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ABSTRACT - 
A new version of solutions in the form of an exponentially weighted power series is 
constructed for the two-dimensional circularly symmetric quartic oscillators, which 
reflects successfully the desired properties of the exact wave function. The regular series 
part is shown to be the solution of a transformed equation. The transformed equation is 
applicable to the one-dimensional problem as well. Moreover, the exact closed-form 
eigenfunctions of the harmonic oscillator can be reproduced as a special case of the 
present wave function. 0 1996 John Wiley & Sons, Inc. 

1 .  Introduction 

he Schrodinger equation with the Hamilto- T nian of the form 

is a simple, though nontrivial, quantum mechani- 
cal model which has been investigated very exten- 
sively in the last 25-30 years. Several methods, 
both analytical and numerical, have been devel- 
oped to determine the energy eigenvalues En,  and 
the eigenfunctions Tnr of the eigenvalue problem: 

in which 

(1.3) lim W r )  = 0, 
1rl-a 

r = (x, y ) .  

There is, unfortunately, no exact solution which 
can be expressed as a finite combination of ele- 
mentary functions except for the case of p = 0, 
where the potential simplifies into the harmonic 
oscillator V ( x ,  y) = x 2  + y2. 

In this article, we deal mainly with the circu- 
larly symmetric oscillators when aI2 = 1. If we let 
x = r cos 13 and y = r sin 8, the problem then turns 
out to be a separable one, and its radial part is 
found to be 

H q  = E q ,  (1 .a = E R ( r ) ,  r E [ O , ~ )  (1.4) 
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for 1 = 0,1,. . . . Now, the radial wave function 
R( r ) obeys the conditions 

lim R ( r )  = 0, lim R ( r ) :  Finite. (1.5) 

It is conventional to factor off the function rl ,  i.e., 

R ( r )  = r lQ, (r ) ,  (1.6) 

where the differential equation satisfied by W r )  is 

r - m  r - 0  

TQ, = €@, 

r E [ O , ~ ) .  (1.7) 

It is readily shown that for p = 0 Eq. (1.7) has 
exact solutions of the form 

n 

= e-(1/2)r2 f k r 2 k ,  n = 0,1, ..., (1.8) 
k = O  

where 

-(k + l ) ( k  + I + l ) f k + l  + ( k  - n)fk = 0, 

k = 0 , 1 ,  ..., n - 1  (1.9) 

with eigenvalues 

E E En, = 2(2n + 1 + l), n,Z = 0,1, ... . (1.10) 

The polynomial factor in (1.8) may be written in 
terms of associated Laguerre polynomials L'," with 
argument r '. 

We should note that the one-dimensional 
Schrodinger equation with a quartic anharmonicity 

+ x 2  + px4 - E 

will also be considered here in connection with 
(1.7). 

To provide a detailed historical perspective 
about the problem being considered is unneces- 
sary. We indicate only a few properties and some 
of the major trends with their basic outlines. This 
system has a real positive spectrum which is dis- 
crete for each 1 fixed. Furthermore, two regimes of 
eigenvalues referred to as the "near harmonic" 
and "near pure anharmonic" may be distin- 

guished depending on the anharmonicity constant 
p and the quantum number n. 

A perturbation series solution to (1.2) can be 
shown to be divergent for all p > 0 [l-31. There- 
fore, a perturbative treatment of the problem is 
valid only for the nearly harmonic regime. WKB- 
type analyses, on the other hand, give satisfactory 
results in the pure anharmonic regime [4-61. In 
variational as well as in Hill's determinant meth- 
ods, the wave function is generally expanded in 
terms of the scaled eigenfunctions of the harmonic 
oscillator [ 7-10]. Besides, there are, of course, sev- 
eral numerical procedures to solve eigenvalue 
problems of this kind [ll-171. 

The Hill-Taylor approach to the construction of 
series solutions used the correct asymptotic behav- 
ior of the wave function as a weighting factor 115, 
181. In general, the behavior of a physical system 
modeled by a differential equation is most interest- 
ing in the vicinity of singular points. Actually, 
singular points determine the principal features of 
the solution to a large extent. Equations (1.7) and 
(1.11) have irregular singularity at infinity. An 
extra regular singular point of the radial Schrodi- 
nger equation is located at the origin, which has 
already been taken care of by the factor rl in (1.6). 
So, it is useful to examine the asymptotic behavior 
of the wave function for very large values of r .  
The leading order asymptotic solution of TQ, = 

EQ,, which vanishes as r -+ 00, is 

After substitution of this into the equation, we see 
that 

To be more accurate, the next-order correction is 
taken into account by writing 

which makes the ratio T@/@, 

(1.15) 

as r -+ m. Even the last form which is introduced 
in Hill-Taylor approach is not enough, because 
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the ratio T@/@ does not lead to E as r -j W. The 
linearity of T implies immediately, from (1.71, that 

Tk@ = Ek@, T o  3 1, k = 0,1, ... (1.16) 

and that T @ / @ , T 2 @ / @ ,  ... are all bounded. 
Therefore, the desired asymptotic solution should 
be taken in the form 

, (1.17) ,,) c -  ( 1 / 3 ) ~ r ’ - ( 1 / 2 ~ ) r - ( 1 / 2 ~ 2 / + 3 ) 1 n r  

for which the ratio 

(1.18) 

is bounded as r + m. Now, it is not difficult to 
show that T 2 @ / @ ,  T 3 @ / @ ,  . . . are also bounded 
as r + =. Hence, a full solution in the form of 
power series weighted by (1.17) may be proposed. 
The series part of such a candidate solution is 
expected to be regular for all r including infinity. 

One more obvious fact is that if we had the 
exact solution at hand we would derive continu- 
ously the closed-form eigenfunctions given in (1.8) 
as /3 approaches zero. However, the exponential 
factor in the above-mentioned candidate solution 
can never turn out to be e - ( ’ / 2 ) r 2  as /3 + 0 in a like 
manner. This simple heuristic argument suggests 
evidently that there is still something missing. 

Moreover, in the one-dimensional case, we are 
confronted with an additional complication due to 
the appearance of an absolute value function in the 
leading term of the asymptotic solution. Clearly, 
Eq. (1.11) has solutions of the form 

for sufficiently large values of 1x1 satisfying the 
boundary conditions at infinity. As a result, if we 
look for solutions in this way, it would be neces- 
sary to match the two eigenfunctions valid for 
x > 0 and x < 0, respectively, at x = 0. 

In the following text, an appropriate coordinate 
transformation of the independent variable is pro- 
posed that clears up the difficulties pointed out 
above. We then determine the exponential part by 
taking into consideration not only the asymptotic 
behavior of the wave function, but also the re- 
quirement that T@/@ has to be bounded as r * W. 

Finally, it is shown that the eigenvalues of the 
problem may be computed to any desired accu- 
racy by converging Hill’s determinant procedure. 

2. The Transformed Problem 

Instead of (1.7), it is more convenient to con- 
sider the rescaled equation of the form 

X @ ( r )  = u E @ ( r ) ,  (2.1) 

in which the parameter u is defined by 

u = (1 + p) - ’ I 3  (2.2) 

in terms of the original coupling constant p. The 
new system parameter v lies between 1 2 u 2 0 as 
p varies from zero to infinity. The discussion in 
the first section motivates the introduction of the 
following coordinate transformation: If we change 
the independent variable from r to [, 

[ =  (1 + ar2)-’”, 0 < a < m ,  (2.3) 

the ”point at infinity” is taken into the origin on 
the &axis. We hope that the nonnegative parame- 
ter a will help somehow to extract the exact har- 
monic eigensolutions. 

The Schrodinger Eq. (2.1) then becomes 

f@(  5) = uE@( 5 > ,  5 E [0,1], @(O) = 0, (2.4) 

where the transformed Hamiltonian f is of the 
form 

1 - u 3  1 2 
u2  1 +-  7 - 1  +T - -  
a ( 5  ) a ( 5 2  1) . (2.5) 

From the aforementioned considerations, the wave 
function should contain an exponential factor, 

because of the irregular singularity located at 5 = 

0. Substituting (2.6) into (2.4), we have, for small 
5, the result 
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which shows that f@/@ remains finite at 5 = 0, if 

The function (2.6) can be rewritten as 

with a and b being dependent upon a, and c 
defined by (2.8). From (2.10), we see that (Y tends 
to zero when v is equal to 1. But the case of v = 1 
corresponds to a harmonic oscillator problem 
whose wave function contains the well-known ex- 
ponential factor e - ( 1 / 2 ) r 2 .  We may, therefore, argue 
that - + bt-’ in (2.11) should converge to 
- i r 2  as a ---f O+. Thus, we must have 

(2.3.2) 

from which it follows that 

lim [-+.(I + $ar2 + $ y 4  + - . - )  
a+0+ 

+ b ( l  + s a y 2  - ; a 2 y 4  + -.+)]  = - $ r 2  (2.13) 

and that 

( ~ ( a  - b )  = 1. (2.14) 

Obviously, the constant term - ;a + b on the 
left-hand side of (2.13) is unimportant since it 
changes only the proportionality constant implic- 
itly defined in (2.11). Hence, the mathematically 
elegant formula for a, 

a = (1 - v 3 ) [ l  + (1 - v 2 ) 1 ’ 2 ] - 2 ,  (2.15) 

is obtained, being a smooth bounded function of 
v. Note that absolute extremum values of a calcu- 
lated at v = 1 and v = 0 are, respectively, 0 and t. 
Finally, the determination of the other parameters 
can be accomplished by the relations 

(2.16) - 3 / 2  a = (1 - v3) a 

and 

If we now look at the rescaled one-dimensional 
quartic oscillator 

= v E ~ ( x ) ,  x E (-=,=) (2.18) 

in the same picture, we can make use of the 
similar mapping 

5 = (1 + a x 2 ) - ’ / ’ ,  5 E [0,1] (2.19) 

which is no longer one-to-one. However, using the 
fact that the wave function is either symmetric or 
antisymmetric, there is no complication in return- 
ing back to the original variable x .  Furthermore, 
we observe that the treatment of the problem is 
completely unaltered in form provided that c = 1. 
Therefore, omitting expression (2.8) for c and let- 
ting c = 1 enables the independent treatment of 
the one-dimensional case in this context, without 
any modification. It should be noticed merely that 
the role of the transformation (2.19), here, is 
twofold. First, it removes the absolute value func- 
tion appearing in the asymptotic solution (1.19). 
Thus, a matching procedure is not needed any- 
more. Second, by means of (2.141, the exponential 
factor approaches the harmonic oscillator weight- 
ing function e - ( 1 / 2 ) x 2  as v -+ 1, as in the two- 
dimensional case. 

This kind of analysis consequently suggests the 
proposition of the exact wave function in the form 

@( 5 )  = 5 c e - ( 1 / 3 ) a f - 3 + b * - ’ F (  5). (2.20) 

It is clear that the required vanishing behavior of 
@( 5) at the origin of the transformed domain is 
fulfilled if F( 5 grows no faster than d1/3)af-3 as 
5 -+ O+. Transforming the dependent variable from 
@( 5) to F (  t) ,  it is shown that F (  5) satisfies the 
differential equation 

(2- v E ) F ( ( )  = 0, cE(O, l ] ,  (2.21) 

where the operator 2 is defined by 

d 
+2be4 - 4 t 3  + 2(a + b ) t 2  - 2aI- 

d 5  

+ a(c (c  + 2)54 - b(2c + o f 3  

+ ( b 2  + c2 - 3c)f2 

+[a(2c - 1) + 2b15  - b 2 ) .  (2.22) 
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Since the resulting eigenvalue equation admits a 
regular solution for F( (> which remains finite for 
all sufficiently small positive (, the wave function 
in (2.20) really satisfies the boundary condition. 
This will be justified properly in Section 4. 

Equation (2.21) has regular singular points at 
5 = f 1 apart from the essential singularity at the 
origin, in the (-complex plane. The point 5 = - 1 
is, however, out of the interval of interest. Accord- 
ing to the basic theory of differential equations, a 
series expansion of F (  () about the point 5 = 1 is 
sure to exist with a unit radius of convergence. 
Such a solution is, therefore, valid in the whole 
physical domain of ( and vanishes at ( = 0 when 
it is multiplied by the function in (2.11). 

3. The Series Solution 

Owing to the regular singularity of the point 
5 = 1, it is natural to seek solutions for (2.21) of the 
form 

(3.1) 

where the factor ( -2/01)" in the coefficients of the 
series has been introduced for convenience. Substi- 
tuting (3.1) into the eigenvalue equation, shifting 
indices of summations, and equating coefficients 
of like powers of (( - 1) to zero yield 

p(2p  + 2c - 3) = 0 (3.2) 

and 

with n = 0,1, ..., where f -4  = ... = f - ,  = 0. 
Equation (3.2) is the so-called indicia1 equation 

whose roots p1 = 0 and p2 = 4 - c are the expo- 
nents of the singularity at ( =  1. For the two- 
dimensional oscillator, however, the second root 
p2 leads to a series solution containing most likely 
a logarithmic term, which is to be rejected since it 
does not satisfy the regularity condition at 5 = 1, 
or, originally, at Y = 0. On the contrary, in the 
one-dimensional case where c = 1, both roots 
p1 = 0 and p2 = i make sense, representing, re- 
spectively, the even and the odd eigenfunctions 
due to the fully symmetric structure of the starting 
potential V ( x )  = x 2  + px4.  

From the fifth-order difference Schrodinger Eq. 
(3.3), we determine the coefficients f n  of the series 
solutions corresponding to each admissible energy 
E .  Linear combination constants of those solutions 
can then be evaluated from the usual normaliza- 
tion condition. 

By means of the definition of a truncated 
solution, 

(3.4) 

the infinite series (3.1) can be split into two parts: 

where the remainder S ( N ;  () vanishes for suffi- 
ciently large values of N, since F (  5 is convergent 
in 5 E (0,1]. Now if we replace the problem (2.21) 
by the truncated one, 

[2- u E ( N ) ] F ( N ;  5 )  = 0, (3.6) 

it is easily seen that the substitution of (3.5) into 
(2.21) gives the relation 
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and, hence, we obtain, formally, that 

lim E ( N )  = E .  (3.8) 
N-r 

In the truncated problem, the linear recurrences 
(3.3) may be regarded a homogeneous system of 
algebraic equations of order N. The coefficient 
matrix, A ( E )  say, of this system is of a banded 
Hessenberg form. Consequently, the roots of its 
characteristic equation are identified with trun- 
cated eigenvalues E ( N ) .  Therefore, we may calcu- 
late the spectrum to any desired accuracy by sys- 
tematically increasing the size N of the truncation. 
Certain specimen numerical results are presented 
in Tables I-V for the sake of illustration. 

4. Justification of the Procedure 

In his valuable article on Hill’s determinant 
method, Hautot [ 191 discussed the vanishing con- 
dition of det A ( E )  = 0. As was clearly stated there, 
this condition, which is based on one of the basic 
theorems of linear algebra about homogeneous 
systems of a finite number of equations, is not 
necessarily true when the system being considered 
is an infinite one. In fact, the condition det A( E )  = 0 
is also closely related to the square integrability of 
the resulting wave function. Here, we deduce that 
our wave function in (2.20) and (3.4) describes the 
physical phenomena in connection with the van- 
ishing of Hill’s determinant. 

As an explanatory guide, we first consider the 
one-dimensional harmonic oscillator 

W x )  = 0 as 1x1 -+ 00. (4.1) 

Writing 

w x )  = e-(1/2)x2y( x) (4.2) 

and showing that y( x) satisfies the transformed 
equation, namely, Hermite’s differential equation 

(4.3) y” - 2xy’ + ( E  - l ) y  = 0, 

we then suppose a solution in the form 

30 

y(x)  = c a , x Z “ + p ) ,  (4.4) 
n = O  

where p = 0 and $, i.e., even and odd states, 
respectively. Now the wave function (4.2) is a 
physical solution if y( x) does not grow faster than 
e(1/2)x2 as 1x1 --3 00. For large enough values of x, 
Hermite’s differential equation has solutions of the 
form 

y(x) = e A X 2  (4.5) 

upon substitution of which into (4.3) gives 

[4A( A - 1) x2 + 2 A + E - l ] e A x 2  = 0. (4.6) 

The last equation implies the two asymptotic 
solutions 

corresponding to A = 0 and A = 1, respectively. 
Therefore, if y(x) in (4.4) converges to yl(x) as 
x -+ 00, up to an unimportant factor, W x )  is then 
the desired solution. To ensure this, however, we 
take E = 1 as the ground-state energy, making 
y( x) exactly a constant and the corresponding ex- 
act eigenfunction. In this way, we furnish the full 
spectrum of the harmonic oscillator. 

TABLE I 
The ground and the first excited states eigenvalues of the one-dimensional oscillator as a function of p. 

P a  N E, (for p, = 0) N E,  (for p2 = $1 

0 
0.0000 1 
0.1 

1000 
m 

- 
3 
12 
18 
2.0 

1 
1.000007499868755 
1.06528550954371 8 
1.063978871 132805 
1.0603620904841 83 

- 3 
4 3.00003749896881 1 
14 3.306872013152914 
21 3.808683345938226 
21 3.799673029801 394 

a Eigenvalues are equal to p - ‘ I 3€”  for p > 1. 
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TABLE II 
Ground-state eigenvalues E,, as a function of p. 

P a  N E O O  

2 - 0 
0.00001 4 2.00001 9999550022 
1 20 2.952050091 962874 

1000 21 2.351 33891831 2985 
100,000 21 2.345131451302559 
io 22 2.344829072744275 

a Eigenvalues are equal to p -~ oo for p > 1 

In the present study, the transformed Eq. (2.21) 
plays the same role with Hermite’s differential 
equation. Similarly, it may by shown by direct 
substitution that the two asymptotics of (2.21) are 

F,( [ )  = Bounded, F 2 ( E )  = e ( 2 / 3 ) a C  ’ - 2 b t  ’ (4.8) 

as 5 + (I+.  Without giving a rigorous proof, it is 
not a surprise that after having solved the differ- 
ence Eqs. (3.3) in the asymptotic domain of n >> 1 
we get estimates leading to both F , ( c )  and F 2 ( E )  
for sufficiently small positive values of 6. As a 
consequence, if F ( 5 )  behaves correctly at the ori- 
gin, like F , ( [ ) ,  the wave function (2.20) then van- 
ishes at [ = 0. More specifically, from (3.5), we 
may write 

lim F ( [ )  = M(N) + c (i) (4.9) 
I? = N t + o +  

where M(N) is a finite number. To avoid the 
unphysical situation of F2( 5 ), we enforce F (  5) to 
remain bounded at 5 = 0 assuming that 

which is completely equivalent to equating Hill’s 
determinant to zero. Therefore, in our case, the 
condition of det A( E )  = 0 includes the requirement 
of square integrability of the wave function. Fur- 
thermore, it justifies our proposal of considering 
truncated solutions. 

From a numerical point of view, on the other 
hand, (4.10) allows us a backward calculation of 
the coefficients fn. This is important since the 
forward recursion in (3.3) spontaneously computes 
the dominant unbounded solution generated by 
F2( 8 ), whereas the backward recursion is suitable 
for the stable computation of the bounded solution 
required [ 201. 

5. Conclusion 

In this article, a series representation of the 
exact solution of an old problem of quantum me- 
chanics has been determined. The treatment is 
elementary so that further comments on the 
method itself are unnecessary. However, it may be 
interesting to examine particular cases. 

For j3 = 0, or equivalently v = 1 where a is 
equal to zero from (2.15), we have the harmonic 
oscillator problem. In the one-dimensional case, 
the new variable 5 may be written as 

and the solution (3.1) of the transformed equation 
becomes 

r 

F( X) = x~~~ c f l l  x2’l (5.2) 
n=O 

in terms of the original variable x, when a = 0. 

TABLE 111 
The first and the second excited state eigenvalues as a function of p,  when I = 0. 

Pa N N E * O  

- - 0 6 10 
0.00001 5 6.0001 39993550605 6 1 0.00037997225402 
1 22 10.882435557681 98 25 20.661 08269059789 

1000 25 9.543744980405963 28 18.75490371 420265 
100,000 25 9.53042971 6668896 29 18.7361 1048361 941 
7; 25 9.529781 38401 4808 29 18.7351 95504701 77 

a Eigenvalues are equal to p ~ ’13E,0 for p > 1. 
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TABLE IV 
First three eigenvalues as a function of p, where I = 1. 

~ ~~ ~~ ~ 

0 4 8 12 
0.00001 4.0000599980501 35 8.000239985901 665 1 2.00053995335796 
1 6.462905999863872 15.482771 577251 67 25.9691 6356856702 

1000 5.405485579551 944 13.82830384294424 23.7981 8784259574 
100,000 5.39475001 0063956 13.81 190784608358 23.776828651 74465 
co 5.3942271 641 72288 13.81 1 10953687373 23.77578876640046 

a Eigenvalues are equal to p - 1/3E,, for p > 1. 

The recurrence relation (3.3) then reduces to 

- (2n  + 2 p  + 1)(2n + 2 p  + 2)f,,+, 

+[4(n + p )  + 1 - Elf,, = 0, 

n = O , l ,  ..., (5.3) 

which implies that the series in (5.2) can be termi- 
nated at n = k so as to give Hermite polynomials 
of order 2(k + p )  [21], if 

E = E,  = 4(k + p )  + 1, k = 0,1, ... . (5.4) 

The last equation is the exact expression of the 
symmetric and antisymmetric harmonic eigen- 
values corresponding to p1 = 0 and p2 = i, re- 
spectively. 

Conversely, the use of (5.1) shows that the 
transformed Eq. (2.21) itself returns to Hermite's 
differential equation as a tends to zero. In entirely 
the same way, we can obtain the harmonic eigen- 
solutions given in (1.8) and (1.101, for the two- 
dimensional problem. Thus, the well-known exact 
solution of the harmonic oscillator can be repro- 
duced from the present solution as its limiting case 
for a = 0. 

Another extreme case, the infinite-field limit 
Hamiltonian, corresponds to p + 00, or v = 0. 
Now, Eq. (2.1) takes the form 

@ ( Y )  = 8 @ ( Y ) ,  (5.5) 
d2  21 + 1 d ( d r 2  Y dr 

which is called the pure quartic oscillator. Here, 
the eigenvalue parameter 8 is connected with the 
energy eigenvalues by the relation 

E = /31/327. (5.6) 

This is the usual asymptotic relation showing that 
the total energy of the system grows like as 
p -+ m. For this extreme case of v = 0, we may get 
the solution without any trouble where the param- 
eters a, a, and b have the following values: 

a = -  :, a = 8, b = 4. (5.7) 

Numerical evaluations for /3 9 03 are given in the 
last rows of the Tables I-V in terms of the eigen- 
value parameter 8. We see from the tables that 
there is no accuracy loss for this limiting case of p. 
In the tables, the eigenvalues for p > 1 are re- 
placed by P - ' I 3 E  to show how rapidly they con- 
verge to the p -+ 03 limit. 

TABLE V 
First three eigenvalues as a function of p, when I = 2. 

Pa  EO2 El2 

0 6 10 
0.00001 6.0001 19994900454 10.00035997450361 
1 10.39062729550378 20.29382970753589 

1000 8.943343403374937 18.33063381 077860 
100,000 8.928790864870353 18.31 121 872013153 
W 8.9280821 99849951 18.31027343240361 

€22 

14 
14.00071992861397 
31.42392978589736 
28.98790098571 932 
28.96396281 974264 
28.96279738893391 

a Eigenvalues are equal to p - 113En2 for p > 1. 
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In each table, various eigenvalues accurate to 16 
digits are reported. We present the first two eigen- 
values E,, of the one-dimensional quartic oscillator 
for some typical values of the coupling constant p 
including zero and infinity in Table I. Eigenvalues 
of higher-excited states were calculated within an 
excellent accuracy. However, the results are not 
quoted here since such tabulated data can be found 
in the literature, especially, in [8] and [15]. 

For the two-dimensional Schrodinger equation, 
the trivial eigenvalue ordering properties 

6 1 ,  1,1  > E,,,, (5.8) 

and 

E,, , ,?  > E, , , l , f  4 > 1 ,  (5.9) 

can be deduced from the Tables 11-V. Tables 1-111 
also include the truncated size N for which 
the converged eigenvalues are obtained. It is 
shown that the rate of convergence for the one- 
dimensional and the two-dimensional cases is more 
or less the same. We note that the eigenvalues E,,, 
of the circularly symmetric two-dimensional oscil- 
lators with such an accuracy are reported for the 
first time. Furthermore, the accuracy of our method 
is not limited by 16 significant figures. Actually, 
the accuracy o f  the eigenvalues may be improved 
arbitrarily depending on the machine accuracy of 
the computer. Here, we have never used a trunca- 
tion size N, which is greater than 30, for the 
calculation of E,,, with n ,  1 = 0,1,2. The results are 
in good agreement with previously published data 
[6, 8, 12, 151. 

It is straightforward to extend the present solu- 
tion for two-mode problem to N-mode oscillators. 
Another remark is that our main goal is to solve a 
morc general problem, for instance, the Schrii- 
dinger equation with the potential 

V (  .Y, ,t/) = X', x2 + zu, yz 

+ p(a, ,xd + 2a,,x2y2 + a2,y". 
(5.10) 

We observed that the treatment of the circularly 
symmetric case along this line provides an impor- 

tant background to this end. Further studies on 
more interesting problems are in progress, and 
they will be reported in due course. 
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