward to extend the 
method to two-dimensional Schrodinger equation 
with asymmetrical potentials, as was done for the 
symmetrical problems [71. 
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