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ABSTRACT

Trigonometric basis sets are used in a Rayleigh—Ritz variational method for computing
two-sided eigenvalue bounds of the Schrodinger equation in one dimension. The method
is based on truncating the infinite interval and solving an eigenvalue problem which
obeys the von Neumann and the Dirichlet boundary conditions, respectively. Highly
accurate numerical results are presented for the asymmetrical two-well oscillators.

© 1996 John Wiley & Sons, Inc.

1. Introduction

l n a recent article [1], Tageli presented an effi-
cient technique for solving the Schrodinger
equation:

- (x) + V(x)¥(x) = E¥(x),
xe (—w,0), (1.1)

where V(x) is a symmetrical, i.e., V(—x) = V(x),
a multiminima potential. The approximation as-
sumes a truncated symmetric interval [ —a, «] and
utilizes simple trigonometric basis functions in the
variational method. More recently, Zitnan [2] mod-
ified the trigonometric functions given in [1] and
proposed an extended Rayleigh—Ritz method with
a B-spline approximation to calculate lower and
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upper bounds of the eigenvalues E of (1.1). In his
work [2], Zitnan found the accuracy of Tageli’s
approach very impressive with the reservation that
it suffers from the lack of error estimates.

In this study, we deduce that the simple
trigonometric functions may be employed to com-
pute lower bounds of the energy spectrum of (1.1)
as well as the usual upper bounds yielded by the
Rayleigh—Ritz method. At the same time, the pre-
sent article is a completion of [1] which shows that
the method therein can also be applied to the
asymmetrical problems, with a natural modifica-
tion. Therefore, we consider a general polynomial
potential

M
V(x) =Y ux (1.2)
i=1

containing both odd and even powers of x, where
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the v; are the coupling constants. As a specific
example, we solve the asymmetrical Schrodinger
equation with

V(x) =v,x% + v3x° + vyxt, (1.3)

which is a double-well potential if the parameters
satisfy the inequalities

v, >0, 90— 32v,0, > 0. (1.4)
Note that the absence of the linear term, v, x, in
(1.3) does not cause any loss of generality since it
can always be removed by shifting the coordinate
axis.

This type of oscillator is of practical interest for
the protonic movement of hydrogen-bonded sys-
tems [3]. It was considered numerically by Diaz et
al. [4]. Znojil [5] constructed Hill’s determinant of
the problem by matching two suitable power se-
ries valid for x < 0 and x > 0O, respectively. How-
ever, a systematic investigation of the energy spec-
trum over a wide range of the coupling constants
is not available in the literature.

This article is organized as follows: Section 2
enlights the theoretical background of determining
error bounds for the eigenvalues when the
Schrodinger equation is defined on a finite inter-
val. Section 3 presents the trigonometric basis sets
appropriate to the boundary conditions of the
Dirichlet and von Neumann types. The last section
contains the numerical results and the concluding
remarks as usual.

2. Lower and Upper Bounds for
the Eigenvalues

Whenever Eq. (1.1) is reconsidered over the
truncated domain of x € [ —a, 8], the usual wave
function ¥®)(x) and the eigenvalues E® may
formally be written as

Y =¥(x;a, B), lim Y(x;a, B)=Y"(x)

a, o

2.1
and

E=E(a, B), lim E(a,8) =E™, (2.2)

a, o=

where the positive constants « and S are the
boundary parameters. Thus, the wave function
can be regarded as a function of several variables

satisfying the condition
AV(x;a,B) + B (x;a,8) =0 (2.3)

at x = —a and x = 8, where the subscript x
denotes partial derivative with respect to x. The
constants A and B in (2.3) are either zero or unity
so that a von Neumann or a Dirichlet boundary
value problem is under discussion according to
that A or B is equal to zero.

Now, the differentiation of (1.1) with respect to
a gives the equation

2

0
3\1"1:[‘?&\1’, = —(9——2—+V(x)—E, (24)
X

from which, on multiplying by ¥ and integrating
from —a to B, it follows that

(¥, ¥)E, = {2V, ¥). (2.5)

Here, subscripts denote again partial derivatives,
and the ket and bra notation implies the inner
product defined by the integral operation over the
domain of x. We may assume that the wave func-
tion is normalized and, after integration by parts,
write (2.5) in the form

E, = boundary terms + (¥, Z*¥). (2.6)

Since the operator .# is formally self-adjoint, i.e.,
Z* =%, the inner product in (2.6) vanishes from
(1.1). We, therefore, have the result

JE
“7 ja
[(V.(x;a, BV, (x; 0, B)
-U(x;a, BV, (x;a, B 15 _ .. Q7)

H

The use of boundary conditions gives the possibil-
ity of expressing Eq. (2.7) in a more appropriate
form. To this end, let us consider the total differen-
tial of a function of three independent variables,
F = F(x, a, B) say:

dF = F dx + F,da + F; dB. 2.8)
However, if x is a function of «, for instance,
x = —a, then dx = —da and, hence,

dF =(F, - F)da + F, dB. 2.9)

In this case, the partial derivative of such a func-
tion with respect to « is clearly equal to F, — F,.
Therefore, the partial differentiation of the bound-
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ary conditions in (2.3) with respect to a yields the
relations

Alv (—a;a,B) -V (—a;a, B)]
+Bl¥Y, (-, B) -V, (—a;a,B)] =0
(2.10)

and
AV (B;a,B) +BY, (B;a,B8)=0. (2.11)

Substituting (2.10) and (2.11) into (2.7) and using
Egs. (1.1) and (2.3), we finally obtain

JE
— = -¥X(-a;a,p)
da

+[V(—a) — E(a, BV (—a; a, B). (2.12)

The same procedure may be repeated for the other
boundary parameter 8 to find

JE

I _wi(g-
B V(B a,B)

[V(B) — E(a, B)IP2(B; a, B). (2.13)

As a result, if the problem being considered
obeys Dirichlet boundary conditions, i.e.,

V(-a;a,B8)=¥(B;a, B)=0,
then (2.12) and (2.13) reduce to

(2.19)

T W waB), - wBiap)
%ﬁ_x—a/alﬁr a_B—_xBrarB;

(2.15)

showing that E(a, B) decreases monotonically to
its limit E® as a and B increase. This is the
well-known property which implies that the eigen-
values of (1.1) satisfying Dirichlet boundary condi-
tions (2.14) are upper bounds for the exact asymp-
totic eigenvalues.

Conversely, the von Neumann boundary value
problem assumes that

VY (-a;0,B)="Y(B;a,B)=0 (2.16)
and, hence, that Egs. (2.12) and (2.13) take the form

JE

— =[V(-a) — E(a, 81V (~a; a, B),
Jo

JE
B =[V(B) — E(a, BV B; a, B). (217)

LOWER- AND UPPER-BOUND EIGENVALUES

These relations suggest evidently that the eigen-
values obtained by means of the von Neumann
boundary value problem are lower bounds since
they increase monotonically to E®) as o and B
increase, provided that

V(-a) > E(a, B), V(B) > E(a, B). (2.18)
In other words, —a and B must lie beyond the
classical turning points to this end. It is worth
mentioning that similar results were deduced by
Fernandez and Castro in another context [6].

Consequently, the problem now turns out
to solve Eq. (1.1) subject to both Dirichlet and
von Neumann boundary conditions, which pro-
vide us with a practical method of determining
upper and lower bounds, respectively, for the un-
bounded eigenvalues required.

3. Trigonometric Basis Sets

We generate normalized basis functions by con-
sidering the unperturbed Schrodinger equation
taken to be of the form

xel-a,8], G

in which a rectangular well potential, i.e.,

oo, X< —a
Vix)={0, —a<x<$p 3.2)
©, x=2pB

is assumed. In [1], the trigonometric basis sets
were derived by employing a similar problem de-
fined necessarily on a symmetric interval x €
[ -, a] which yields even and odd trial solutions,
separately. Owing to the asymmetric structure of
the potentials concerned with in this study, how-
ever, we cannot decompose the set of eigenlevels
into two subsets representing, independently, the
symmetric and antisymmetric levels. Fortunately,
the mapping of the domain from x € [—a, B] to
£ € [0, ], where

o
&= a+B(x+a)' (3.3)

simplifies the eigensolutions of (3.1) and reflects
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successfully the asymmetric character of the prob-
lem for any choice of a and B even if a = B.
Therefore, integrating Eq. (3.1) in the transformed
interval accompanying with the boundary condi-
tions

v(O) =¥(mr)=0, V(O =¥(r)=0 (34)

individually, we obtain

2
dU(£) = ]/ — sin kg, k=1,2,... (35
v

and

1
(L) = —
(&) Vo’

2
PH(E) = \/; cos(k — 1é&, k=2,3,... (3.6)

As is readily seen, the ¢{"(¢) and ¢{™(¢) stand
for the solutions satisfying, respectively, the
Dirichlet- and von Neumann-type boundary value
problems. It should be noticed that we have only
one admissible sequence of eigenfunctions in each
case. Furthermore, both {¢{)(£)} and {p{V(£)}
form complete orthonormal sets for ¢ € [0, 7], i.e.,

(o, b4 = B,
k,m=1,2,..., (3.7)

(o, ¢4 = B,

where §,,, is the Kronecker delta.
Now, the theoretical results in Section 2 imply
the use of the trial functions

YI(g) = Y fidtD(E) (3.8)
k=1
and
TO(E) = ) g dtP(E) (3.9)
k=1

in calculating upper and lower bounds eigenval-
ues of the full Schrodinger equation, respectively,
where the f, and g, are the linear combination
coefficients. By the change of variable (3.3), the
Schrédinger equation is unaltered in the form

W(&) = PEW(E),

d2
[_EE—Z + ZZV(f)

l a+ B
-—

felo,w], (3.10)

w

o

-

-1

-2

FIGURE 1. Asymmetrical two-well oscillators: v, < 0.

with the potential replaced by

Mz

V(&) =

1

i

d . i),; i—j
Eo aijfjl ”ijzvi(j)l](-a) !,
3.11)

1

where I denotes the length of the original interval
divided by .

Making use of expansions (3.8) and (3.9) for the
wave function, the differential equation in (3.10) is
reduced to two standard matrix eigenvalue prob-
lems. More specifically, if we take the Dirichlet-
type solution W)(¢), we then find that

z [Héuk) - leSmk]fk =0,
k=1

m=1,2,...,

3.12)

where the variational matrix H{}’ is given by

Mz

a; [RP, — RP,].

uy _ 2 2
Hr$1k) =m 6mk + 1 m
i 0

i
i =

J

It
—

(3.13)

By the von Neumann-type solution W"(¢), on the
other hand, we have

Z [Hr%c) - leamk]gk =0,
k=1

w/\

-1 1 2\_/5 4 *
-1 1 2 3

FIGURE 2. Asymmetrical two-well oscillators: v, > 0
and v; < 0.

m=1,2,...,

(3.149)

N W S
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with the coefficient matrix H%Y which is express-
ible as

1
HY = (m - 1)°5,, + 12[1 + 5 1)8,”1}
(5
M i
Z 2 ARD .+ RPL]. (3.15)

Note that matrix elements can be evaluated analyt-
ically in terms of the R{ defined by the simple
integral

p=0,F1,72,... (3.16)

having the property that RY) = RY, which im-
plies immediately the symmetry of each matrix.
Integrating by parts it follows that

L —(=1D° k1
RO = j!’lTj £ [52k,,"1 (-1 ] _ 1
14 k=0 (]_Zk—l)' 7T2p2 ’
j
R = w RO = 5 (3.17)
0 ] +1 P PO .

where [j] = (j — 1)/2 or (j — 2)/2 according as j
is odd or even. A recursion relation of the form

TABLE |

LOWER- AND UPPER-BOUND EIGENVALUES

- j\/z - ! -4 -3 -2 -1
FIGURE 3. Asymmetrical two-well oscillators: v, > 0
and vz > 0.

may also be introduced:

PR = jmwi=2[(-1D" - 8,,] - j(j — DRY~?,

j=1,2,... (3.18)
for any p # 0 with the initial conditions R{™D =
RO = 0.

From a computational viewpoint, if the secular
equations in (3.12) and (3.13) are truncated to fi-
nite-dimensional, N say, linear systems the roots
of their characteristic equations then yield the
upper- and lower-bound eigenvalues E’ and
E™), respectively. In this way, we provide error
estimates in the sense that

EW < E® < EW), (3.19)

to any desired accuracy, for the asymptotic eigen-
values E® by systematically increasing the

Lower and upper bounds to eigenvalues X\, of asymmetrical double-well oscillators for ¢, = 0.01,as a

function of c,.

1.7858678700085982553313958 / 59
1.5612866356953751107760212 / 13

Cy o N n A,
0.25 10 50 0 0.2204969335513831811805841 / 42
1 0.7990761561340410427563358 / 59
2 1.5794258727150421868397882 / 83
3 2.4752271262769579979403548 / 56
0.50 10 50 0 0.2182555367970654073539824 / 25
1 0.7934758524493513007184669 / 70
2 1.5717267991669847515874491 /92
3 2.4655965377851385748576954 / 57
0.75 10 50 0 0.21520725404797 17488436246 / 47
1
2
3

2.4525427214641787638060918 / 19
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TABLE 1l

Lower and upper bounds to eigenvalues A ,, of asymmetrical double-well oscillators forc; =1,as a

function of ¢,

C, o N

3

/\n

0.25 4.75 52

0.50 4.75 52

0.75 4.75 52

0.8696946176473187733457090 / 91
3.3587938284332880537010484 / 85
6.8590731620561962332569335 / 44
10.903704068138317871260595 / 604

0.8201545100282241864518350 / 51

3.2344141263192277422940691 /92

6.6911502752955136276965453 / 54
10.694056898461014997542819 / 21

0.7523137482182902265081869 / 70

3.0623718040642200853199345 / 46

6.4616818177088380466913991 /92
10.408002113532361485956111 /12

W -0 WN—=-0O WNhNh-—=+0O

truncation size N and the boundary parameters
a and 8.

4. Results and Discussion

The present method is applied to the asymmet-
rical two-well potentials (1.3) as indicated previ-
ously in the Introduction. The necessary and suffi-
cient conditions to deal with a double-well
oscillator are given by (1.4). An additional inspec-
tion on such a polynomial of degree four shows
that it possesses two real roots of opposite signs if
v, < 0, except the double root at x = 0. Thus, two
negative valued minima located asymmetrically

TABLE il

about the origin appear to be independent of v,
(Fig. 1). The deeper well occurs along the positive
real axis when v; < 0 and vice versa. In this case
of v, < 0, we have a local maximum at x = 0.

If v, >0, one minimum then appears at the
origin, and the locations of the other extrema de-
pend upon v, (Figs. 2 and 3). These potentials
have two nonzero real roots whenever v3 > 40,7,.
By translating appropriately the origin of the coor-
dinate system, however, the oscillators of the
shapes illustrated by Figures 2 and 3 can be viewed
as a member of the family sketched in Figure 1.
Hence, without any loss of generality, the eigen-
value calculations are carried out only for the
asymmetrical problems in which v, < 0.

Lower and upper bounds to eigenvalues A, of asymmetrical double-well oscillators for ¢, = 100, as a

function of c..

C, a N

3

’\n

0.25 25 65

0.50 25 65

0.75 25 65

—4.2773448491824741668473488 / 87

7.0805173913641586560907103 / 04
19.817761502618821399175325 / 26
36.209337296287706584558242 / 44

- 6.8160520475367369825614305 / 04

4.6756939305582900579971358 /59
15.973204136317836561600922 / 23
31.505546630519551260800075 /76

—9.4594792122245128585465626 / 25

0.0105600727176196213798013 / 14
10.866977233476768562653506 / 07
24.888991175519381797134001 /02

WN -0 WON=0 Wwh-=0
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TABLE IV

LOWER- AND UPPER-BOUND EIGENVALUES

Lower and upper bounds to eigenvalues A ,, of asymmetrical double-well oscillators for ¢, = 10000, as a

function of c,.

C, a N

3

A

n

0.25 1.4 90

0.50 1.4 90

0.75 14 90

—1296.408751695166249416336 / 35

~1074.567775210872886170689 / 88
—861.8866820289173763017492 / 91
—659.5154356829335920393668 / 67

—1647.930675290045502028518 / 17

—1407.017125267978036042450 / 49

—1174.069091277533492714275 / 74
—949.8921122676190060284722 / 21

—2002.685368625287806885737 / 36
—1743.496266574938498655389 / 88
—1491.483476175760688786027 / 26
—1247.271556935708503649640 /39

WN -0 WN-=0 WNh =0

The potential (1.3) with v, < 0 (Fig. 1) is best
characterized by the equation

V(x) =v,x*(x + a)x —b), 4.1

where a and b are positive parameters. Assuming
that b > a4, V(x) can be written as

V(x) = b4v4(—g)2(% ; %)(% - 1), 4.2)

which implies transforming the variable from x to
x/b. Therefore, the Schrodinger equation takes the
form

d2
[_EE + oy x?(x + ))(x — 1)]‘1'(3() = AV¥(x),

(4.3)

TABLE V
The rate of convergence of the method as a
function of o, where V(x) = 0.01x2(x + 0.25)(x — 1).

o N Ao
4 10 0.20/23
5 12 0.22021/73
6 15 0.2204959/79
7 18  0.22049693320/88
8 26 0.220496933551375 /91
9 36 0.22049693355138318117 /19
10 50 0.220496933551383181180584100 /02
11 56  0.22049693355138318118058410122 /23

where

a
¢, = bby,, =1 A=Db2E. (4.4)
Now, the rescaled equation contains only two
eigenvalue parameters c¢; and ¢, such that

>0, 0<c¢ <1, 4.5)

giving the possibility of the systematic investiga-
tion of the problem in a concise manner. We may
return back to the original coupling constants by
using the relationships

v, = —c;cb7t, vy = —c;(1 —¢c,)b7%, v, =c;b78,
4.6)

where the absolutely greater root b of the potential
remains as a free parameter. Note also thatif b < a
then we are confronted with a potential which can
be obtained by interchanging the two wells in
Figure 1. As a results, there is no need to consider
such an eigenvalue problem since its spectrum is
obviously equivalent to that expressed by Eq. (4.3),
in any symmetrical interval of x.

Within this formalism, the infinite interval of
x, x € (=, ), is approximated by the finite one,
x € [—a, al, setting B = a, which imitates the
symmetry of the domain. The numerical results
are reported in Tables I-1V for ¢; values of 0.01, 1,
100, and 10000 respectively, as a function of c¢,.
The range of ¢, is covered by choosing c, = 0.25,
0.5, and 0.75. It is clear that the left-hand limiting
value of ¢,, ¢, =0, does not represent a double-
well oscillator anymore where the potential has an
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inflection point at x = 0. On the other hand, ¢, = 1
corresponds to a symmetrical two-well potential
which was examined extensively in [1]. The
last table (Table V) demonstrates the rate of
convergence of the method in calculating error
bounds for a specimen problem as the boundary
parameter o varies.

In the tables, n is the state number, and N
stands for the number of basis functions required
to get the recorded accuracy. The energy eigenval-
ues are tabulated according to Zitnan’s [2] nota-
tion. For instance, 0.22021 /73 in Table V denotes
two-sided eigenvalue bounds such that

0.22021 < Ay < 0.22073, 4.7)

where the lower bounds are truncated and the
upper bounds are rounded up. An inverse proce-
dure is adopted for negative eigenvalues. We no-
tice from the listed energy eigenvalues that they
are correct up to more than 20 digits. Furthermore,
Table V implies evidently that the accuracy of the
results may, step by step, be improved depending
on the machine accuracy.

The basis sets described in this work to deter-
mine lower- and upper-bound eigenvalues lead to

very rapidly converging algorithms with almost
the same rate. Consequently, we have shown, both
analytically and numerically, that such simple
trigonometric functions can be used effectively in
solving asymmetrical problems as well. The results
presented with this high degree of precision may
be regarded as a guide to future numerical calcula-
tions. Moreover, it is straightforward to extend the
method to two-dimensional Schrédinger equation
with asymmetrical potentials, as was done for the
symmetrical problems [7].
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