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Abstract

The eigenvalues of the Schrédinger equation with a polynomial potential are calcuiated accurately by
means of the Rayleigh—Ritz variational method and a basis set of functions satisfying Dirichlet boundary
conditions. The method is applied to the well potentials having one, lwo, and three minima. It is shown,
in the entire range of coupling constants, that the basis set of trigenometric functions has the capability
of yielding the energy specira of unbounded problems without any loss of convergence providing that the
boundary value @ remains greater than a critical value a.,. Only the computation of the nearly degenerate
states of multiwell oscilialors requires dealing with a relatively large truacation order. © 1993 John Wiley
& Sons, Inc.

1. Introductory Remarks

The dimensionless Schrodinger equation for a particle of unit mass moving in a
polynomial potential V(x)
a2
—o TV PG) = EY (), x € (o) (1.1)
X
has evoked a great deal of interest owing to its varied applications in quantum field
theory and molecular chemistry. Several methods have been proposed for treating
such problems. In‘a very recent paper [1] (hereafter referred to as P1), it was shown by
numerical experiments that the eigensolution of the Dirichlet boundary value problem,
where the wave function obeys the conditions

P(—a) = ¥(a) =0 (1.2)

can be effectively used to find the spectrum of an unbounded problem. In P, a critical
distance @, was defined, and it was shown that the low-lying energies F,(a) are
equal to those of & = ® to 30 digits if the boundedness parameter & is in the near
vicinity of e.,. A fairly detailed numerical application was made in PI to the quartic
anharmonic oscillator, where V(x) = x% + Bx*, and it was suggested that the method
could be extended to arbitrary polynomial potentials.

In this paper, we employ the Rayleigh-Ritz variational method and a basis set
of trigonometric functions similar to that of P, in order to solve both single-well
problems and multiwell oscillator problems with degenerate minima. The symmetric
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potentials considered here are the single-well osciilator:

Vix) = vyx®,  k=1-5 vy >0, (1.3)
the two-well oscillator: '
V{x) = —vx? + vyxt, va,v4 = 0, (1.9)
and the more complicated anharmonic oscillator:
V(x) = vax® + vex* + vgxb, vg > 0, (1.5)

which has three minima if appropriate relations between the coupling constants v; hold.

The potential (1.3) for & == 1 is the well-known harmonic oscillator problem that is
exactly solvable for x € (oo, ). In spite of this fact it is still of interest, especially
for testing various numerical methods [2-6]. The bounded harmonic oscillator was
also studied in several works {7-9]. For %k = 2, both bounded and unbounded
versions of the pure guartic oscillator were investigated in [10-14]. To the authot’s
knowledge, however, accurate eigenvalues of the pure sextic, V(x) = vgx®, the pure
octic, V{x} = vgx%, and the pure dectic, V(x) = v;0x'?, oscillators have not been
reported previously, although there are good upper and lower bounds from the work
of Crandall and Reno [15].

The two-well oscillator V(x) = —vyx® + vyx* (Fig. 1) Has atfracted the attention
of scientists for a long time. The very interesting property of its energy spectrum is
that the lower eigenvalues are closely bunched in pairs if the two wells are sufficiently
separated. This situation occurs for weak coupling when v4/v, < 1 and means that the

~ potential has nearly degenerate minima. Thus, the determination of the shift in energy

levels due to tunneling through a potential barrier becomes more important. In such
a case, the gap between the nearly degenerate eigenvalues has been investigated by
the WKB approximation {16], by the path-integral approach [17], and by perturbation
theory at large orders {18]. Banerjee and Bhatnagar [19], on the other hand, presented
accurate results for the eigenvalues by using an appropriately scaled expansion basis
and a recursive series method. Isaacson et al. used an alternative Rayleigh-Ritz
method for single- and double-well potentials with symmetrized oscillator functions
[20]. More recently, a two-step approach and a JWKB approximation have been
proposed by Hsue and Chern [21] and Sanchez and Bejarano [22], respectively, and
applied to the two-well oscillator. In this work, we shall consider both the regimes
of small and of large v4/vy values.

The doubly anharmonic oscillator V{x} = vox? + vax® + vex® is another interest-
ing model dealt with in this paper. This potential has been studied by using the theory
of continued fractions [23] and asymptotic series for wave functions and energy levels
{24]. However, the construction of its exact solutions has received considerably more
attention [25-29]. Actually, the wave function of the ground state must vanish as
x — o and must not have nodes. We can thus choose as our trial function

Yolx) = exp(j-% cax? + %czxz), cy > 0 (1.6)
Substituting this into (1.1), we see that (1.6) is an exact eigenfunction with the

corresponding eigenvalue expressible as

EO = 03, (1'7)
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A
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Figure 1. The shifted two-well oscillator: xp = [vz/{4V4)}”2, = vz/(4V4)
subject to a constraint on vy,
Vi = C% - 3(,‘4, (18)
where
12 I -172
Cq = Vg , Cy = '”“”"‘i‘“ V4V§_ . (19)

The other exact states are characterized by exponentially weighted polynomial wave
functions. This class of exact solutions is denumerably infinite but not complete.

Furthermore, the potential (1.5) gives a more general type of eigenvalue problem
involving three eigenvalue parameters, The potential has no extrema for positive
values of coupling constants, except for a single minimum located at the origin.
However, for v4 < 0 and vy, v > 0, the potential possesses multiminima and maxama
depending on certain algebraic relations between the relative magnitudes of vi and
vavg (Fig. 2). It is clear that two negative minima located symmetrically about
x =0 appear when v} > 4vpvg [Fig. 2()]. The two minima are tangent to the
x-axis if V4 = 4vyve [Fig. 2(i)]. There are two positive minima in the case of
3vavg < v4 < 4vovg [Fig. 2(111)] The potential has inflection points for v4 = 3vaVg,
and again only a single minimum at the orlgm appears provided that vi < 3vavg.
Thus, the potential V{x) = vox? + vgx* + vsx® possesses threc minima if and only
if vqa <0 and v:;a > 3v,v6. In this paper, the computations will be carried out for
these more interesting cases.

VRV

(i) (i#) (i)

Figure 2. The three-well oscillators.
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In the rest of this paper, Section 2 briefly reviews the variational method. Section 3
reports the extremely accurate numetical results for the aforementioned eigenvalue
problems. The last section includes a detailed discussion of the present results.

2. The Variational Method

Owing to the fully symmetric structure of the potentials considered in this study,
we can use even and odd trial functions separately, to avoid large matrices. If we use
the orthonormal basis sets

- 1y
bnx) = a ”zcos(m - —2—) - m=12... (2.1)

and
Bm(x) = a2 sin m»g« X, om=12.. 2.2)

for even and odd parity states, respectively, the trial function

Pr(x) = Z Frntm(x) (2.3)
m=]

satisfies the Dirichlet boundary conditions Wr{~wa) = ¥p(a) =0, where the f,, are
linear combination coefficients. The substitution of (2.3) into the differential equation

. }
( Ee RNt L IOET L N ) .
b i=1
and the use of the variational principle yield the secular equations
D Hun — E8uidfa =0, m=12,.., (2.5)
ne=]

where 8, is Kronecker’s delta and H,,, stands for the elements of the variational
matrix defined by

2 M
Hpyy = _<dd;§:’2m, ¢n> + Z VZi(x2i¢ms d’rl) (26)

ju=]

If the inner products are evaluated, we then find that

1V o2 < @ \H {0y 0
Hmn =lom - e ;“2“ amn + Z ?T— V"Zil:Rm-i‘n““i + Rm—n} (2'7)

2 i=1
for even parity states and
mi? M g o\ ) @
Hyp = "”‘"‘";'i— Smn + Z(”;;’_“) Vzg{R,{n}_n - Rm+n:| (28)

ju=]

for odd parity states [1]. Here, R,{f} is given by
"
0 _1_ 2i
Ry = - x* cos kx dx, (2.9)
0
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Tapie [ Critical distances e, and energy eigenvalues E, of single-well oscillators, V{x) = x%¢

function of k.

, a8 a

k @er n N Ey

H 190 0 30 1.000 Q00 000 000 000 9GO 000 OGO O0G GO
2 30 5.000 000 00C 000 GOO OGO 000 QGG 000 GO
4 30 9.000 000 000 000 GOG OGO 000 0GO 000 GO
6 35 13.000 000 Q00 00D GOG 00D 000 QGO D00 O
3 35 17.000 000 00C 000 GOG 000 000 QGO 00CG O

2 5.5 90 30 1.060 362 090 484 182 899 647 (46 016 69
2 35 7455 697 937 986 V38 392 156 591 347 19
4 35 16.261 826 018 850 225 937 894 954 430 4
6 35 26,528 471 183 682 518 191 813 828 183 7
8 49 37.923 061 027 033 985 146 516 378 551 9

3 3.75 0 35 1.144 8G2 453 797 052 763 765 457 534 15
2 4) 9.073 084 560 921 433 856 016 249 096 66
4 49 21,714 165 422 196 722 281 689 785 148 6
6 4) 37.613 086 560 895 160 889 601 543 047 5
8 40 56,199 300 852 499 359 421 090 060 527 1

4 3.15 0 45 1.225 820 113 B0OO 492 191 591 086 G26 63
2 45 10.244 946 977 236 854 744 232 174 213 0
4 45 25.809 (06 751 297 331 880 444 795 462 1
6 50 46.312 770 495 037 273 953 671 286 595 1
8 50 71039 257 675 878 442 936 631 970 7% 7

3 273 G 50 1.298 843 700 678 521 375 512 300 164 66
2 55 11.154 318 202 156 246 849 971 760 449 §
4 35 28971 467 212 683 700 397 910 508 847 2
G 55 53.192 305 771 130 587 955 968 056 186 2
8 35 83.014 287 075 568 004 814 542 010 610 5

which results in

) p*}‘k H
R Z (=1 ( 2i )(zpﬂ)g,,.,www}, k>0 (2.10a)

¥\ 2p + 1
. 20
G~ 21,1 o k=0 (2.10b)

Furthermore, if is possible to derive a recurrence relation of form
KR = 2iw? (-1 - 2i2i - DR{ ), i=1, (2.11)

with the initial condition R;EO) == [}; this is computationally more useful than the explicit
formula (2.10a).

3. Numerical Resuilts

Numerical computations employed quadrupie precision arithmetic on a VAX-11/780
computer. Present results for the eigenvalues of the well potentials are exact up to
the last figure. The symmetric variational matrices (2.7) and (2.8) are diagonalized by
the standard routines TRED2 and TQL2 [30]. The results correspond to the even and
odd parity state energies, respectively.
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In numerical tables, n shows the quantum number of the state and N stands for
the number of basis functions required to obtain the desired accuracy. The critical
distances ag, or Iy, at which the asymptotic energies can be caloulated to 30 digits,
are also included in the tables. Such distances may be found in a finite-difference
procedare when the calevlation is allowed to “find its own infinity” [31].

Within this framework, Table I contains the energy eigenvalues of the single-well
oscillator V(x) = vpx® as a function of k. We present only the even parity states
since the spectrum of such potentials is numerically well isolated, with none of the
eigenvalues close to each other. It is clear that the coefficients vo; can be set to
unity. This specification does not create any loss of generality, since a linear scaling
transformation on x transforms any case o vy, = 1,

For the double-well case, the potential V{(x) = —vyx? + v,x* may be investigated
in the form V{x} = —x2 + Bx* With the transformation of variable from x to v} x,
we deduce that the Hamiltonian H{vz, v4) has the scaling properties

H{va, v4) = v3 H(1, B) (3.1a)
E(v2,va) = vi"E(1, B) (3.1b)
er(va,vs) = v3 "ae(1, B), (3.1¢)
where the effective single parameter of the problem is defined by

o CB=v (6D

Thus, it is more convenient to consider the reduced potential V(x) = —x* + Bx*

Moreover, the operator shifted by 1/(48) is now positive definite. Therefore, the
results are given in terms of E(1,8) + 1/(48). In Table II, we present the nearly
degenerate eigenvalues for the case of 8 = 0.01. The ground and the first five excited
states of the symmetric two-well oscillator for larger couplings are reported in Table III
as 3 varies from (.05 to 100.

Numerical Tables IV-VIII are devoted to the doubly anharmonic oscillator with
three minima. We deal only with the case of v = 4vyvg [Fig. 2(i, ii)], where the
potential is of the form

Vx) = V2x2 - V4x4 + véxé, Vo, Vg, Vg = 0. (3.3)

As can be readily seen, such a polynomial has four real roots located at the points
x = Fa and x = Fb satisfying the relations a® + b? = vy/vg and a?b? = vy/ve. If
vi = 4wyvg, then'a = b. Therefore, the potential (3.3) may be rewritten in the form

Vix) = vex®(x* — a®}{(x* ~ b?) = bévﬁ(—;—)zli(%)z - g;}]:(%)z - 1:|,
(3.4)

which implies introduction of a new variable £:

£= 7. 56[“—2—,%] (3.5)
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TaBLE H. Nearly degenerate staies of the two-well oscillator for 8 = 0.01, where ey = 15,

f N E, + 25 = E, + 1/{4B}

0 55 1.404 048 605 297 706 882 425 707 570 82
i 55 1.404 048 605 297 706 888 602 566 280 56
2 55 4,170 193 605 969 310 127 833 875 071 30
3 55 4,170 193 605 999 310 219 613 291 198 73
4 55 6.870 088 833 714 024 612 172 315 168 49
5 35 6.870 088 833 714 046 802 425 995 681 89
6 55 9.498 578 387 187 870 055 194 418 356 55
7 55 9.498 578 387 191 178 212 320 856 961 14
8 55 12.049 309 486 334 (92 592 332 880 171 6
9 55 12.049 309 486 673 G06 847 573 3124779
10 60 14.514 205 022 981 239 103 429 421 443 9
il 60 14.514 205 048 121 017 338 991 612 415 8
12 G0 16.882 545 691 994 146 380 799 215 687 4
14 60 19.139 166 710 066 626 391 288 691 125 7
5 60 19.139 223 296 295 250 364 092 982 015 3
H 60 21.259 651 806 114 797 518 951 274 698 5
i7 60 21.261 337 849 110 831 987 157 265 245 7
i8 65 23.184 249 060 436 658 552 728 436 119 9
i9 65 23.218 098 293 156 870 760 576 623 817 4
20 65 24.705 339 712 918 880 372 982 237 097
21 65 25.024 274 304 596 992 258 984 339 940 8

The problem is therefore altered to

dz
[—&?5 + BLENE — BINET - 1)}‘1’(5) = bPEV(£), (3.6)
which involves two eigenvalue parameters such that
BL=bY®, B >0 3.7)
and
Bzm%, 0< B =1. (3.8)

According to our previous formalism, Eq. (3.6) is expressible as

[”j% + aag® — agft + a6§6}1’(§) = AW(£), cei-11, (39
where we set
L= A=bE (3.10)
and
ap = BiBy,  ai= UL+ BI).  as= B (3.11)

We can get back to the original coupling constants vy, v4, and vg with the assistance
of the scaling relationships

vy =b"%ay,  vy=b%as,  vg= b as (3.12)
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TapLg 1L Critical distances and energy cigenvalues of two-well oscillators, V(x) = —x? + Bx%, as a
' function of 8.

B Ler n N E, + E/(4)8)
0.05 10 0 a0 1.358 422 103 747 795 462 828 858 001 13
1 40 1.360 133 597 773 303 267 604 942 031 88
2 46 3.746 917 080 727 930 707 382 042 658 90
3 40 3.848 838 300 057 397 949 123 848 305 50
4 40 5,369 059 360 284 711 606 322 475 533 06
5 40 6.177 383 138 505 279 684 894 921 225 05
01705 7.5 0 35 1.005 907 534 732 669 494 259 934 270 98
i 35 1.465 339 922 207 691 593 693 811 222 26
2 35 3.120 683 650 166 030 901 005 016 518 38
3 35 4.822 552 955 152 711 227 915 786 027 28
4 35 6.876 623 854 334 6380 478 308 865 928 84
5 35 9.160 917 456 892 154 040 661 345 803 18
1 5 0 30 0.907 653 005 180 715 123 059 021 723 111
1 30 3.084 536 202 119 304 214 654 676 208 75
2 30 6.413 901 256 963 068 240 915 237 315 (02
3 30 10.288 646 120 711 576 043 356 901 150 3
4 30 14.622 406 504 677 868 855 906 567 619 7
5 30 19.335 714 685 024 187 731 696 964 367 6
10 3.3 0 T30 T 23T RTT 808 050 259 289 303 8007668 73
1 30 7.786 789 928 304 487 (98 125 425 821 37
2 30 15.505 39G 136 564 835 (78 358 830 03¢ 9
3 30 24.384 990 424 717 251 665 235 908 096 4
4 35 34,260 530 58% 304 058 305 960 711 826 1
5 "33 447997025 05 756998 ST TG 133y AT
160 235 G 30 4.845 921 891 362 033 319 863 475 050 73
1 30 17.444 197 413 120 973 381 603 569 929 (¢
2 30 34.340 152 315 559 552 006 178 212 246 2
3 30 53.716 507 749 978 459 831 472 443 757 7
4 35 75.085 977 797 358 526 304 872 975 386 8
5 35 98.128 314 922 737 976 133 113 220 237 5

By this representation of the potential in terms of 8, and B, it is now more suitable
to investigate systematically a very wide class of three-well oscillators.

The parameters of the potentials that have been treated in this work is given in
Table IV. It is seen that 5; changes from 0.1 to 100. For each 8;, almost the entire
range of B2, 0 < B, = 1, is covered by taking B, = 0.25, 0.5, 0.75, and 1. Table IV
also includes the scaled coupling constants gz, a4, and ag and the critical distances [,
determined by numerical experiments. Tables V~VIII present the energy eigenvalues
for 81 values of 0.1, 1, 10, and 100, respectively, as a function of 8. Further results
are available from the author.

4. Discussion

In this article, we have calculated the energy eigenvalues to 30 digits for single-,
double-, and triple-well oscillators. We have utilized a Rayleigh~Ritz variational
method with a trigonometric trial function satisfying Dirichlet boundary conditions
in order to characterize the wave function. The spectra of unbounded oscillators
are obtained by way of determining the critical boundary value «,, at which the
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TaBLE V. Critical distances and parameters for symmetric three-well potentials, V{x) = a2#% — qué%+
agé®, that kave been considered in this work.

Bi B2 a3 ag ag e

0.1 G.25 0.000625 0.010625 0.017
0.5 0.0025 0.0125 0.017
6.75 0.005625 0.015625 0.017
1 0.01 0.02 0.017

1 0.25 0.0625 1.0625 1 4
0.3 0.25 1.25 1 4
G753 0.5625 1.5625 1 4
1 1 2 1 4

10 0.25 6.25 ) 106,25 W0 225
.5 25 125 100 2.25
375 56.25 156.25 o 225
1 100 200 o 225

100 (.25 625 10,625 16,000 1.5
G.5 2,500 12,500 16,000 1.5
(.75 5,625 15,625 16,000 1.5
1 106,000 20,000 16,000 1.5

boundedness effect can be neglected within a precision of € = 107, This means in

Tapis V.  Energy eigenvalues of three-well oscillators for which 8; = (.1, as a function of B3.

B2 n N An

0.25 0 40 0.335 307 026 446 298 957 015 526 159 333
1 40 1.287 110,666 358 {14 585 506.963 448 47
2 45 2,724 811 069 636 117 883 128 640 525 60
3 45 4.522 212 252 801 926 241 946 683 868 23
4 45 6.609 220 487 761 567 182 040 296 892 G0
3 45 8.951 237 917 331 980 654 084 605 733 30

05 0 4G 0.332 116 066 854 572 291 094 228 348 607
1 40 1.275 553 314 002 056 240 034 119 051 34
2 40 2.703 526 109 589 289 247 940 196 718 40
3 40 4.491 717 977 552 185 003 (048 570 920 19
4 40 6.569 363 549 227 674 344 004 128 773 63
5 40 8.90% 944 681 037 717 945 153 326 746 26

0.75 0 40 0.326 645 214 722 982 248 (002 468 553 370
1 40 1.255 853 805 046 198 422 073 930 643 76
2 40 2.667 436 (112 514 089 230 854 613 924 84
3 40 4.440 184 663 233 381 652 222 278 882 27
4 40 6.502 181 794 358 978 131 859 394 550 86
5 40 8.818 898 973 884 978 753 (87 199 875 64

1 0 40 0.318 643 268 791 198 8065 205 457 459 093

1 40 1,227 304 410 786 912 506 557 783 174 75
2 40 2.615 564 864 492 694 881 454 901 628 20
3 40 4,366 501 625 615 184 730 872 620 528 28
4 40 6.406 274 504 379 244 660 515 793 874 41
5

40 8,700 720 053 739 730 114 276 862 784 54
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TabLe VI. Enesgy eigenvajues of three-well oscillators for which B = 1, as a function of 8;.

B2 n N An
0.25 g 40 0.854 669 975 506 280 847 213 537 311 741
1 40 3.429 073 560 937 156 85% 841 939 081 58
2 40 7.552 427 309 905 065.158 118 406 839 10
3 40 12,845 094 060 891 739 719 823 985 571 3
4 45 19.048 644 993 382 372 287 852900291 8§
5 45 26.058 863 040 156 756 193 494 175019 9
0.5 0 40 0.858 170 060 798 353 154 176 393 017 907
1 40 3.387 423 710 020 843 304 586 270 615 66
2 40 7.424 465 391 338 748 423 945 723 384 54
3 40 12,639 593 8§26 406 929 780 939 321 952 5
4 40 18.761 936 372 200 498 211 435 141 452 3
5 40 23.688 709 919 154 881 415 2905413974 1
0.75 g 40 0.861 062 938 121 661 908 094 126 564 928
1 40 3,307 111 458 904 039 770 721 335 794 05
2 40 7.193 850 653 694 506 452 887 888 752 36
3 40 12,276 899 552 793 310 442 498 464 225 1
4 40 18.261 032 877 984 289 837 728 035 327 7
3 4 25,045 974 703 319 195 661 405 477 402 2
1 0 4G 0.857 327 047 099 475 918 361 970 229 431
1 40 3,166 872 848 343 639 676 676 609 183 13
2 45 6.828 838 167 600 950 705 941 586 442 10
3 45 11.722 080 498 421 764 096 018 747 383 1
4 45 17.506 892 284 989 833 841 949 814 101 ¢
5

45 24.087 465 342 163 223 260 970 975 943 8

the computational sense that such an o, value represents infinity. It is noteworthy
that the method rapidly converges and its rate of convergence appears numerically to
remain unchanged, for o values in the vicinity of a,. Indeed, all computations made
here confirm this argument, which was first suggested and tested in PI. A more precise
estimate of the critical distances than the tabulated ones is thus unnecessary. On the
other hand, the critical boundary value of the two-well and the three-well oscillators
can be roughly approximated by using the simple scaling relation, acrv;kwk“), where
vy s the dominant coupling constant and «,, is the critical distance of the potential
V(x) = x% given in Table I. Thus, the estimation of the a,, value of a specific
polynomial having the asymptotic behavior x* is not a problematic aspect of the
method.

In a recent paper by Meson et al. {32], a similar basis set of trigonometric functions
has been proposed to calculate the eigenvalues of the generalized anharmonic oscil-
lators, V{(x) == w?x® + Bx¥ m == 2,3,.... Since the Hamiltonian of the problem
describes a particle moving inside a box of length two units bounded with impenetrable
walls located at' x = *1 whenm — 0, 8 = 1, and w vanishes, they claimed that the
trigonometric basis set could be appropriate if m is large enough; they gave numerical
results for m == 3 and m = 4, On the contrary, our numerical results given for the
V(x) = x* oscillator do not show this trend (Table I). As k increases, the critical
distance of o decreases due fo the contraction of the potential, which implies that
a0, tends to its limiting value a,, = 1. However, it is observed from Table [ that the
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algorithm provides the best converged results in the case of the harmonic oscillator
V(x) = x?. Furthermore, the rate of convergence falls off rapidly when & increases.
More specifically, the number of basis function required to reach 30 digits accuracy
for the harmonic oscillator is N = 30, whereas the same accuracy requires 3033
basis functions for the dectic oscillator V(x) = x!°. Hence, we may suggest, contrary
1o Meson et al. [32], that the trigonometric basis set is satisfactorily used for treating
all polynomial potentials with an asymptotic behavior proportional to x** if k is not
very large. Otherwise, the larger the k, the larger the dimension of the variational
matrix required. The diagonalization of a matrix beyond a certain size is, however,
intractable.

The ground-state eigenvalues in Table I are in excellent agreement with the
upper- and lower-bound results of Crandall and Reno [15]. Such an investigation
of the potential V{x) = x* is of stimulative interest. We can now expect that the
convergence rate in the case of the two-well oscillator V(x) = —x* + Bx* should
be similar to that for the potential V{x) = x*. We see from Table I that 30~35 basis
functions are sufficient to obtain the desired precision for V{x) = x*. Similarly, the
eigenvalues of the two-well oscillator for 8 = 0.1705 stabilize when N = 30-33
(Table 1II). The variation of B affects only the critical distances of «. As an
exceptional case, a slowing down of convergence is obviously seen for small couplings
whenever there are four classical lurning points in certain cases of the quantum number
n. In the regime of B8 = 0.1705, the lower eigenvalues are close to each other in pairs
owing to the tunneling through the potential barrier. The number of such pairs are
ten, two, and one for 8 = 0.01, 0.05, and 0.1705, respectively (Tables II and III).
When 8 = (.1705, the maximum value of the shifted potential is A = 1.466 and
there exist four classical turning points V(x) = E only for the ground and the first
exited states. 8 = 0.1705 is thus a threshold value after which the number of turning
points reduces to two and the probability of tunneling approaches zero.

In spite of dealing with a relatively large truncation order in the small B-regime,
the present method is as precise as in the other cases. If we recall the fact that
many methods fail for potentials with degenerate minima [11,17], the power of the
trigonometric basis sef in obtaining the nearly degenerate eigenvalues with such an
accuracy is quite impressive. Comparison shows that the eigenvalues calculated by
Banerjee and Bhatnagar [19] agree with our results to the accuracy quoted,

The numerical results tabulated in detail show that the method can be extended
with an arbitrarily high accuracy to the triple-well case (Tables V~VIII). In the wide
range of the cigenvalue parameters 3, and B2, we see that the acceleration of the
convergence is similar to that for the pure sextic oscillator V{x) = x° Again, this
confirms that one of the most effective features on the convergence of the method is
the asymptotic behavior of the potential under consideration. However, in order to give
further comments on the three-well oscillators, we need some additional information
about the potential function. A knowledge of extremum values is sufficient to this end.
Maximum and minimum values of V(&) = B}&2(£2 ~ B3)(£2 ~ 1) can be reached
at the points £ = &£, =&, where

&= 5[1+ 8- 08+ 8"
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TasLe VI Energy eigenvalues of three-well oscillasors for which g8) = 10, as a function of Sa.

B n N An
0.25 ¢ 45 ~2.144 142 136 157 253 649 145 754 388 76
1 45 -(,046 021 821 201 495 577 767 704 090 147 7
2 45 10.111 9635 267 772 315 974 265 604 (062 0
3 45 22,941 173 527 531 5357 527 700 375 158 6
4 45 38.213 051 604 415 762 444 281 085 078 1
3 45 56.174 147 620 357 614 094 103 640 564 2
0.5 [ 43 0.423 545 280 494 471 297 861 935 010 377
1 45 3.223 559 130 917 617 976 049 702 265 34
2 45 11.672 319 849 048 666 947 213 389 530 9
3 45 24.554 796 (197 684 641 027 666 177 011 7
4 43 39,475 830 006 202 543 553 667 911 199 3
5 45 56.931 170 613 938 735 906 519 020 5350 6
075 0 43 3.996 711 883 686 471 105 192 935 317 95
1 45 8.359 323 762 938 682 330 647 171 444 69
2 45 14.438 160 906 153 948 176 552 018 127 7
3 45 26.831 957 379 451 268 296 903 467 057 O
4 45 41.157 191 184 328 575 (93 423 974 083 3
‘5 45 57.658 083 192 268 668 745 879 771 582 6
i 0 45 7.608 748 395 957 152 937 532 052 985 28
1 45 s 14,312 152 647 125 3667051 432 781 614 2
2 45 17701 077 230 158 836 759 357 141 618 7
3 45 28.735 992 048 284 744 389 180 155 113 2
4 45 42,325 641 967 403 269 446 383 458 269 7
3 45 ) 57.186 591 978 338 673 787 917 956 380 0

1 172
R R R (I ) bl @.1)

and are equal 10 Vi = V(=& = V(&) and Vi, = V(—£)) = V{(£]), respec-
tively. Numerical values of Vi, and Vi, are given in Tables IX as a function of
B and B,. We now deduce from Tables V, VI, and IX that the number of classical
turning points, the high potential beyond which prevents tunneling, are two in the case
of B; < 10, being independent of B,. In this regime of B, the eigenvalues stabilize
when N = 40-43. For B; = 10, the number of turning points V{£} = A becomes
four or six in certain cases of n. For 8; = 100, the spectrum of the three-well oscillator
possesses an interesting nature. For this reason, we have included more quantum states
in Table VIII. We observe from this table that the lower eigenvalues are ordered in
pairs for By = 0.5, as in the double-well case. For B, > 0.5, the remarkable effect
of the central well is clearly shown. It is also clear that the computation of the nearly
degenerate eigenvalues requires a larger value of N,

The eigenvalues obtained by means of the Dirichlet boundary value problem are
upper bounds to the exact unbounded eigenvalues, so that a systematic investigation
on the boundary value @ provides a very good check on the accuracy of the results.
Furthermore, it is known that the eigenvalues of the von Neumann boundary value
problem

H¥(x) = E¥{(x), Vi~a) = ¥(a)=0 (4.2)
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TasLe VIH.  Energy eigenvalues of three-well oscillators for which 81 = 100, as a function of 8a.

Ba " N An

0.25 0 60 —1184.875 326 186 040 740 344 585 135 76
1 60 ~1184.875 326 186 040 740 312 064 459 48
2 65 ~883.276 315 720 872 020 227 881 486 583
3 65 —~883.276 315 720 871 741 9635 530 344 567
4 65 ~607.163 496 718 315 409 276 377 708 634
3 65 ~607.163 496 717 189 289 637 628 428 736
& 70 —360.887 954 337 848 639 620 600 876 823
7 70 —~360.887 951 469 771 638 089 679 874 408
8 70 ~152.159 114 323 48% 920 947 814 923 708
9 70 —152.153 940 833 194 009 879 331 806 850

0.5 o} 65 ~T790.585 705 216 079 643 338 596 233 435
1 65 —790.585 708 216 079 642 531 515 180 949
3 65 495,071 566 736 786 B47 564 696 115 182
4 65 —~230.179 480 41G 971 124 132 45) 586 775
5 65 —230.179 480 (G99 118 075 058 0665 245 389
3 70 ~5.044 017 759 142 943 (067 336 535 855 19
7 70 —5.031 334 305 097 900 834 048 485 199 54

0.75 0 65 ~217.466 334 381 900 222 273 752 983 93¢
1 65 —~217.466 334 381 900 170 359 (29 336 219
2 55 72.814 067 298 465 218 079 373 806 469 ¢
3 65 88.395 512 010 972 270 193 68G 088 672 2
4 65 88.395 512 398 082 883 823 841 713 938 ¢
5 55 213.657 578 332 372 658 733 130 130 401
& 60 343.956 820 391 174 797 916 660 839 617
7 70 357.244 165 194 238 403 670 888 908 641
8 70 357,269 937 779 7035 822 146 816 196 682

1 0 45 98.464 158 830 285 882 641 440 488 793 6
1 70 196.128 280 065 559 346 604 425 403 078
2 70 196,128 280 065 559 345 763 113 401 238
3 50 292.189 612 804 079 776 291 190 713 117
4 50 479.266 089 938 645 404 331 241 880 603
5 70 570.144 566 (333 208 140 811 664 580 736
6 70 5700144 566 033 313 025 752 666 013 G11

are lower bounds to the exact unbounded eigenvalues if o is greater than the root of
the equation V{(a) — E, == 032, 34]. This means that & must lie beyond the classical
turning points. Hence, the accuracy of the results may also be tested by employing
the lower bounds. For this purpose, we have solved the von Neumann boundary value
problem (4.2), which may be worked out in a similar fashion. In this case, we use
the orthonormal basis sets

Gmlx) = a 21 + 8,127 — )] cos(m — E)Z—x, m=12.. (43)
for even parity states and
Gmlx) = a”1? sin(m - %)g—x, m=1,2,... (4.4)

for odd parity states. In Table X, we report a specimen calculation made for the three-
well oscillator with 8; = 100 and B, = 0.25; this shows that there is no uncertainty
in the accuracy of the tabulated eigenvalues:
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TasLe IX. Maximum and minimum values of the potential function V(&) = aa£? — as€ + agéb.

B B Vinax Vinin

0.1 0.25 (0.060 009 —0.G01 343
0.5 0.060 187 —0.000 947
075 0.000 588 —~{.000 380
1 0.001 481 0

1 0.25 0.000 946 —0.134 373

0.5 0.013 740 —0.094 759
0.75 0.058 887 ~0.038 090
1 0.148 148 0

10 0.25 0,094 629 ~13.437 366
0.5 1.374 093 —-9.475 945
0.75 5.888 747 --3.809 030
1 14.814 814 0

160 0.25 9.462 909 —1343.786 635
05 137,409 335 —947.594 520
0.75 588.874 726 —380.903 083
1

1481.481 481 g

"TABLEX., A specimen accuracy test for the nearly dcg‘eneréte states of the three-wel} osufiator, ,81 - 100

and f; = (.25, using the upper and lower bounds 1o the exact unhounded eigenvalues.

# H Condition N An
t] 1 Dirichlet 20 ~1184.155
v. Neumann 20 —-1185.792
1.25 Dirichiet 45 —1184.875 326 186 040 740 276
v. Neumann 45 ~1184.875 326 186 040 740 414
i3 Dirichlet 60 —1184.875 326 186 040 740 344 585 135 76
v. Neumann 60 1184875 326 186 040 740 344 585 135 76
2 i Dirichlet 30 -879.250 ‘
v. Neumann 30 - 888.906
1.25 Dirichlet 45 —883.276 315 720 872 018 344
v. Neumann 45 ~883.276 315 720 872 021 551
1.5 Dirichlet 65 —883.276 315 720 872 020 227 881 486 583
v. Neumann 65 —883.276 315 720 872 020 227 881 486 583
7 1 Dirichlet 35 —-341.841
v. Neumann 35 —389.406
1.25 Dirichlet 45 - 360.887 951 469 771 579
v. Neumann 45 —360.887 951 469 771 699
1.5 Dirichlet 70 ~360.887 951 469 771 638 089 679 874 408
v. Neumann 70 —360.887 951 469 771 638 089 679 874 408
g 1 Dirichlet 35 —128.045
v. Neumann 35 ~183.901
1.25 Dirichiet 45 —152.153 940 833 193 817
v. Neumann 45 ~152.153 940 833 194 209
1.5 Pirichiet 70 —152.153 940 833 194 009 879 331 806 850
v. Neumann 70 ~152.153 940 833 194 00% 879 331 806 830
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Consequently, we may suggest that the present method is applicable quite generally
for eigenvalue problems having one or more minima and involving one or more
eigenvalue parameters. The method may be extended to periodic N-well potentials
in the futere [35]. The algorithm is quite rapid, and there is no accuracy loss in any
regime of the eigenvalue parameters. To give a rough idea about the time consumption,
we may say that a run for N = 40 consumes approximately one CPU minute. A
remarkable slowing down of convergence occurs only due to the existence of nearly
degenerate eigenstates. However, it is possible to obtain an arbitrarily high precision
depending on the machine accuracy in any case.
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