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In this paper a technique to obtain a first approximation for singular inverse Sturm–Liouville problems
with a symmetrical potential is introduced. The singularity, as a result of unbounded domain (−∞, ∞),
is treated by considering numerically the asymptotic limit of the associated problem on a finite interval
(−L, L). In spite of this treatment, the problem has still an ill-conditioned structure unlike the classical
regular ones and needs regularization techniques. Direct computation of eigenvalues in iterative solution
procedure is made by means of pseudospectral methods. A fairly detailed description of the numerical
algorithm and its applications to specific examples are presented to illustrate the accuracy and convergence
behaviour of the proposed approach.

Keywords: regular and singular inverse Sturm–Liouville problems; pseudospectral method; condition
number; regularization method

2010 AMS Subject Classifications: 31A25; 65F18

1. Introduction

Eigenvalue problems as well as inverse eigenvalue problems for differential equations are fre-
quently encountered in practice in connection with physical and engineering applications [11,23].
The Sturm–Liouville problem (SLP), containing the canonical form of a second order differential
equation

−y′′ + q(x)y = λy (1)

is of particular importance, where q(x) stands for a continuous real-valued function. The regular
SLPs on a finite interval of x with appropriate homogeneous boundary conditions are relatively
simpler than the singular problems on the whole real line (−∞, ∞). There are mainly two different
lines of approaches to calculate the eigenvalues and eigenfunctions of singular SLPs for a given
potential q(x) [25]. Roughly speaking, in the first, a domain truncation is used where the singular
SLP is approximated by a regular SLP over a finite interval x ∈ [−L, L] with L sufficiently large
[5,24,26,34,37]. The second type of methods is based on a series expansion of the solution via basis
functions intrinsic to an infinite interval, such as appropriately weighted Hermite polynomials or
sinc-functions [8,35]. Both approaches reduce the problem to a matrix-eigenvalue problem.
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1374 H. Altundağ et al.

On the other hand, inverse problems are much more involved than the direct problems, where
the main question is to determine the potential q from eigenvalues, notably the celebrated works
by Borg [7] and by Gel’fand and Levitan [17] stating the fundamental fact that two sets of data
sequences are required to uniquely determine a potential. A quick introduction to regular inverse
SLPs can be found in [10]. One approach is based on simple matrix methods. Another one consists
of transforming the regular SLP to a hyperbolic Cauchy or Goursat problem [27,31].A further type
constructs particularly suitable functionals which one has to minimize in recovering the potential
[9,30]. However, the recovery of q(x) from spectral data is a difficult and ill-conditioned numerical
problem. More recently a numerical approach based on Numerov’s method was proposed by
Andrew [3,4] to estimate the potential from eigenvalues by using asymptotic corrections, which
offers significant advantages. Similar technique was also used in [1,6,16,18,21,22] to construct q
with various initial data by means of Numerov’s method and a boundary value method.

The ultimate goal of this study is to introduce an approach for solving inverse SLPs with a
symmetric potential [18]

q(x) = q(−x), (2)

on x ∈ (−L, L), which also gives a first approximation for the singular problem over (−∞, ∞)

for increasing L. Thus the paper presents a novel approach incorporated with regularization
techniques. Some preliminaries for a pseudospectral discretization of a differential equation are
given in Section 2. The inverse problem is formulated in Section 3, where the regularization
process is also introduced. Section 4 deals with the construction of the algorithm and its numerical
implementations. Section 5 concludes the paper with certain remarks.

2. Pseudospectral discretization of the direct problem

The basic idea behind a pseudospectral method is to approximate the solution of (1) by a weighted
interpolant of the form

y(x) ≈ p(x) =
N∑

j=0

ω(x)

ω(xj)
φj(x)yj, yj := y(xj) (3)

in which the xj are distinct interpolation nodes, ω(x) denotes a weight function, and the φj(x) are
interpolating functions with the property φj(xk) = δjk for j, k = 0, 1, . . . , N , where δjk stands for
Kronecker’s delta. The interpolant p(x) and the exact solution y(x) agree, at least, at the nodes.
The choices of φj(x) classifies the pseudospectral methods as polynomial (Chebyshev, Hermite,
Laguerre) and non-polynomial (sinc, Fourier) cases.

We may also approximate the derivative y′(x) by making use of the derivative p′(x) of the
interpolant in Equation (3). Furthermore, the derivative values at the same N + 1 nodes xj can be
determined with the help of a differentiation matrix defined by

D(1) := [d(1)

kj ] =
[

d

dx

(
ω(x)

ω(xj)
φj(x)

)∣∣∣∣
x=xk

]
(4)

for j, k = 0, 1, . . . , N , leading to the system

y′
k := y′(xk) ≈ p′(xk) =

N∑
j=0

d(1)

kj yj, k = 0, 1, . . . , N (5)
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which is expressible, in matrix–vector form, as

y(1) = D(1)y, (6)

where y(1) = [y′
0, y′

1, . . . , y′
N ]T and y = [y0, y1, . . . , yN ]T are the vectors whose entries contain,

respectively, approximate values of the derivative y′(x) and the exact values of y(x) at the grid
points. Higher order derivatives of the function y(x) at the grid points can be approximated by the
same way [37,38].

In this work, we employ the non-polynomial Fourier (or trigonometric) pseudospectral method
(FPM), which assumes the equally spaced grid points on the interval [0, 2π ]. Thus we first convert
the original interval [−L, L] of x into [0, 2π ] by the scaling transformation

ξ = πx

L
+ π , ξ ∈ [0, 2π ] (7)

so that the SLP in Equation (1) subject to Dirichlet boundary conditions y(±L) = 0 becomes

− d2y

dξ 2
+ v(ξ)y = Ey, y(0) = y(2π) = 0, (8)

where

v(ξ) =
(

L

π

)2

q

(
L(ξ − π)

π

)
and E =

(
L

π

)2

λ (9)

denote the modified potential in ξ and the new eigenvalue parameter E , respectively. Now the
modified potential is symmetric about the line ξ = π , i.e. v(ξ) = v(2π − ξ).

In FPM, the weight is unity, and the interpolation functions are the so-called periodic sinc
functions conventionally taken as

φj(ξ) = 1

N

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin

[
N(ξ − ξj)

2

]
cot

[
(ξ − ξj)

2

]
for N even,

sin

[
N(ξ − ξj)

2

]
csc

[
(ξ − ξj)

2

]
for N odd,

(10)

where the grid points ξj = 2π j/N for j = 0, 1, . . . , N . At the point ξ = ξj, we define φj(ξj) = 1
as the limit of indeterminate form 0 · ∞. The use of sinc functions seems to be reasonable when
we keep in mind the periodic nature of solutions of (8) under Dirichlet conditions.

Then taking the first derivative of φj(ξ) and evaluating at ξ = ξk we see, from Equation (4),
that the elements of the first order differentiation matrix are expressible explicitly as

d(1)

kj = 1

2

⎧⎨
⎩

0 if k = j

(−1)k−j cot

[
(k − j)π

N

]
if k �= j

for N even, and

d(1)

kj = 1

2

⎧⎨
⎩

0 if k = j

(−1)k−jcsc

[
(k − j)π

N

]
if k �= j

for N odd. It should be noted here that the diagonal element d(1)
jj = 0 has been determined again

by a limiting procedure.
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1376 H. Altundağ et al.

Similarly, we have derived the elements of the second order differentiation matrix

d(2)

kj = − 1

12

⎧⎨
⎩

N2 + 2 if k = j

6(−1)k−jcsc2

[
(k − j)π

N

]
if k �= j

(11)

for N even and

d(2)

kj = − 1

12

⎧⎨
⎩

N2 + 1 if k = j

6(−1)k−jcsc

[
(k − j)π

N

]
cot

[
(k − j)π

N

]
if k �= j

(12)

for N odd. Therefore, the second order derivative values y′′
k := y′′(ξk) at the grid points may be

calculated approximately by a matrix–vector product

y(2) = D(2)y, (13)

where y(2) = [y′′
0, y′′

1, . . . , y′′
N ]T and D(2) := [d(2)

kj ] = [φ′′
j (ξk)]. Now if we propose a trial solution

y(ξ) =
N∑

j=0

φj(ξ)yj (14)

with φj(ξ) in Equation (10), the discrete representation of (8) via FPM is given by

(−D(2) +V)y = Ey, (15)

whereV = diag[v(ξ0), v(ξ1), . . . , v(ξN )] is the diagonal matrix generated by the modified potential
in Equation (9). Note that D(2) and V are both symmetric and square matrices of order N + 1.
However since Dirichlet boundary conditions in Equation (8) require simply that y0 = yN = 0 and
that deleting both first and the last rows and columns of the coefficient matrix, the system is reduced
to a matrix eigenvalue problem of order N − 1. As a result, the potential values v(0) = v(ξ0) and
v(2π) = v(ξN ) at the end points of the interval [0, 2π ] do not play any role in this algorithm.

3. The inverse problem

The inverse problem concerns with finding an M-vector whose components give an approximation
to a symmetric potential q(x) at grid points in the domain of interest under the assumption that the
first M eigenvaluesλ1 ≤ λ2 ≤ · · · ≤ λM of (1) are definite. In fact, we initially recover the modified
potential v(ξ) in the transformed SLP (8) by means of the rescaled eigenvalues E1, E2, . . . , EM ,
which are calculated immediately by formula (9) for the known set of λm for m = 1, 2, . . . , M
and a prescribed boundary parameter L. In this process we consider a nonlinear vector equation
in the form

T(v) = 0, (16)

which may be solved iteratively by Newton’s method, where the vector v represents the potential
function at M grid points, i.e. v = [v1, . . . , vm, . . . , vM]T with vm := v(ξm), and mth component
Tm(v) of the vector T(v) carries the difference

Tm(v) = Em(v) − Em, m = 1, 2, . . . , M (17)

so that the L2 norm ‖T(v)‖ defines a residual for the eigenvalues. Here, Em(v) denotes the mth
eigenvalue of (15) to be calculated as a function of iterated potentials starting with a prescribed
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International Journal of Computer Mathematics 1377

initial potential vector, say v = v0 = [v0
1, . . . , v0

M]T. Then it is appropriate to use the FPM described
in Section 2 with N = 2M + 1 for solving

(−D(2) +Vk)yk = E(vk)yk , k = 0, 1, . . . , (18)

where Vk = diag[v(ξ0), v(ξ1), . . . , v(ξM), v(ξM), . . . , v(ξ1), v(ξ0)] is constructed for each iteration
step k, keeping in mind the symmetry of the potential. Recalling that the first and last rows and
columns of the coefficient matrix are omitted to satisfy Dirichlet conditions, we have in practice a
2M × 2M system in Equation (18). Clearly, we need only the first M eigenvalues to define Tm(v)
in Equation (17) for v = vk . It should also be noted that the entries of the vector v so defined, now,
stand for the approximate values of the potential at ξm = 2mπ/(2M + 1) in (0, π), excluding the
end points due to the nature of the FPM.

If we assume that T(v) is differentiable with respect to v, we define the so-called Jacobian
matrix

A(v) = ∂T
∂v

:= [amn]M×M =
[
∂Tm

∂vn

]
M×M

=
[
∂Em

∂vn

]
M×M

(19)

whose generic element amn is ∂Em/∂vn. Then Newton’s method for Equation (16) leads to the
system T(v0) + A(v0)(v − v0) = 0, from which we have

T(vk) + A(vk)(vk+1 − vk) = 0 (20)

on generalizing the notation [12]. Now it is customary to introduce the Newton’s correction
	vk = vk − vk+1 as the unknown vector and solve the system

A(vk)	vk = T(vk) (21)

in order to update the potential vector by

vk+1 = vk − 	vk , k = 0, 1, . . . (22)

at each iteration. To this end, it remains only to evaluate the elements amn of the Jacobian matrix
[2,21]. It can be shown, after some algebra, that the derivation of amn is accomplished by the
simple formula

amn = 2(yn;m)2, m, n = 1, 2, . . . , M (23)

for every iteration step k, where the yn;m denote the first M non-zero entries of the mth eigenvector
ym = [0, y1;m, y2;m, . . . , yn;m, . . . , yM;m, yM+1;m, . . . , y2M;m, 0]T of (18).

3.1 Newton–Tikhonov–Phillips regularization

The linear system in Equation (21) cannot be solved for 	vk directly by taking the inverse
of the Jacobian matrix due to its ill-conditioned structure. The condition number defined by
‖A−1(v)‖‖A(v)‖ is a measure of ill-conditioning, which may be taken here as the ratio of the
largest and the smallest singular values of the Jacobian matrix. Indeed it is shown, from Table 1,
that such ratios and, hence, the condition numbers of A(vk) increase rapidly as k increases.
Therefore, we have to use a regularization technique to cope with this problem. In other words,
the nonlinear vector equation (16) will be solved by an inexact Newton method, which consists of
two parts [20,28,29]. The first part is the outer Newton iteration which updates the current iterate.
The second part is called the inner scheme providing updates by the approximate solution of a
local linear version of (16) in Equation (21), where a regularization is needed. So our objective is
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1378 H. Altundağ et al.

Table 1. The largest and smallest singular values of the Jacobian matrix A(vk) of order
M = 14 in the first five iterations, for the harmonic oscillator in Equation (27) with L = 7.

1. Iteration 2. Iteration 3. Iteration 4. Iteration 5. Iteration

1.0400531126 1.0559558703 1.1145072672 1.1537342403 1.1735723266
0.0062072726 0.0046273881 0.0000153561 0.0000003699 0.0000000002

to approximate the ill-conditioned system (21) of the inner scheme by a suitable well-conditioned
one.

A general representation of a linear regularization method is described by

	vk ≈ 	vk
α = gα(AT(vk)A(vk))AT(vk)T(vk) (24)

in which gα stands for a piecewise continuous filter function with a regularization parameter
α > 0. For example, the historical Tikhonov–Phillips (TP) regularization

gα(AT(vk)A(vk)) = [AT(vk)A(vk) + αI]−1

is obtained, when gα(σ 2
m) = (σ 2

m + α)−1, where the σm denote the singular values of the Jacobian
matrix for m = 1, 2, . . . , M. The purpose of the filter is to damp or filter out unwanted contributions
resulting from the small singular values. On the other hand, the generalized TP regularization reads
as

	vk
α = [AT(vk)A(vk) + αDTD]−1AT(vk)T(vk) (25)

in which the identity matrix I is replaced by DTD, where D is some differentiation matrix [13].
Let {σm; um, wm} be the singular system associated with A(vk) such that A(vk)um = σmwm.

Under the additional assumptions that ‖D−1‖ ≤ 1/β and DTD	vk = ∑M
m=1 β2

m〈	vk , um〉um with
{βk} ⊂ [β, ‖D‖] hold, it is shown that the inner scheme may be updated by

	vk
α =

M∑
m=1

σmgα(σ 2
m)〈T(vk), wm〉um (26)

with gα(σ 2
m) = (σ 2

m + αβ2
m)−1. The influence of D is obvious. The stronger summands are damped

by larger β values whereas in case of D = I all components are treated uniformly. In a sense such a
generalization allows us to penalize non-smooth solutions. By numerical simulations, the second
order Hermite differentiation matrix [15] is employed here as a penalizing matrix.

To determine a suitable regularization parameter α, we prefer to make use of the heuristic L-
Curve method since it is stable and practical.According to this method, one can plot the logarithms
of the constraint ‖D	vk

α‖ versus the norm of residual ‖A(vk)	vk
α − T(vk)‖ for various values of

the parameter α. Such a parametric curve has typically an L-shaped picture with a corner point
at which the best possible regularization parameter is reached in each iteration. To this end, the
curvature of the curve whose maximum identifies the corner, may be used (Figure 1). More on the
L-Curve method can be found by perusing the literature, see for example [19,36] and references
therein.

On the other hand, we control the outer scheme by means of the iteration number k. For this
purpose, we introduce a tolerance threshold ε, typically like ε = 10−6, and require that ‖	vk‖ <

ε‖vk‖. Nevertheless, we also set a maximum number of iterations Kmax = 50 to terminate the
procedure in any case.

It is worth mentioning, in practice, that the initial data, specifically the input eigenvalues λm,
may contain several errors in many times, what is called the noisy data λδ

m say. As a result of
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(a) (b)

Figure 1. L-Currves for two typical iterations. (a) k = 2 and (b) k = 6.
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k : Iteration number
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k −

v|
|/|

|v
||)

Figure 2. Behaviour of the relative potential errors ‖vk − v‖/‖v‖ as a function of iteration number k, where we have
used noisy data with %19 noise for the harmonic oscillator when L = 9 and M = 26.

the propagated data error, the increment of k beyond a certain size of iteration, say Kδ , is useless
for a further treatment of the problem in question (Figure 2). Actually, if a noise level δ, which
has been measured somehow, is known then Morozov’s discrepancy principle may be taken into
account to terminate outer Newton’s iterations in such a way that

‖Tδ(vKδ )‖ < τδ < ‖Tδ(vk)‖, k = 1, 2, . . . , Kδ − 1,

where the elements of the vector Tδ(v) is defined by Equation (17), i.e. T δ
m(v) = Em(v) − Eδ

m,
and τ > 0 is a prescribed scaling parameter [14]. It is shown, from Figure 2, that the threshold
iteration number so defined is about Kδ = 10.
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1380 H. Altundağ et al.

4. The algorithm and numerical results

The algorithmic structure of the proposed method and numerical results for two illustrative
examples are presented here.

4.1 Algorithm

The computation of a symmetric potential q(x) from one sequence of eigenvalues for the SLP on
x ∈ [−L, L] as a function of the boundary parameter L.

Input: Boundary parameter L; The first M eigenvalues λm of the SLP; The maximum number
Kmax of iterations k; Tolerance threshold ε (or, alternatively, τδ in a noisy case provided some
noise level δ is known)

(1) Transform the domain of the problem from x ∈ [−L, L] to ξ ∈ [0, 2π ] and find the rescaled
eigenvalues Em from Equation (9).

(2) Specify the grid points ξm = 2mπ/(2M + 1) in the half interval (0, π) for m = 1, 2, . . . , M.
(3) Choose the initial potential vector v0 = [v0

1, . . . , v0
M]T and set k = 1.

(4) Repeat until ‖	vk−1‖ < ε‖vk−1‖ or ‖Tδ(vk−1)‖ < τδ or k ≥ Kmax.
(a) Solve Equation (18) for E(vk−1) and yk−1.
(b) Construct Jacobian matrix A(vk−1) = [ak−1

mn ] by Equation (23) and T(vk−1) = [Tm(vk−1)]
by Equation (17).

(c) Approximate 	vk−1 by TP regularization in Equation (26).
(d) Update potential vector by vk = vk−1 − 	vk−1.
(e) Replace vk−1 by vk and k by k + 1.

Output: The potential vector v = [v(ξ1), v(ξ2), . . . , v(ξM)]T on ξ ∈ (0, π). Use symmetry for an
extension to (0, 2π). Then return back to the original variable x ∈ [−L, L] by Equation (7).

4.2 Numerical examples

We first attempt to reconstruct the quantum mechanical harmonic oscillator, where

q(x) = x2 (27)

having exact analytical solutions on x ∈ (−∞, ∞). Indeed, the first M eigenvalues of the direct
singular problem, determined by the simple formula λm = 2m + 1, are used as input data of the
present algorithm. This is motivated by the fact that the low lying state eigenvalues of the harmonic
oscillator, namely the first 25–30 of them, may be computed by the direct problem on x ∈ [−L, L]
to an accuracy more than 20 decimal points, when L is about 10 [32,33]. To be more specific,
the eigenvalues of the Dirichlet boundary value problem are decreasing as L increases and give
upper bounds to those of the singular problem, so that a systematic investigation on the boundary
parameter L provides a very good check on the accuracy of the results [34].Accordingly, we repeat
the calculations for successive values of L such as L = 7, 8, 9 and 10 to deduce numerically the
nature of convergence of the regular inverse problem in the approximation of singular potential
q(x) = x2.

Tables 2 and 3 introduce the relative errors in the potential as functions of L and M. We also
include the eigenvalue residuals in these tables as another indication for convergence. On the other
hand, the convergence rate of Newton’s method in Section 3 is linear, which may be seen from
explanatory calculations in Table 4 and from Figure 3(a). The linear convergence is inevitable
since the elements amn in Equation (23) of the Jacobian matrix can only be evaluated in terms of
approximate eigenvectors yk of (18) for each k.
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Table 2. Eigenvalue residuals ‖T(v)‖ and relative potential errors ‖vK − v‖/‖v‖ at
L = 7 and L = 8, as a function of M for the harmonic oscillator, where K is the last
iteration number.

L = 7 L = 8

M ‖T(v)‖ ‖vK − v‖/‖v‖ M ‖T(v)‖ ‖vK − v‖/‖v‖
12 1.845 × 10−2 1.247 17 2.271 × 10−4 1.834 × 10−1

13 1.104 × 10−3 1.799 × 10−1 18 2.903 × 10−5 6.028 × 10−2

14 2.311 × 10−3 2.355 × 10−1 19 3.716 × 10−6 4.841 × 10−2

15 7.968 × 10−4 5.353 × 10−2 20 9.920 × 10−4 1.770 × 10−1

16 1.766 × 10−3 6.573 × 10−2 21 1.025 × 10−4 3.677 × 10−2

17 2.501 × 10−3 1.016 × 10−1 22 3.083 × 10−5 6.315 × 10−2

18 5.388 × 10−3 1.365 × 10−1 23 1.321 × 10−3 8.660 × 10−2

Table 3. Eigenvalue residuals ‖T(v)‖ and relative potential errors ‖vK − v‖/‖v‖ at
L = 9 and L = 10, as a function of M for the harmonic oscillator, where K is the last
iteration number.

L = 9 L = 10

M ‖T(v)‖ ‖vK − v‖/‖v‖ M ‖T(v)‖ ‖vK − v‖/‖v‖
22 2.975 × 10−5 1.709 × 10−1 27 4.696 × 10−5 8.278 × 10−2

23 4.109 × 10−6 8.258 × 10−2 28 1.134 × 10−5 5.952 × 10−2

24 1.075 × 10−6 5.488 × 10−2 29 2.830 × 10−6 5.929 × 10−2

25 1.078 × 10−7 5.499 × 10−2 30 4.422 × 10−6 5.127 × 10−2

26 1.627 × 10−6 5.040 × 10−2 31 1.161 × 10−6 5.693 × 10−2

27 3.125 × 10−5 6.312 × 10−2 32 6.433 × 10−6 4.034 × 10−2

28 8.036 × 10−6 1.014 × 10−1 33 9.452 × 10−6 5.503 × 10−2

Table 4. Relative errors with respect to L2 and L∞ norms for
the modified potential vector in the case of harmonic oscillator as
a function of iteration number k, where L = 8 and M = 21.

k ‖vk − v‖2/‖v‖2 ‖vk − v‖∞/‖v‖∞

0 4.6798 × 10−1 3.2500 × 10−1

1 1.3510 × 10−1 1.4554 × 10−1

2 3.8651 × 10−2 7.6312 × 10−2

3 2.3898 × 10−2 4.7234 × 10−2

4 2.1068 × 10−2 4.0654 × 10−2

5 2.0102 × 10−2 3.8310 × 10−2

6 1.9631 × 10−2 3.7142 × 10−2

Another important remark is that the choice of an initial potential q0(x) has a vital role in
this process, which is typical for almost all algorithms in solving an inverse SLP. By numerical
experiments, we observe that the best converged results can be obtained with an initial potential
proportional virtually to the exact one, like q0(x) ∝ κ1q(x) + κ2, where κ1 is about 0.5 in the
classical harmonic oscillator case. The range of the second parameter κ2 is wider, typically between
0 and 100. Furthermore, the number of eigenvalues to be served is approximately M = 30. Hence,
Figure 3(b) demonstrates the reconstructed harmonic oscillator potential in this way.

As a second example, we apply our algorithm to reconstruct a symmetric double well potential
(SDWP)

q(x) = a4x4 − a2x2 + a0, a4, a2 > 0 (28)
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Figure 3. (a) Convergence behaviour of eigenvalue residuals; (b) reconstructed harmonic oscillator potential q(x). (a)
Convergence of eigenvalue residuals ‖T(vk)‖ as a function of k. Solid line (L = 7, M = 14), dashed line (L = 8, M = 19),
dotted line (L = 9, M = 25), and dashed-dotted line (L = 10, M = 31) and (b) reconstructed potential (L = 10, M = 31).

Table 5. Eigenvalue residuals ‖T(v)‖ and relative potential errors ‖vK − v‖/‖v‖ at L = 5, L = 5.5 and L = 6, as a
function of M for the SDWP, where K is the last iteration number.

L = 5 L = 5.5 L = 6

M ‖T(v)‖ ‖vK − v‖/‖v‖ M ‖T(v)‖ ‖vK − v‖/‖v‖ M ‖T(v)‖ ‖vK − v‖/‖v‖
20 4.494 × 10−5 1.299 × 10−1 30 1.591 × 10−3 1.074 × 10−1 47 1.570 × 10−4 1.045 × 10−1

21 3.851 × 10−5 1.244 × 10−1 31 6.496 × 10−5 1.251 × 10−1 48 2.817 × 10−6 6.836 × 10−2

22 4.316 × 10−5 1.155 × 10−1 32 7.480 × 10−5 7.364 × 10−2 49 1.994 × 10−4 9.079 × 10−2

23 3.673 × 10−5 1.014 × 10−1 33 5.102 × 10−5 8.740 × 10−2 50 8.065 × 10−5 4.879 × 10−2

24 2.414 × 10−4 8.532 × 10−2 34 2.803 × 10−5 6.409 × 10−2 51 5.751 × 10−5 5.830 × 10−2

25 1.074 × 10−3 7.558 × 10−2 35 1.656 × 10−4 8.728 × 10−2 52 1.217 × 10−4 4.068 × 10−2

26 2.448 × 10−3 5.658 × 10−2 36 3.709 × 10−4 6.064 × 10−2

27 1.965 × 10−2 1.675 × 10−1 37 9.085 × 10−5 5.298 × 10−2
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Figure 4. (a) Convergence behaviour of eigenvalue residuals; (b) Reconstructed SDWP q(x) in Equation (28). (a)
Convergence of eigenvalue residuals ‖T(vk)‖ as a function of k. Solid line (L = 5, M = 21), dashed line (L = 5.5,
M = 32) and dotted line (L = 6, M = 49) and (b) Reconstructed potential (L = 5.5, M = 32).

the lower eigenvalues of which are closely bunched in pairs if the two wells are sufficiently
separated, i.e. when a4/a2 � 1. In this case, the singular direct problem on x ∈ (−∞, ∞) pos-
sesses a nearly degenerate spectrum. We deal here with a specific SDWP with the coefficients
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a4 = 0.6, a2 = 8 and a0 = 40, whose first eight eigenvalues are nearly degenerate. The lower
eigenvalues of SDWPs had been calculated in [33] to a high accuracy by using again the Dirichlet
boundary value problem on x ∈ [−L, L]. Following the main argument in [33], we first determine
a critical value of L, which represents infinity in the computational sense, and use the result-
ing eigenvalues as the input of our algorithm in the inverse problem. Unfortunately, we observe
that the algorithm is much more sensitive to the initial potential q0(x) for an SDWP. Actually,
satisfactory results could only be reached when κ1 ≈ 0.65.

The relative potential errors and eigenvalue residuals are listed in Table 5. As in the harmonic
oscillator case, Newton’s method converges linearly, see Figure 4(a). Finally, the reconstructed
SDWP is shown in Figure 4(b).

5. Concluding remarks

In this article, we present an algorithm to solve inverse SLPs on x ∈ [−L, L] for a symmetric
potential q(−x) = q(x) from a knowledge of one sequence of eigenvalues. However, in our specific
examples, we make use of the spectra of the corresponding singular problems on x ∈ (−∞, ∞).
Therefore, our objective is to find an appropriate L, just as in the direct problem, at which the
singular potentials may be approximated to a satisfactory accuracy. For sufficiently small values
of the boundary parameter, for about 2–3, the algorithm behaves indeed regularly in the sense
that the problem seems to be well-posed. However, the singularity can in principle be tackled for
increasing L, leading to an ill-posed problem in the sense that a rapid growth of the condition
number of the Jacobian is encountered in the use of Newton’s method after discretization, which
needs a regularization process.

On the other hand, it is not possible to increase L arbitrarily due to the fact that the basis
functions (10) in FPM do not characterize the true asymptotic behaviour of the solutions of the
singular problem as x → ∞. To be specific, the harmonic oscillator eigenfunctions, for exam-
ple, behave like e−x2/2 at infinity. Clearly, our basis functions and, hence, the trial solution in
Equation (14) is far away from imitating such an exponential behaviour. This reflects the typical
property of an asymptotic convergence with respect to L, where a threshold value of which should
be determined. Numerical tests show actually that our algorithm incorporated with regularizations
provides satisfactory results when L is about 10 and 5.5 for the harmonic oscillator and the SDWP,
respectively.

We observe in the case of harmonic oscillator, for example, that as L increases from 7 to 10, the
better converged results could be obtained at the cost of a higher number M of input eigenvalues,
which is not surprising. In [16], the authors analysed the challenging question of whether the
solution of a regular inverse SLP converges to the exact potential function as M tends to ∞.
Unfortunately, a similar theoretical analysis seems to be extremely difficult in our case since the
problem is ill-posed with almost a singular Jacobian matrix, when L is beyond a certain size.
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[33] H. Taşeli, Accurate computation of the energy spectrum for potentials with multiminima, Int. J. Quantum Chem. 46

(1993), pp. 319–334.
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