# Two-sided eigenvalue bounds for the spherically symmetric states of the Schrödinger equation 

A. Zafer, H. Taşeli ${ }^{*}$<br>Department of Mathematics, Middle East Technical University, 06531 Ankara, Turkey

Received 20 January 1998


#### Abstract

The eigenvalues of the radial Schrödinger equation are calculated very accurately by obtaining exact upper and lower bounds. By truncating the usual unbounded domain $[0, \infty)$ of the system to a finite interval of the form $[0, \ell]$, two auxiliary eigenvalue problems are defined. It is then proved that the eigenvalues of the resulting confined systems provide upper and lower bounds converging monotonically to the true eigenvalues required. Moreover, each auxiliary eigenvalue problem gives rise to an orthonormal set involving Bessel functions. The matrix representation of the Hamiltonian is, therefore, derived by expanding the wave function into a Fourier-Bessel series. Numerical results for single- and doublewell polynomial oscillators as well as Gaussian type non-polynomial potentials illustrate that the eigenvalues can be calculated to an arbitrary accuracy, whenever the boundary parameter $\ell$ is in the neighborhood of some critical value, denoted by $\ell_{\text {cr }}$. © 1998 Elsevier Science B.V. All rights reserved.


AMS classification: 81Q05; 65L15; 42C10; 34L40; 34B30
Keywords: Schrödinger equation; Eigenvalue bounds; Polynomial and non-polynomial potentials; Fourier-Bessel expansion

## 1. Introduction

In the last decade there has been a great deal of interest in studying the discrete spectrum of the radial Schrödinger equation

$$
\begin{equation*}
\left[-\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}-\frac{q-1}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}+\frac{l(l+q-2)}{r^{2}}+V(r)\right] \Psi=E \Psi, \quad r \in[0, \infty) \tag{1.1}
\end{equation*}
$$

[^0]in $q$ space dimensions, where $q=2,3, \ldots$ and $l=0,1, \ldots$, subject to
\[

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \Psi(r)=0 \tag{1.2}
\end{equation*}
$$

\]

assuring the square integrability of the wave function $\Psi$. Furthermore, the solution should behave like

$$
\begin{equation*}
\Psi(r)=\mathcal{O}\left(r^{l}\right) \quad \text { as } r \rightarrow 0^{+} \tag{1.3}
\end{equation*}
$$

to compensate the regular singularity of the differential equation at the origin, provided that the potential function $V(r)$ does not grow faster than $r^{-2}$ as $r \rightarrow 0^{+}$. Essentially, two main classes of simple quantum mechanical systems of this kind are described by the potentials

$$
\begin{equation*}
V(r)=\lim _{M \rightarrow \infty} \sum_{k=0}^{M} v_{2 k} r^{2 k} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
V(r)=-\frac{\zeta}{r}+\lim _{M \rightarrow \infty} \sum_{k=0}^{M} c_{k} r^{k} \tag{1.5}
\end{equation*}
$$

where $\zeta, v_{2 k}$ and $c_{k}$ denote the coupling constants. Anharmonic oscillators and well potentials remain in the first class whenever the limit operation is removed and $M$ is set to be a positive integer in (1.4), giving simply a polynomial of degree $2 M$ with $v_{2 M}>0$. In general, any potential, for instance, the Gaussian potential of the form $-A \mathrm{e}^{-\mu r^{2}}$, which possesses a convergent power series in $r^{2}$ about $r=0$ can be represented by (1.4). The second class includes the hydrogen-like systems such as the screened Coulomb potentials. In particular, a perturbed Coulomb problem is encountered when the series in (1.5) is truncated. Hence, the problem of solving a radial Schrödinger equation occurs frequently in quantum field theory and molecular physics and is of importance for both theory and applications [1, 12].

The mathematical problem in (1.1)-(1.3) is a singular Sturm-Liouville problem for which the closed form analytical eigensolutions are available only for a few classes of potentials [16, 26]. It is, therefore, necessary to solve the eigenvalue problem approximately. Several particular forms of potentials in (1.4) and (1.5) have been treated by direct numerical integration techniques [5-7, 15, 23, 27, 32] by Rayleigh-Ritz variational and Hill determinant approaches [4, 17, 18, 21, 22, 30, 31] by Rayleigh-Schrödinger and inner product perturbation series [1, 10, 24, 25, 29] and by moment $[2,8]$ and phase-integral methods [13]. We do not feel that it would be appropriate here to attempt comparing the relative efficiencies of established methods. Indeed, they could be regarded as useful and worthy depending on their special limitations. For more discussions on the methods in [1, 2, $4-8,10,13,15-18,21-27,29-32$ ] we refer the reader to the aforementioned papers and references cited therein.

Although many methods produce good numerical results, almost all of them are potential function dependent and, in fact, their applicability is usually not uniform with respect to the parameters of a chosen potential function. Furthermore, most of them provide only some approximations to the eigenvalues, giving no bounds at all. For some methods providing eigenvalue bounds, see [27, 30, $31]$. In the preceding papers [21, 22] of the present authors, highly accurate results were achieved
by finding approximations which converge from above to the eigenvalues of the radial Schrödinger equation, when the potential is a polynomial.
In this work, we first prove a theorem in Section 2 which makes it possible to determine two-sided bounds for the eigenvalues $E$. In Section 3, expanding the solutions of two auxiliary eigenvalue problems, we obtain approximations to both upper and lower bound eigenvalues. The method is applied, in Section 4, to a general potential given by (1.4). Although we deal, in this paper, explicitly with a potential in the form of (1.4), the method can also be applied effectively to solve hydrogen-like systems in (1.5). In fact, the two classes of problems are related in higher-dimensional spaces, and there exists certain passage formulas between the anharmonic oscillators and the perturbed Coulomb problem [11, 14, 22]. The last section concludes the paper with a discussion of the results as usual.

## 2. The auxiliary eigenvalue problems

Transforming the dependent variable in (1.1) from $\Psi$ to $y, y=r^{(N-2) / 2} \Psi$, we shall consider the differential equation

$$
\begin{equation*}
\mathscr{L} y=E(\ell) y, \quad \mathscr{L}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}-\frac{1}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}+\frac{v^{2}}{r^{2}}+V(r), \quad v=l+\frac{1}{2} q-1 \tag{2.1}
\end{equation*}
$$

and impose the condition that

$$
\begin{equation*}
a y(r)+b r y^{\prime}(r)=0 \quad \text { at } r=\ell, \tag{2.2}
\end{equation*}
$$

where the prime stands for the derivative with respect to $r$, and $a, b$, and $\ell>0$ are real numbers. The regularity condition of a solution at the origin then becomes

$$
\begin{equation*}
y(r)=\mathcal{O}\left(r^{v}\right) \quad \text { as } r \rightarrow 0^{+} \tag{2.3}
\end{equation*}
$$

We should note that in this set up, the asymptotic boundary condition in (1.2) has been replaced by the condition in (2.2) on truncating the infinite interval of $r$ to $[0, \ell]$. Note also that the eigenvalues $E(\ell)$ of $\mathscr{L}$ tends to $E$ of the original Schrödinger operator in (1.1) as $\ell \rightarrow \infty$, when $a \neq 0$ and $b=0$.

For finite values of $\ell$, a solution $y$ is said to satisfy Dirichlet-type boundary condition if $a=1$ and $b=0$, and von-Neumann-type boundary condition if $a=0$ and $b=1$. We denote by $E^{+}(\ell)$ and $E^{-}(\ell)$ the corresponding eigenvalues of $\mathscr{L}$. In what follows, we make use of the inner product defined by

$$
\begin{equation*}
\langle f, g\rangle=\int_{0}^{\ell} r f(r) g(r) \mathrm{d} r \tag{2.4}
\end{equation*}
$$

relative to which the eigenfunctions of $\mathscr{L}$ are orthogonal.
We may now state our theorem on which the main idea of this paper based.

Theorem 1. If $E$ denotes $a$ bound state eigenvalue of the Schrödinger operator in (1.1) then the double inequality

$$
\begin{equation*}
E^{-}(\ell)<E<E^{+}(\ell) \tag{2.5}
\end{equation*}
$$

holds for all $\ell>0$ satisfying

$$
\begin{equation*}
V(\ell)>E \tag{2.6}
\end{equation*}
$$

Condition (2.6) is required only for the left-hand-side inequality $E^{-}(\ell)<E$ to be valid.
Proof. It is clear that each eigenfunction $y$ of $\mathscr{L}$ corresponding to the eigenvalue $E(\ell)$ depends on both $r$ and $\ell$. Without loss of generality, we may assume that $\langle y, y\rangle=1$. Treating $\ell$ as a variable, and differentiating (2.1) with respect to $\ell$, we obtain

$$
\begin{equation*}
\mathscr{L} \frac{\partial y}{\partial \ell}=\frac{\mathrm{d} E}{\mathrm{~d} \ell} y+E \frac{\partial y}{\partial \ell} . \tag{2.7}
\end{equation*}
$$

In view of (2.4) it follows from (2.7) that

$$
\begin{equation*}
\frac{\mathrm{d} E}{\mathrm{~d} \ell}=\left\langle\mathscr{L} \frac{\partial y}{\partial \ell}, y\right\rangle-E\left\langle\frac{\partial y}{\partial \ell}, y\right\rangle \tag{2.8}
\end{equation*}
$$

Applying integration by parts formula to the first integral on the right-hand side of (2.8) we find that

$$
\begin{equation*}
\frac{\mathrm{d} E}{\mathrm{~d} \ell}=-\ell\left[y_{r \ell}(\ell, \ell) y(\ell, \ell)-y_{r}(\ell, \ell) y_{\ell}(\ell, \ell)\right] \tag{2.9}
\end{equation*}
$$

where subscripts denote partial derivatives. On the other hand, since

$$
\begin{equation*}
\left.\frac{\mathrm{d} y}{\mathrm{~d} \ell}\right|_{r=\ell}=\left.\left(\frac{\partial y}{\partial \ell}+\frac{\partial y}{\partial r} \frac{\mathrm{~d} r}{\mathrm{~d} \ell}\right)\right|_{r=\ell}=y_{\ell}(\ell, \ell)+y_{r}(\ell, \ell) \tag{2.10}
\end{equation*}
$$

differentiating (2.2) with respect to $\ell$ we have

$$
\begin{equation*}
a\left[y_{\ell}(\ell, \ell)+y_{r}(\ell, \ell)\right]+b \ell\left[y_{r \prime}(\ell, \ell)+y_{r r}(\ell, \ell)\right]+b y_{r}(\ell, \ell)=0 . \tag{2.11}
\end{equation*}
$$

The following two cases may be distinguished:
Case 1: Dirichlet-type boundary condition: Let $y^{+}(r, \ell)$ be an eigenfunction of $\mathscr{L}$ satisfying the condition that $y^{+}(\ell, \ell)=0$. From (2.11) we write

$$
\begin{equation*}
y_{r}^{+}(\ell, \ell)=-y_{\ell}^{+}(\ell, \ell) \tag{2.12}
\end{equation*}
$$

and, hence, (2.9) reduces to

$$
\begin{equation*}
\frac{\mathrm{d} E^{+}}{\mathrm{d} \ell}=-\ell\left[y_{r}^{+}(\ell, \ell)\right]^{2}<0 \tag{2.13}
\end{equation*}
$$

implying that $E^{+}(\ell)$ decreases monotonically to its limit $E$ as $\ell \rightarrow \infty$.
Case 2: Neumann-type boundary condition: Now, we deal with an eigenfunction $y^{-}(r, \ell)$ of $\mathscr{L}$ subject to $y_{r}^{-}(\ell, \ell)=0$, in which case Eq. (2.11) leads to

$$
\begin{equation*}
y_{t r}^{-}(\ell, \ell)=-y_{r r}^{-}(\ell, \ell) . \tag{2.14}
\end{equation*}
$$

Setting $r=\ell$ and solving (2.1) for $y_{r r}^{-}(\ell, \ell)$ we see that

$$
\begin{equation*}
y_{\ell r}^{-}(\ell, \ell)=-\left[\frac{v^{2}}{\ell^{2}}+V(\ell)-E^{-}(\ell)\right] y^{-}(\ell, \ell) \tag{2.15}
\end{equation*}
$$

upon substitution of which into (2.9) gives the relation

$$
\begin{equation*}
\frac{\mathrm{d} E^{-}}{\mathrm{d} \ell}=\ell\left[\frac{v^{2}}{\ell^{2}}+V(\ell)-E^{-}(\ell)\right]\left[y^{-}(\ell, \ell)\right]^{2} \tag{2.16}
\end{equation*}
$$

Clearly, $E^{-}(\ell)$ has a minimum at $\ell=\ell_{0}$ for which

$$
\begin{equation*}
\frac{v^{2}}{\ell_{0}^{2}}+V\left(\ell_{0}\right)-E^{-}\left(\ell_{0}\right)=0 \tag{2.17}
\end{equation*}
$$

and increases monotonically for $\ell>\ell_{0}$, if $V(\ell)>E^{-}(\ell)$.
It is well known, from the classical oscillation and comparison theorems [3], that the Dirichlet eigenvalues $E_{n}^{+}(\ell)$ for any fixed quantum number $n$ are always greater than the von Neumann eigenvalues $E_{n}^{-}(\ell)$ with the same quantum number $n$. As a result, the limiting value of $E_{n}^{-}(\ell)$ as $\ell \rightarrow \infty$ is bounded from above by $E_{n}$. Therefore, (2.13) and (2.16) now imply that

$$
\begin{equation*}
E<E^{+}(\ell) \tag{2.18}
\end{equation*}
$$

for all $\ell>0$, and that

$$
\begin{equation*}
E>E^{-}(\ell) \tag{2.19}
\end{equation*}
$$

for all positive values of $\ell$ for which $V(\ell)>E^{-}(\ell)$. Note that $V(\ell)>E^{-}(\ell)$ can be replaced by $V(\ell)>E$, and it is a sufficient condition for (2.19). This suggests evidently that the boundary parameter $\ell$ should lie beyond the classical turning points of a specific state in question, which completes the proof.

Remark 1. The limit energy $E(\ell)$ in (2.1) as $\ell \rightarrow 0^{+}$may be determined analytically. Indeed, by the use of the linear transformation $r=\ell \xi$ Eq. (2.1) becomes

$$
\begin{equation*}
\left[\frac{\mathrm{d}^{2}}{\mathrm{~d} \xi^{2}}+\frac{1}{\xi} \frac{\mathrm{~d}}{\mathrm{~d} \xi}+\ell^{2} E(\ell)-\frac{v^{2}}{\xi^{2}}-\ell^{2} V(\ell \xi)\right] y=0, \quad \xi \in[0,1] \tag{2.20}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
y(\xi)=\mathcal{O}\left(\xi^{\nu}\right) \text { as } \xi \rightarrow 0^{+} \quad \text { and } \quad a y(\xi)+b y^{\prime}(\xi)=0 \text { at } \xi=1 . \tag{2.21}
\end{equation*}
$$

Apparently, the term $\ell^{2} V(\ell \xi)$ vanishes as $\ell \rightarrow 0^{+}$for the classes of potentials in (1.4) and (1.5), being considered in this work. Therefore, Eq. (2.20) reduces to the Bessel differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} \xi^{2}}+\frac{1}{\xi} \frac{\mathrm{~d} y}{\mathrm{~d} \xi}+\left(\beta^{2}-\frac{v^{2}}{\xi^{2}}\right) y=0, \quad \xi \in[0,1] \tag{2.22}
\end{equation*}
$$

where $\beta^{2}=\lim _{\ell \rightarrow 0^{+}} \ell^{2} E(\ell)$. The Bessel functions of the first kind $J_{v}(\beta \xi)$ and the second kind $Y_{v}(\beta \xi)$ are the two linearly independent solutions of (2.22). The solution $Y_{\nu}(\beta \xi)$ is rejected, and any solution which behaves correctly at the origin should be a scalar multiple of $J_{v}(\beta \xi)$. Imposing the second condition in (2.21) we see that $\beta$ can be determined as a positive root of $a J_{v}(\beta)+b J_{v}^{\prime}(\beta)=0$, and,


Fig. 1. Graphs of the Dirichlet and von Neumann eigenvalues.
therefore, $E(\ell)$ grows like $\ell^{-2}$ about the origin, i.e.

$$
\begin{equation*}
E(\ell)=\mathcal{O}\left(\ell^{-2}\right) \quad \text { as } \ell \rightarrow 0^{+} . \tag{2.23}
\end{equation*}
$$

By means of Theorem 1 and Remark 1, we now completely deduce the qualitative behaviours of the Dirichlet and von Neumann eigenvalues for $\ell>0$. The sketches of the functions $E_{n}^{+}(\ell)$ and $E_{n}^{-}(\ell)$ are illustrated in Fig. 1.

In conclusion, the auxiliary eigenvalue problems produce upper and lower bounds to the eigenvalues $E$ of the original non-confined system. Thus accurate calculation of $E$ can be accomplished, provided that a method is developed for computing $E^{+}(\ell)$ and $E^{-}(\ell)$ to any desired accuracy for each fixed $\ell$. The difference $\left|E^{+}(\ell)-E^{-}(\ell)\right|$ is then a rigorous measure of the error in the determination of $E$.

## 3. The Fourier-Bessel expansion

The Schrödinger equation (2.1) for which

$$
V(r)= \begin{cases}0 & \text { if } r \in[0, \ell)  \tag{3.1}\\ \infty & \text { if } r \geqslant \ell\end{cases}
$$

reduces again to the Bessel differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \phi}{\mathrm{~d} r^{2}}+\frac{1}{r} \frac{\mathrm{~d} \phi}{\mathrm{~d} r}+\left(\lambda^{2}-\frac{v^{2}}{r^{2}}\right) \phi=0, \quad r \in[0, \ell] \tag{3.2}
\end{equation*}
$$

of form (2.22). This equation accompanied with the boundary conditions in (2.2) and (2.3) describes the motion of a free particle, which is regarded as the unperturbed eigenvalue problem in this work. The same approach was used in [19, 20] for solving two- and three-dimensional non-separable potentials, where the unperturbed problem similarly defined produces orthonormal basis sets in terms
of simple trigonometric functions. In the present case, we see that the sequence of the Bessel functions

$$
\begin{equation*}
\phi_{n}(r)=C_{n} J_{v}\left(\lambda_{n} r\right) \tag{3.3}
\end{equation*}
$$

contains the required solution of the unperturbed eigenvalue problem for each natural number $n$, provided that $\lambda_{n}$ is chosen in such a way that

$$
\begin{equation*}
\alpha_{n}=\lambda_{n} \ell \tag{3.4}
\end{equation*}
$$

is a root of

$$
\begin{equation*}
a J_{v}(x)+b x J_{v}^{\prime}(x)=0 \tag{3.5}
\end{equation*}
$$

where $C_{n}$ stands for a normalization constant. It is a well-known fact that the functions $J_{v}$ and $J_{v}^{\prime}$ each have an infinite number of zeros, all of which are simple with the possible exception of $x=0$.

On the other hand, if $\alpha_{1}, \alpha_{2}, \ldots$ are the positive roots of (3.5), then

$$
\left\langle J_{v}\left(\lambda_{n} r\right), J_{v}\left(\lambda_{m} r\right)\right\rangle= \begin{cases}0 & \text { if } m \neq n  \tag{3.6}\\ \frac{1}{2} \ell^{2} J_{v+1}^{2}\left(\alpha_{n}\right) & \text { if } m=n \text { and }(a, b)=(1,0) \\ \frac{\ell^{2}}{2 \alpha_{n}^{2}}\left(\alpha_{n}^{2}-v^{2}\right) J_{v}^{2}\left(\alpha_{n}\right) & \text { if } m=n \text { and }(a, b)=(0,1)\end{cases}
$$

which is referred to as the orthogonality property of Bessel functions [28]. Because of (3.6), the normalization constant $C_{n}$ is taken as

$$
C_{n}= \begin{cases}\frac{\sqrt{2}}{\ell J_{v+1}\left(\alpha_{n}\right)} & \text { when }(a, b)=(1,0)  \tag{3.7}\\ \frac{\sqrt{2} \alpha_{n}}{\ell \sqrt{\alpha_{n}^{2}-v^{2}} J_{v}\left(\alpha_{n}\right)} & \text { when }(a, b)=(0,1)\end{cases}
$$

for which the sequence of eigenfunctions in (3.3), for $n=1,2, \ldots$, now constitutes an orthonormal set over the domain $[0, \ell]$ with respect to the weighting $r$, and, therefore,

$$
\begin{equation*}
\left\langle\phi_{n}, \phi_{m}\right\rangle=\delta_{n m} . \tag{3.8}
\end{equation*}
$$

The orthonormality relation suggests evidently that the wave function of the perturbed problem formulated in (2.1)-(2.3) be expanded in terms of the eigenfunctions $\phi_{n}$ of the unperturbed problem. Hence, we may propose a solution of the form

$$
\begin{equation*}
y(r)=\sum_{n=1}^{\infty} a_{n} \phi_{n}(r) \tag{3.9}
\end{equation*}
$$

which is the Fourier-Bessel expansion of the wave function with the linear combination coefficients $a_{n}$ to be determined. The infinite series representation of $y(r)$ converge correctly to the exact solution since $\sqrt{r} y(r)$ is integrable on $[0, \ell]$. This follows directly from (2.3) since $v \geqslant 0$, and from the fact that the only singularity of the differential equation is located at the origin. A detailed discussion about the validity and convergence of such a series expansion, however, may be found in [28].

It should be noted that, if $(a, b)=(0,1)$ then $\alpha_{1}=0$ is a zero of $J_{0}^{\prime}(x)$ with a non-zero contribution to (3.9) and yet (3.6) is assumed to hold for positive zeros. This fact does not create any problem, since we also have

$$
\begin{equation*}
\left\langle\phi_{1}, \phi_{n}\right\rangle=\left\langle\frac{\sqrt{2}}{\ell}, \frac{\sqrt{2}}{\ell J_{0}\left(\alpha_{n}\right)} J_{0}\left(\alpha_{n} r / \ell\right)\right\rangle=\delta_{n 1}, \tag{3.10}
\end{equation*}
$$

when $\nu=0$, for all $n$.

## 4. Truncated matrix eigenvalues for $E^{+}(\ell)$ and $E^{-}(\ell)$

The numerical implementation of the method can be accomplished by means of a truncated Fourier-Bessel series. Thus, we propose the trial solution

$$
\begin{equation*}
y(r)=\sum_{n=1}^{N} a_{n} \phi_{n}(r) \tag{4.1}
\end{equation*}
$$

for the wave function, which converges to the exact solution as $N \rightarrow \infty$, and convert the Schrödinger differential equation to a matrix eigenvalue problem of the form

$$
\begin{equation*}
\sum_{n=1}^{N}\left[\mathscr{A}_{m n}-E(\ell) \delta_{m n}\right] a_{n}=0 \tag{4.2}
\end{equation*}
$$

where the matrix elements are given by

$$
\begin{equation*}
\mathscr{A}_{m n}=\lambda_{n}^{2} \delta_{m n}+\left\langle V(r) \phi_{m}, \phi_{n}\right\rangle \tag{4.3}
\end{equation*}
$$

for $m, n=1,2, \ldots, N$. As mentioned earlier, when the potential function is assumed to be analytic function of $r^{2}$, truncating (1.4) we have

$$
\begin{equation*}
V(r)=\sum_{k=1}^{M} v_{2 k} r^{2 k} \tag{4.4}
\end{equation*}
$$

where the constant term is deleted, as it can always be added to $E$. Therefore, the integrals of the type

$$
\begin{equation*}
\mathscr{I}_{m n}^{(v, k)}=C_{m n}^{(v)} \int_{0}^{1} \xi^{2 k+1} J_{v}\left(\alpha_{n} \xi\right) J_{v}\left(\alpha_{m} \xi\right) \mathrm{d} \xi \tag{4.5}
\end{equation*}
$$

have to be evaluated for the construction of the matrix $\left[\mathscr{A}_{m n}\right]$, where $C_{m n}^{(v)}=C_{n} C_{m}$. The matrix elements may then be written in the compact form

$$
\begin{equation*}
\mathscr{A}_{m n}=\lambda_{n}^{2} \delta_{m n}+\sum_{k=1}^{M} v_{2 k} \ell^{2 k+2} \mathscr{I}_{m n}^{(v, k)} . \tag{4.6}
\end{equation*}
$$

It is noteworthy that evaluation of an integral of the form (4.5) even numerically is not an easy task due to the oscillatory behaviour of the integrand. Making use of some well-known properties
of Bessel functions we have, however, calculated these integrals analytically via recursive relations. The results are summarized as follows:

If $n \neq m$ then

$$
\begin{align*}
\mathscr{I}_{m n}^{(v, k)}= & \frac{C_{m n}^{(v)}}{\alpha_{n}^{2}-\alpha_{m}^{2}}\left[\alpha_{n} J_{v+1}\left(\alpha_{n}\right) J_{v}\left(\alpha_{m}\right)-\alpha_{m} J_{v+1}\left(\alpha_{m}\right) J_{v}\left(\alpha_{n}\right)\right] \\
& +\frac{2 k C_{m n}^{(v)}}{\left(\alpha_{n}^{2}-\alpha_{m}^{2}\right)^{2}}\left[\left(\alpha_{n}^{2}+\alpha_{m}^{2}\right) J_{v}\left(\alpha_{n}\right) J_{v}\left(\alpha_{m}\right)+2 \alpha_{n} \alpha_{m} J_{v+1}\left(\alpha_{n}\right) J_{v+1}\left(\alpha_{m}\right)\right] \\
& -\frac{4 k}{\left(\alpha_{n}^{2}-\alpha_{m}^{2}\right)^{2}}\left[\left(\alpha_{n}^{2}+\alpha_{m}^{2}\right)^{2}(v+k) \mathscr{I}_{m n}^{(v, k-1)}+2 \alpha_{n} \alpha_{m}(k-v-1) \mathscr{I}_{m n}^{(v+1, k-1)}\right] \tag{4.7}
\end{align*}
$$

with

$$
\begin{equation*}
\mathscr{I}_{m n}^{(v, 0)}=\frac{C_{m n}^{(v)}}{\alpha_{n}^{2}-\alpha_{m}^{2}}\left[\alpha_{n} J_{v+1}\left(\alpha_{n}\right) J_{v}\left(\alpha_{m}\right)-\alpha_{m} J_{v+1}\left(\alpha_{m}\right) J_{v}\left(\alpha_{n}\right)\right] \tag{4.8}
\end{equation*}
$$

and if $n=m$ then

$$
\begin{align*}
\mathscr{I}_{n n}^{(v, k)}= & \frac{C_{n n}^{(v)}}{2(2 k+1) \alpha_{n}^{2}}\left\{\left[\alpha_{n}^{2}+2 k(k-v)\right] J_{v}^{2}\left(\alpha_{n}\right)+\alpha_{n}^{2} J_{v+1}^{2}\left(\alpha_{n}\right)\right. \\
& \left.+k(k-v) \alpha_{n} J_{v}\left(\alpha_{n}\right) J_{v+1}\left(\alpha_{n}\right)\right\}+\frac{2 k\left(v^{2}-k^{2}\right)}{(2 k+1) \alpha_{n}^{2}} \mathscr{I}_{n n}^{(v, k-1)} \tag{4.9}
\end{align*}
$$

with

$$
\begin{equation*}
\mathscr{I}_{n n}^{(v, 0)}=\frac{1}{2} C_{n n}^{(v)}\left[J_{v}^{2}\left(\alpha_{n}\right)+J_{v+1}^{2}\left(\alpha_{n}\right)\right], \tag{4.10}
\end{equation*}
$$

where $k=1,2, \ldots, M$ and $v \geqslant 0$.
The derived expressions are very general in the sense that no assumption is made about $\alpha_{n}$. If, however, $\alpha_{n}$ 's are the zeros of either $J_{\mu}(x)$ or $J_{\mu}^{\prime}(x)$ with a specific $\mu \geqslant 0$, then it can be shown that the integrals $\mathscr{I}_{m n}^{(\mu, k)}$ can be expressed in terms of the zeros $\alpha_{n}$. Therefore, no evaluation of any Bessel function is required, which makes our method even more desirable.

Under the Dirichlet-type condition, we obtain a two-dimensional array $[M, N]$ of approximants for $E^{+}(\ell)$. Similarly, the use of the von Neumann-type boundary condition leads to the estimation of $E^{-}(\ell)$ for sufficiently large values of $M$ and $N$. Clearly, Theorem 1 implies that $E^{+}(\ell)-E^{-}(\ell)$ with a given $\ell$ stands for the uncertainty in the eigenvalues $E$ of the non-confined system. Despite the lack of a rigorous mathematical proof of

$$
\begin{equation*}
\lim _{\ell \rightarrow \infty}\left|E^{+}(\ell)-E^{-}(\ell)\right|=0 \tag{4.11}
\end{equation*}
$$

our numerical experiments show that there exists a critical value of $\ell$ for which

$$
\begin{equation*}
E^{+}\left(\ell_{\mathrm{cr}}\right)-E^{-}\left(\ell_{\mathrm{cr}}\right)<\varepsilon, \tag{4.12}
\end{equation*}
$$

where $\varepsilon>0$ can be made as small as we please. At the numerical side of this work, $\varepsilon$ is prescribed to be $10^{-20}$ so that the bound state eigenvalues $E$ will be computed to about 20 significant figures.

To illustrate the performance of our method, we deal explicitly with the harmonic oscillator

$$
\begin{equation*}
V(r)=r^{2}, \quad q=2 \tag{4.13}
\end{equation*}
$$

the generalized anharmonic oscillators

$$
\begin{equation*}
V(r)=r^{2 K}, \quad K=2,3,4,5,10, \quad q=2,3 \tag{4.14}
\end{equation*}
$$

the two-well potential

$$
\begin{equation*}
V(r)=-Z^{2} r^{2}+r^{4}, \quad q=3 \tag{4.15}
\end{equation*}
$$

the non-polynomial test potential

$$
\begin{equation*}
V(r)=\mathrm{e}^{\vartheta r^{2}}, \quad \gamma>0, \quad q=3 \tag{4.16}
\end{equation*}
$$

and with the Gaussian potential

$$
\begin{equation*}
V(r)=-\mathrm{e}^{-\gamma r^{2}}, \quad \gamma>0, \quad q=3 \tag{4.17}
\end{equation*}
$$

Note that some examples of two- and three-dimensional problems are to be solved only without any loss of generality. In fact, as discussed in [9,13, 18, 22] the spectrum of the eigenvalue problem remains unchanged for a prescribed value of $2 l+q$. Hence, the eigenvalues in $q$ dimensions, denoted by $E_{n_{r}, l}^{(q)}$ with the radial and angular quantum numbers $n_{r}$ and $l$, respectively, are degenerate in such a way that

$$
\begin{align*}
E_{n_{r}, 1}^{(2)} & \equiv E_{n_{r}, 0}^{(4)}, \\
E_{n_{r}, 2}^{(2)} & \equiv E_{n_{r}, 1}^{(4)} \equiv E_{n_{r}, 0}^{(6)}, \\
& \vdots  \tag{4.18}\\
E_{n_{r}, l}^{(2)} & \equiv E_{n_{r}, l-1}^{(4)} \equiv E_{n_{r}, l-2}^{(6)} \equiv \cdots \equiv E_{n_{r}, 2}^{(2 l-2)} \equiv E_{n_{r}, 1}^{(2 l)} \equiv E_{n_{r}, 0}^{(2 l+2)},
\end{align*}
$$

when $q$ is even, and

$$
\begin{align*}
& E_{n_{r}, 1}^{(3)} \equiv E_{n_{r}, 0}^{(5)} \\
& E_{n_{r}, 2}^{(3)} \equiv E_{n_{r}, 1}^{(5)} \equiv E_{n_{r}, 0}^{(7)} \\
& \vdots  \tag{4.19}\\
& E_{n_{r}, l}^{(3)} \equiv E_{n_{r}, l-1}^{(5)} \equiv E_{n_{r}, l-2}^{(7)} \equiv \cdots \equiv E_{n_{r}, 2}^{(2 l-1)} \equiv E_{n_{r}, 1}^{(2 l+1)} \equiv E_{n_{r}, 0}^{(2 l+3)}
\end{align*}
$$

when $q$ is odd, where $E_{n_{r}, 0}^{(2)}$ and $E_{n_{r}, 0}^{(3)}$ are single in the system. Thus, it suffices to handle the cases $q=2$ and 3 to cover the whole spectrum of the $q$-dimensional case. It is clear, from (2.1), that the parameter $v$ is an integer and half an odd integer when $q=2$ and 3 , respectively, so that the numerical algorithm requires the zeros $\alpha_{n}$ of either the Bessel functions of integer order or the spherical Bessel functions, which are calculated by making use of the Mathematica software.

Table 1
Convergence rates of the $N$-truncated bounds for several eigenvalues of the two-dimensional harmonic oscillator $V(r)=r^{2}$ as a function of $\ell$. The numerical bounds are compared with the exact analytical eigenvalues $E_{\text {exact }}=2\left(1+2 n_{r}+l\right)$ of the usual problem in the unbounded domain where $\ell \rightarrow \infty$

| $l+2 n_{r}$ | $\ell$ | $N$ | $E^{-}(\ell)$ | $E^{+}(\ell)$ | $E_{\text {exact }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 4.5 | 5 | 2.000128 | 2.000011 |  |
|  |  | 8 | 1.999999862392 | 2.000000123248 |  |
|  |  | 10 | 1.999999862391 | 2.000000123233 | 2 |
|  | 6.0 | 8 | 2.000000925 | 2.000000102 |  |
|  |  | 10 | 2.000000000065 | 2.000000000004 |  |
|  |  | 12 | 1.999999999999660 | 2.000000000000032 | 2 |
|  | 7.5 | 10 | 2.000001 | 2.000000182 |  |
|  |  | 15 | 2.000000000000556 | 2.000000000000000039 |  |
|  |  | 20 | 1.999999999999999999999 | 2.000000000000000000001 | 2 |
| 1 | 4.5 | 5 | 4.000167 | 4.000016 |  |
|  |  | 8 | 3.999997331 | 4.000002357 |  |
|  |  | 10 | 3.999997331 | 4.000002357 | 4 |
|  | 6.0 | 8 | 4.000002 | 4.000000225 |  |
|  |  | 10 | 4.000000000126 | 4.000000000009 |  |
|  |  | 12 | 3.999999999998794 | 4.000000000001134 | 4 |
|  | 7.5 | 10 | 4.000003512 | 4.000000621 |  |
|  |  | 15 | 4.000000000000002 | 4.000000000000000117 |  |
|  |  | 20 | 3.999999999999999999995 | 4.000000000000000000001 | 4 |
| 2 | 5.0 | 5 | 6.002100 | 6.000028 |  |
|  |  | 8 | 5.999999579 | 6.000000379 |  |
|  |  | 10 | 5.999999578 | 6.000000379 | 6 |
|  | 6.5 | 8 | 6.000047 | 6.000007 |  |
|  |  | 10 | 6.000000013 | 6.000000001 |  |
|  |  | 12 | 5.999999999995 | 6.000000000000085 | 6 |
|  | 8.0 | 10 | 6.000062 | 6.000014 |  |
|  |  | 15 | 6.000000000000471 | 6.000000000000045 |  |
|  |  | 20 | 5.999999999999999999999 | 6.000000000000000000001 | 6 |

Another remark is that the harmonic potential in (4.13) is an analytically solvable system in the unbounded domain, which provides a convenient testing ground to deduce the confidence in the accuracy of our two-sided bounds. It should also be noted that the polynomial potentials in (4.13)-(4.15) are exactly represented by the general form of $V(r)$ in (4.4), for special values of the parameters $v_{2 k}$ and the degree $M$. Therefore, in these cases the general approximation scheme for finding the eigenvalues reduces to a single sequence of $N$, the truncation size of the eigenfunctions.

Table 2
Lower and upper bounds to eigenvalues $E_{n_{r}, l}^{(2)}$, for several quantum numbers $n_{r}$ and $l$, of the potentials $V(r)=r^{2 K}$ as a function of $K$

| K | $n_{r}$ | $l$ | $E_{n_{r}, l}^{(2)}$ | $\ell_{\text {cr }}$ | $N$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0 | 0 | 2.344829072744275 2098/9 | 4.25 | 20 |
|  | 0 | 5 | 21.590048138799549 056/7 | 4.50 | 22 |
|  | 0 | 10 | $47.463041125098522451 / 2$ | 4.75 | 24 |
|  | 5 | 0 | $53.486335321438145046 / 7$ | 4.75 | 26 |
|  | 5 | 5 | 86.908365353723948 346/7 | 5.00 | 28 |
|  | 10 | 0 | $126.61756199888437941 / 2$ | 5.25 | 34 |
| 3 | 0 | 0 | $2.6093884632537140068 / 9$ | 3.25 | 26 |
|  | 0 | 5 | $28.315788118458607808 / 9$ | 3.25 | 26 |
|  | 0 | 10 | $67.522486389084298086 / 7$ | 3.25 | 26 |
|  | 5 | 0 | $82.731043892681375353 / 4$ | 3.50 | 30 |
|  | 5 | 5 | 142.088846735876653 59/60 | 3.50 | 32 |
|  | 10 | 0 | $218.04693096399147884 / 5$ | 3.50 | 36 |
| 4 | 0 | 0 | 2.828786159942523 3487/8 | 2.75 | 28 |
|  | 0 | 5 | 33.197966996834368 041/2 | 2.75 | 28 |
|  | 0 | 10 | $82.696404525852108715 / 6$ | 2.75 | 28 |
|  | 5 | 0 | $107.28257864281653463 / 4$ | 2.75 | 32 |
|  | 5 | 5 | 190.472186690290158 95/6 | 2.75 | 34 |
|  | 10 | 0 | $301.52194856154144473 / 4$ | 2.75 | 40 |
| 5 | 0 | 0 |  |  | 34 |
|  | 0 | 5 | $36.924381678647102740 / 1$ | 2.50 | 34 |
|  | 0 | 10 | $94.405430820331044681 / 2$ | 2.50 | 34 |
|  | 5 | 0 | $127.50407456174942833 / 4$ | 2.50 | 36 |
|  | 5 | 5 | $231.41496035202224766 / 7$ | 2.50 | 38 |
|  | 10 | 0 | $373.99047678633062079 / 80$ | 2.50 | 44 |
| 10 | 0 | 0 | $3.6510248486694658340 / 2$ | 1.65 | 54 |
|  | 0 | 5 | $47.670123913763695184 / 5$ | 1.65 | 54 |
|  | 0 | 10 | $127.57545612483625709 / 10$ | 1.65 | 54 |
|  | 5 | 0 | $188.70115566502538616 / 7$ | 1.65 | 56 |
|  | 5 | 5 | 359.773343201409515 36/7 | 1.65 | 58 |
|  | 10 | 0 | $609.21568575227818412 / 67$ | 1.65 | 64 |

## 5. Numerical results and discussion

In this article, an extensive numerical analysis of the aforementioned quantum mechanical potentials are presented. In Table $1, N$-truncated eigenvalue bounds for the two-dimensional harmonic oscillator are tabulated and compared with the exact analytical results. It is shown that both lower and upper bounds converge from above as $N$ increases, and their significant digits so determined provide indeed two-sided bounds on the eigenvalues of the unbounded system. Furthermore, more accurate bounds can be achieved by way of increasing $\ell$, confirming the mathematical analysis in Section 2.

Table 3
Lower and upper bounds to eigenvalues $E_{n_{r}, l}^{(3)}$, for several quantum numbers $n_{r}$ and $l$, of the potentials $V(r)=r^{2 K}$ as a function of $K$


Tables 2 and 3 list eigenvalue bounds for two- and three-dimensional potentials of the type $r^{2 K}$ in (4.14). To denote lower and upper bounds, we employ the notation in which, for example, $2.344 \ldots 2098 / 9$ in the first row of Table 2 implies that $2.344 \ldots 2098<E_{00}^{(2)}<2.344 \ldots 2099$. The distance $\ell_{\text {cr }}$ and the truncation order $N$ of the eigenfunctions for which the prescribed accuracy is reached, are included in the tables as well. We see that the numerical characteristics of the algorithm remain unchanged in the two- and three-dimensional cases. It is also shown that the critical values $\ell_{\text {cr }}$ diminish as $K$ increases due to the contraction of the potentials, whereas the truncation sizes $N$ increase in getting at the required accuracy. In all cases, however, 20 significant figures are obtainable by diagonalizing matrices of reasonable orders $N$, typically ranging from 20 to 65 . On

Table 4
Lower and upper bounds to eigenvalues $E_{n_{r}, l}^{(3)}$, for several quantum numbers $n_{r}$ and $l$, of the potentials $V(r)=-Z^{2} r^{2}+r^{4}$ as a function of $Z^{2}$

| $Z^{2}$ | $n_{r}$ | $l$ | $E_{n_{r}, l}^{(3)}$ | $\ell_{\text {cr }}$ | $N$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{-2}$ | 0 | 0 | $3.7906512170363362310 / 1$ | 4.25 | 20 |
|  | 0 | 5 | $23.914001559449152939 / 40$ | 4.25 | 22 |
|  | 1 | 4 | $30.478325182857788774 / 5$ | 4.50 | 22 |
|  | 2 | 3 | $37.007326015166163848 / 9$ | 4.50 | 22 |
|  | 3 | 2 | 43.536998592038097 225/6 | 4.50 | 22 |
|  | 4 | 1 | 50.094565169438444 671/2 | 4.50 | 24 |
|  | 0 | 10 | $50.266166628053268426 / 7$ | 4.75 | 26 |
|  | 5 | 0 | $56.699794400050696524 / 5$ | 4.75 | 28 |
|  | 5 | 5 | $90.329068175907887977 / 8$ | 5.00 | 30 |
|  | 10 | 0 | $130.58983704792066772 / 3$ | 5.25 | 34 |
| 1 | 0 | 0 | $2.8345362021193042146 / 7$ | 4.50 | 30 |
|  | 0 | 5 | $21.200285583288184523 / 4$ | 4.50 | 30 |
|  | 1 | 4 | $27.672922663300275447 / 8$ | 4.50 | 32 |
|  | 2 | 3 | 34.072567888029424 131/2 | 4.75 | 32 |
|  | 3 | 2 | 40.445488723690448 103/4 | 4.75 | 32 |
|  | 0 | 10 | 46.268329155506282 178/9 | 5.00 | 36 |
|  | 4 | 1 | 46.827656017126357 343/4 | 4.75 | 34 |
|  | 5 | 0 | $53.245474927626236240 / 1$ | 5.00 | 38 |
|  | 5 | 5 | 85.845832349517541 768/9 | 5.25 | 40 |
|  | 10 | 0 | $125.37231685063352548 / 9$ | 5.50 | 44 |
| $10^{2}$ | 0 | 0 | -2485.867 880342075 2943/2 | 12.50 | 90 |
|  | 0 | 5 | -2485.265 353438290 8701/0 | 12.50 | 94 |
|  | 0 | 10 | -2483.658974985 $3814206 / 5$ | 12.50 | 100 |
|  | 1 | 4 | -2457.238 $6730696068734 / 3$ | 12.50 | 94 |
|  | 2 | 3 | -2429.235 $1059511540434 / 3$ | 12.50 | 96 |
|  | 3 | 2 | -2401.254 $0419260950600 / 599$ | 12.50 | 96 |
|  | 4 | 1 | -2373.294 839731257 6385/4 | 12.50 | 98 |
|  | 5 | 0 | -2345.356 $8254997653424 / 3$ | 12.50 | 104 |
|  | 5 | 5 | -2344.727 $3708532917037 / 6$ | 12.50 | 106 |
|  | 10 | 0 | -2206.397933 $0858386702 / 1$ | 12.50 | 110 |

the other hand, slightly larger $\ell_{\mathrm{cr}}$ and $N$ values have been recorded for the eigenvalues with larger quantum numbers.

In Table 4, we report eigenvalues of the potential in (4.15) as a function of $Z^{2}$. This potential is interesting, because it stands for a two-well potential with two minima in Cartesian coordinate system. It is well known that many numerical difficulties are encountered in finding the eigenvalues for large values of $Z^{2}$. In fact, the system does not describe a physical phonemena since the discrete eigenvalue spectrum does not exist as $Z^{2} \rightarrow \infty$. We see, from Table 4, that the eigenvalues for $Z^{2}=100$ stabilize to a 20 figure accuracy at a truncation size which is relatively very large.

Tables 5 and 6 are concerned with the non-polynomial potentials defined by (4.16) and (4.17). Clearly, the lower and upper bounds are estimated by a two-dimensional array [ $M, N$ ] of approximants in these cases. More specifically, $N$ and $M$ are increased simultaneously in a systematic manner to

Table 5
Convergence rates of the two-sided bounds for the lowest eigenvalue $E_{0,0}^{(3)}$ of the non-polynomial potential $e^{2 r^{2}}$ as a function of the degree $M$ of polynomial approximations, when $\gamma=0.001$ and $\gamma=0.01$

| $\gamma$ | M | $E_{0,0}^{(3)}$ | $\ell_{\text {cr }}$ | $N$ |
| :---: | :---: | :---: | :---: | :---: |
| 0.001 | 2 | 1.094/7 | 4.00 | 4 |
|  | 4 | $1.09667 / 8$ | 4.00 | 6 |
|  | 6 | $1.096729 / 34$ | 4.00 | 8 |
|  | 8 | $1.09673117 / 25$ | 5.00 | 8 |
|  | 10 | $1.096731233 / 5$ | 5.00 | 10 |
|  | 12 | $1.0967312348 / 9$ | 5.00 | 12 |
|  | 14 | $1.096731234877 / 9$ | 6.00 | 14 |
|  | 16 | $1.0967312348788 / 9$ | 6.00 | 16 |
|  | 18 | $1.096731234878862 / 4$ | 6.00 | 18 |
|  | 20 | $1.0967312348788639 / 40$ | 6.00 | 20 |
|  | 22 | 1.096731234878863 917/9 | 7.00 | 22 |
|  | 24 | 1.096731234878863918 86/92 | 7.00 | 24 |
|  | 26 | 1.096731234878863918 904/6 | 7.00 | 26 |
|  | 28 | $1.0967312348788639189052 / 4$ | 7.00 | 28 |
|  | 30 | 1.096731234878863918905 280/9 | 7.00 | 28 |
| 0.01 | 2 | 1.3/4 | 4.00 | 6 |
|  | 4 | 1.317/19 | 4.00 | 6 |
|  | 6 | 1.3182/4 | 4.00 | 10 |
|  | 8 | $1.31837 / 9$ | 4.00 | 10 |
|  | 10 | 1.318 3827/39 | 5.00 | 14 |
|  | 12 | 1.318 3838/40 | 5.00 | 16 |
|  | 14 | $1.31838390 / 3$ | 5.00 | 16 |
|  | 16 | $1.318383916 / 8$ | 5.00 | 18 |
|  | 18 | $1.31838391714 / 20$ | 6.00 | 22 |
|  | 20 | 1.318383917 187/93 | 6.00 | 26 |
|  | 22 | 1.318383917 190/2 | 6.00 | 28 |
|  | 24 | $1.31838391719069 / 74$ | 6.00 | 28 |
|  | 26 | $1.318383917190713 / 7$ | 6.00 | 28 |
|  | 28 | $1.318383917190715 / 6$ | 7.00 | 30 |
|  | 32 | $1.318383917190715449 / 52$ | 7.00 | 30 |
|  | 34 | $1.31838391719071544979 / 85$ | 7.00 | 30 |
|  | 36 | 1.318383917190715449 834/8 | 7.00 | 30 |
|  | 38 | $1.3183839171907154498367 / 8$ | 7.00 | 30 |
|  | 40 | $1.318383917190715449836910 / 9$ | 7.00 | 30 |

characterize the exact solution more precisely and to obtain a better approximation for the potential function, respectively. Thus, the conforming digits of consecutive approximants are regarded as significant digits. There is an important difference between the spectra of the two exponential-type potentials considered here. The potential in (4.16) with $\gamma>0$ has solely a discrete positive spectrum in both the truncated and the original unbounded intervals. In contrast, the Gaussian potential in the unbounded domain possesses a finite number of discrete states located on the negative real axis together with a continuous spectrum which covers the entire positive real axis in the eigenvalue complex plane, for proper (small) values of $\gamma$. When $\gamma$ exceeds a so-called threshold value, the discrete negative spectral points can not survive any more and merge fully into the continuous

Table 6
Convergence rates of the two-sided bounds for the lowest eigenvalue $E_{0,0}^{(3)}$ of the Gaussian potential $-\mathrm{e}^{-y r^{2}}$ as a function of the degree $M$ of polynomial approximations, when $\gamma=0.001$ and $\gamma=0.01$

| $\gamma$ | $M$ | $E_{0,0}^{(3)}$ | $\ell_{\text {cr }}$ | $N$ |
| :---: | :---: | :---: | :---: | :---: |
| 0.001 | 2 | -0.91/0 | 4.00 | 6 |
|  | 6 | -0.907 02/1 | 4.00 | 8 |
|  | 10 | -0.907 01930/28 | 5.00 | 8 |
|  | 14 | -0.907 $01929260 / 59$ | 5.00 | 12 |
|  | 18 | -0.907 $0192925928123 / 0$ | 6.00 | 16 |
|  | 22 | -0.907 019292592812 10/07 | 6.00 | 20 |
|  | 26 | -0.907 019292592812 0830/26 | 7.00 | 24 |
|  | 30 | -0.907 $019292592812082716 / 5$ | 7.00 | 28 |
|  | 34 | -0.907 $0192925928120827155 / 0$ | 7.00 | 28 |
| 0.01 | 2 | $-0.73 / 0$ | 4.00 | 8 |
|  | 6 | $-0.720 / 18$ | 4.00 | 10 |
|  | 10 | -0.71917/5 | 4.00 | 14 |
|  | 14 | $-0.71916893 / 60$ | 5.00 | 16 |
|  | 18 | $-0.719168935 / 33$ | 5.00 | 20 |
|  | 22 | -0.719 $168934 / 3$ | 5.00 | 20 |
|  | 26 | -0.719 168933 45/3 | 5.00 | 24 |
|  | 30 | -0.719 168933 446/5 | 6.00 | 26 |
|  | 34 | -0.719 $16893344509 / 6$ | 6.00 | 26 |
|  | 38 | -0.719 $168933445091 / 88$ | 6.00 | 26 |
|  | 42 | -0.719 $1689334450904 / 2$ | 7.00 | 30 |
|  | 46 | -0.719 $168933445090398 / 80$ | 7.00 | 30 |
|  | 50 | -0.719 168933445090 398/6 | 7.00 | 30 |
|  | 54 | -0.719 168933445090 3975/0 | 7.00 | 30 |

spectrum. In the truncated interval, however, the spectrum of the Gaussian potential becomes a purely discrete one for all $\gamma$, since an infinite potential is assumed for $r \geqslant \ell$. We see, from Table 6, that this discrepancy in the spectral nature of the original and the confined Gaussian potentials does not affect at all the accuracy of our method in computing the discrete states. Only the number of terms $M$ we should take in the series representation of the potential increases to this end.

We observe that the trivial eigenvalue ordering properties

$$
\begin{equation*}
E_{n_{r}, l_{2}}^{(q)}>E_{n_{r}, l_{1}}^{(q)} \quad \text { and } \quad E_{n_{r}, l}^{(q)}>E_{n_{r_{r}}, l}^{(q)} \tag{5.1}
\end{equation*}
$$

hold for all $l_{2}>l_{1}$ and $n_{r_{2}}>n_{r_{1}}$, respectively. These inequalities and (4.18) and (4.19) now suggest that

$$
\begin{equation*}
E_{n_{r}, l}^{\left(q_{2}\right)}>E_{n_{r}, l}^{\left(q_{1}\right)} \tag{5.2}
\end{equation*}
$$

when $q_{2}>q_{1}$, which has been confirmed by our calculations. Moreover, if we characterize the spectral points as groups denoted by $m$, where $m=n_{r}+l$, then we infer that the eigenvalues in such a group may be ordered according to the rule

$$
\begin{equation*}
E_{0, m}^{(q)}<E_{1, m-1}^{(q)}<\cdots<E_{m-1,1}^{(q)}<E_{m, 0}^{(q)} \tag{5.3}
\end{equation*}
$$

which is independent of the potential under consideration and the space dimension $q$.

To conclude, accurate numerical bounds for the discrete states of a wide class of Schrödinger potentials can be determined by the method developed in this paper. In principle, it may also be extended to a general Sturm-Liouville system defined on an infinite domain. The treatment of the eigenvalue spectrum of this more general problem along the same lines is in progress.

## References

[1] Gh. Adam, L.Gr. Ixaru, A. Corciovei, A first-order perturbative numerical method for the solution of the radial Schrödinger equation, J. Comput. Phys. 22 (1976) 1-33.
[2] R. Blankenbecler, T. DeGrand, R.L. Sugar, Moment method for eigenvalues and expectation values, Phys. Rev. D 21 (1980) 1055-1061.
[3] E.A. Coddington, N. Levinson Theory of Ordinary Differential Equations TATA McGraw-Hill, New Delhi, 1990.
[4] F.M. Fernández, Quantization condition for bound and quasibound states, J. Phys. A 29 (1996) 3167-3177.
[5] V. Fack, G. Vanden Berghe, A finite difference approach for the calculation of perturbed oscillator energies, J. Phys. A 18 (1985) 3355-3363.
[6] V. Fack, G. Vanden Berghe, (Extended) Numerov method for computing eigenvalues of specific Schrödinger equations, J. Phys. A 20 (1987) 4153-4160.
[7] V. Fack, G. Vanden Berghe, H.E. De Meyer, Some finite difference methods for computing eigenvalues and eigenvectors of special two-point boundary value problems, J. Comput. Appl. Math. 20 (1987) 211-217.
[8] C.R. Handy, Extension of a moment-problem minimax quantization procedure to anharmonic potentials, Phys. Rev. A 52 (1995) 3468-3473.
[9] J. Killingbeck, Hill determinants and $1 / N$ theory, J. Phys. A 18 (1985) L1025-L1030.
[10] J. Killingbeck, M.N. Jones, M.J. Thompson, Inner product methods for eigenvalue calculations, J. Phys. A 18 (1985) 793-801.
[11] M. Kibler, A. Ronveaux, T. Negadi, On the hydrogen-oscillator connection: passage formulas between wave functions, J Math. Phys. 27 (1986) 1541-1548.
[12] L.D. Landau, F.M. Lifshitz, Quantum Mechanics, Pergamon, New York, 1965.
[13] M. Lakshmanan, P. Kaliappan, K. Larsson, F. Karlsson, P.O. Fröman, Phase-integral approach to quantal two- and three-dimensional isotropic anharmonic oscillators, Phys. Rev. A 49 (1994) 3296-3309.
[14] S. Nandi, C.S. Shastry, Classical limit of the two-dimensional and the three-dimensional hydrogen atom, J. Phys. A 22 (1989) 1005-1016.
[15] A.D. Raptis, J.R. Cash, Exponential and Bessel fitting methods for the numerical solution of the Schrödinger equation, Comput. Phys. Commun. 44 (1987) 95-103.
[16] A. Rampal, K. Datta, The generalized anharmonic oscillator in three dimensions: Exact eigenvalues and eigenfunctions, J. Math. Phys. 24 (1983) 860-866.
[17] H. Taşeli, On the exact solution of the Schrödinger equation with a quartic anharmonicity, Int. J. Quantum. Chem. 57 (1996) 63-71.
[18] H. Taşeli, An alternative series solution to the isotropic quartic oscillator in $N$ dimensions, J. Math. Chem. 20 (1996) 235-245.
[19] H. Taşeli, R. Eid, Converging bounds for the eigenvalues of multiminima potentials in two-dimensional space, J. Phys. A 29 (1996) 6967-6982.
[20] H. Taşeli, R. Eid, The confined system approximation for solving non-separable potentials in three dimensions, J. Phys. A 31 (1998) 3095-3114.
[21] H. Taşeli, A. Zafer, A Fourier-Bessel expansion for solving radial Schrödinger equation in two dimensions, Int. J. Quantum Chem. 61 (1997) 759-768.
[22] H. Taseli, A. Zafer, Bessel basis with applications: $N$-dimensional isotropic polynomial oscillators, Int. J. Quantum Chem. 63 (1997) 935-947.
[23] R.M. Thomas, T.E. Simos, G.V. Mitsou, A family of Numerov-type exponentially fitted predictor-corrector methods for the numerical integration of the radial Schrödinger equation, J. Comput. Appl. Math. 67 (1996) 255-270.
[24] E.R. Vrscay, Rayleigh-Schrödinger perturbation expansions for a hydrogen atom in a polynomial perturbation, Int. J. Quantum. Chem. 32 (1987) 613-620.
[25] E.R. Vrscay, Renormalized Rayleigh-Schrödinger perturbation theory, Theoret. Chim. Acta. 73 (1988) 365-382.
[26] G. Vanden Berghe, H.E. De Meyer, M. Van Daele, Exact solutions for radial Schrödinger equations, Internat. J. Theoret. Phys. 34 (1995) 1931-1937.
[27] G. Vanden Berghe, V. Fack, H.E. De Meyer, Numerical methods for solving radial Schrödinger equations, J. Comput. Appl. Math. 28 (1989) 391-401.
[28] G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1962.
[29] M.R.M. Witwit, The eigenvalues of the Schrödinger equation for spherically symmetric states for various types of potentials in two, three and $N$ dimensions, by using perturbative and non-perturbative methods, J. Phys. A 24 (1991) 4535-4547.
[30] P. Žitňan, An a posteriori error estimation of the Rayleigh-Ritz eigenvalues, Numer. Math. 54 (1989) 639-654.
[31] P. Žitňan, The Rayleigh-Ritz method still competitive, J. Comput. Appl. Math. 54 (1994) 297-306.
[32] M. Znojil, A quick perturbative method for Schrödinger equations, J. Phys. A 30 (1997) 8771-8783.


[^0]:    * Corresponding author. E-mail: taseli@rorqual.cc.metu.edu.tr.

