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Abstract 

The problem of determining the axisymmetric Stokes flow past an arbitrary body, the boundary shape of which can be 
represented by an analytic function, is examined by developing an exact method. An appropriate nonorthogonal coordinate 
system is introduced, and it is shown that the Hilbert space to which the stream function belongs is spanned by the set of 
Gegenbauer polynomials based on the physical argument that the drag on a body should be finite. The partial differential 
equation of the original problem is then reduced to two simultaneous vector differential equations. By the truncation of 
this infinite-dimensional system to the one-dimensional subspace, an explicit analytic solution to the Stokes equation valid 
for all bodies in question is obtained as a first approximation. 

Keywords: Stokes flow; Eigenfunction expansion; Vector differential equations; Drag 

AMS classification: 76D07, 76M99, 41A30, 65P05 

I. Introduction 

The classical Stokes flow problem describing the creeping motion o f  a single body without ro- 
tation has been studied for more than a century. The determination o f  the drag on a body is o f  
special importance in many areas o f  applied sciences. As is well known, the first explicit analytic 
solutions are due to Stokes [26] and Oberbeck [17] for a sphere and an ellipsoid, respectively. For 
axisymmetrical  flow fields, general solution o f  Stokes equation in spherical coordinates is given 
in [23] in terms o f  the stream function as an infinite series o f  Legendre polynomials by  separation 
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of variables. However, both analytical and numerical implementations of the exact serial solution 
is a very difficult task for a treatment of the problem of an arbitrary axisymmetrical body except 
for some special geometries. For instance, Happel and Brenner [13] and Ramkissoon [22] obtained 
perturbative solutions for flow past slightly deformed spheres. Furthermore, the classical theory has 
been developed for a few body shapes based mainly upon the use of the separability of a special 
orthogonal coordinate system. Such solutions were derived for lens-shaped bodies [21] and spherical 
caps [8]. 

An alternative approach, which has been especially used in the case of flows in three-dimensional 
domains to obtain the integral representation of the solution, is the Green's function technique. We 
may recall several works to study the main concepts of Green's function method and to find detailed 
discussions on the advantages of the solution in integral form [12, 19, 14, 20, 24, 11]. Since no 
analytic solutions are at present available, numerical analysis is required for the determination of the 
problem describing Stokes flow past general bodies. Analytical results can only be obtained when 
the boundary shapes are simple enough [5, 3, 9, 10]. 

Various numerical methods using the general integral form of the solution or the truncated series 
expansion of the stream function have been proposed to approximately solve the problem. A few of 
them may be referred here. Ladyzhenskaya's [14] general solution was applied in [29] to formulate 
Stokes flow problem as a system of linear integral equations. They evaluated the unknown density 
of point forces numerically by reducing the integral equations to a system of linear algebraic equa- 
tions. Numerical results obtained for general bodies, however, were not always in agreement with 
experimental data. Lee and Leal [16] proposed a numerical method to analyze the two-dimensional 
flow by asymptotic matching of the general solutions of Stokes and Oseen equations in integral 
form. On the other hand, O'brien [18] truncated Sampson's series expansion of the stream function 
written in spherical coordinates and satisfied approximately the no-slip conditions by employing a 
boundary collocation method. Bowen and Masliyah [4] also expressed the stream function in terms 
of Sampson's separable solutions, but they performed a least-squares fitting in order to satisfy the 
boundary conditions. Although the numerical results were seen to be consistent with the well-known 
exact analytical ones, i.e., sphere and ellipsoid, the validity of these two works is not clear in 
mathematical sense. 

In this paper, we show how an exact theory can be constructed to determine Stokes flow past 
an arbitrary axisymmetrical body. The statements of the problem are summarized in Section 2 to 
clarify the starting point of the present method. The mathematical presentation is given in detail 
in Section 3 which will be helpful in understanding the method. The formalism is developed by 
recalling some of the basic properties of the Hilbert space of the problem and the theory of dif- 
ferential equations. With the representation of the body shape by an analytic function including 
arbitrary number of design parameters, the Stokes equation written for such an arbitrary body is 
reduced to a system of ordinary differential equations by utilizing the basis function expansion 
in the Hilbert space of the problem. Sections 3.1 and 3.2 cover the reconstruction of the bound- 
ary conditions compatible with the present theory and the sphere problem to show whether the 
method yields the well-known exact solution of this particular case, respectively. In Section 4, a 
first approximate solution of the resulting simultaneous vector differential equations is derived in 
closed form. An application is realized to calculate the drags of various spheroids in Section 4.1 
for illustrative purposes. The last section includes a discussion of the method and some concluding 
remarks. 
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Fig. 1. Axisymmetric Stokes flow past an arbitrary body. 

2. The basic formulae 

Stokes flow problem of  the uniform motion of  an inertialess unbounded viscous, incompressible 
fluid past an arbitrary body defined by r = F(O) in a domain ~ (Fig. 1) is described by 

V2v(x) = $Tp(x), V . v ( x )  = 0, x E ~ .  (2.1) 

The boundary condition on the surface, r = F(O), of the body 

vi(x) : 0 (2.2) 

is known as the no-slip condition, where the vi are velocity components, and the conditions at infinity 
as I Ixll ~ cc are given by 

v(x) = k, p (x )  = p ~  (2.3) 

where Ilxll, p ~  and k denote the norm of  the position vector, the pressure at infinity and the unit 
vector in the z-direction, respectively. It is noteworthy that the lengths, velocities and pressures have 
been nondimensionalized by a characteristic length l, l = (3V/4~) 1/3, uniform fluid speed v~ and 
I~v~/l, respectively, where V is the volume of the body and # is the dynamic viscosity of  fluid. 

It is well known that the azimuthal component of  the velocity vector is everywhere zero in the 
case of  flow in axisymmetrical domains, and the following velocity field [13] 

v(x) = V~b x ~7~(x)  (2.4) 

satisfies the continuity equation ~7.v(x) = 0. Hence, the problem is reduced to a search for a so- 
called stream function gS(x), and all flow characteristics can be determined completely by evaluating 
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this scalar function. In spherical coordinates (r, O, ~b), the expressions of the velocity components in 
terms of the stream function are 

1 O~,o 1 0 ~  
Vr(r, O) --  r 2 sin 0 00 '  vo(r, O) -- r sin-----0 Or (2.5) 

from which the sole component of the vorticity vector is derived as 

1 
_ _  E 2 ~u, ( 2 . 6 )  

w~(r, O) - r sin 0 

where the second-order partial differential operator E 2 is defined by [15] 

E 2 _  02 sin0 0 ( 1 SO) (2.7) 
0r 2 + r ---5- 00 sin 0 " 

The governing equation (2.1) can now be altered to 

~72w(~(r, O) = E47t(r, 0) = 0. (2.8) 

Dividing this fourth-order equation into two parts, one obtains the simultaneous partial differential 
equations of the second order as follows: 

E2~(r ,O) = O, E2~p(r,O) = ~(r,O). (2.9) 

In the case where the body is assumed to be fixed and there is no slip between fluid and boundary, 
the drag on a body which is the most important flow quantity may be calculated by [6] 

1 £ 1 f 0 " f F ~  ~2(r, 0 ) D = - ~  wZ~dv = 3 (0) r s in0  drdO. (2.10) 

The drag is nondimensionalized by 6n#v~l ,  so it is obvious that if a sphere with unit radius is 
under consideration then the characteristic length and drag become unity due to the Stokes' low, 
according to the aforementioned dimensional analysis. Lastly, it should be noted that the boundary 
conditions given on the velocity components are 

vr(r, O) - vo(r, O) - 0 at r = F(O), (2.11 ) 

lim Vr(r,O)= cos0, lim vo(r,O)= - s i n 0  (2.12) 
r ----+ o o  r----+ o ~  

in spherical coordinates. 

3. Methodology 

Let us consider the definite integral expression of the drag. By the introduction of the coordinate 
transformations, 

q = c o s O ,  z = r - F ( q ) ,  (3.1) 

q E [-1,1] ,  z C [O, oo), (3.2) 

0 O __O = %l.O~ 

Or Oz" O0 
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the drag can be rewritten in the form 

, j; /o- D ---- g , i ----r/-i dzdr/. (3.4) 

Now we get rid of  the undetermined shape function at the lower limit of  the integral over r. By (3.1), 
the operator E 2 is changed into L,e 2 such that 

- -  C3Z 2 q- [Z q - F ( r / ) ]  2 

where the prime stands for the derivative with respect to the independent variable. Hence, the shape 
function F 0 / )  is inserted into the operator, and the mathematical problem is converted to 

£P25('c,~/) = 0, £~27"(z,r/) = ~(-c,r/). (3.6) 

These equations cannot be solved by separation of  variables since the pair (z, ~/) does not form an 
orthogonal coordinate system. However, the physically acceptable values of drag have to be finite, 
so that 

D < c~. (3.7) 

This is an interesting point of  view of the treatment of the problem. In what follows, it may be 
stated that • is in the Hilbert space of the square integrable functions denoted by L2(~),  which is 
defined by the integral operation under the weight (1 - r/2)- L over the domain of z and ~/, accord- 
ing to (3.4). The stream function is also in L2 with respect to the same inner product due to the 
differential relation (3.6) between • and 7'. Further investigation on this space is, however, outside 
the scope of  the work. 

With the general considerations in perspective, both $ and 7" can be written as a linear combina- 
tion of  Gegenbauer or Legendre polynomials, since such functions generate orthonormal basis sets 
of  the L2 space on the interval - 1  ~< t/~< l [2]. The consideration of the eigenvalue problem 

(1 - r/2)G"(r/) = 2G(r/), G ( - 1 )  = G(1) = 0, (3.8) 

which is related to the last term of  the operator 5¢ 2, guides us towards the more convenient expansion 
to choose. Putting 

2 x = l - r / ,  1 - n  2 = 4 x ( 1 - x ) ,  x E [ 0 , 1 ]  (3.9) 

and proposing a trial solution of  the form 

G(x) --- x(1 - x)y(x)  (3.10) 

satisfying the boundary conditions, the problem is reduced to the hypergeometric equation [25] 

x(l  - x ) y " ( x )  + 2(1 - 2x)y'(x) - (2 + 2)y(x) = 0. (3.11) 

A regular solution of (3.11 ) is the so-called hypergeometric function 

y(x) ---- 2 F l ( - n , n  + 3,2;x),  n E 7/+ (3.12) 

which can be expressed in terms of Gegenbauer polynomials 

2 F l ( - n , n  -k- 3,2;x)  = n !  ~(3/2)(1 _ 2X), (3.13) 
(3). " " 
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where 7/+ is the set of natural numbers, (p) ,  is Pochhammer symbol and ~n ~) is the Gegenbauer 
polynomials of order n and degree e [1]. From now on, we are going to employ fen instead of  C~nt3/2) 
to simplify the notation. If  constants are not taken into account, we consequently obtain a general 
solution 

G,(q)  = (1 - q2)fq,(q) (3.14) 

for the eigenfunctions and 

/~n = - ( n  + 1)(n + 2) (3.15) 

for the eigenvalues of  the problem (3.8). It is now preferable to expand ~ and ~u in a series of 
Gegenbauer polynomials so as to use the results of the above eigenvalue problem. Therefore, the 
solutions of (3.6) are most easily found by assuming the following expansions of  the form 

q~(z, q) = (1 - q 2 )  ~ Xk(Z)~k(q)  ' (3.16) 
k=0 

7t(z,q) = (1 - q2) ~ Yk(z)f#k(q), (3.17) 
k=0 

where the Xk and Y~ are solely z-dependent linear combination coefficients to be determined. Thus, 
if the homogeneous equation £~o2~ = 0 is considered in conjunction with (3.16), we have 

[z + F(q)]  2 
~ z ~ ( z ,  q) = {[z + F(q)] 2 + (1 - q2)[F'(q)]2} ~ X~'(z)fCk(q) 

1 - q2 
k=O 

- ~ X/~(z){2F'(q)[( l  - q2)fCk(q)]' + (1 - q2)F"(q)fCk(q)} 
k=0 

- Z (k + 1)(k + 2)Xk(z)f~k(q) = 0 (3.18) 
k=0  

in which the solutions of  (3.8) are employed to obtain the last term. The linearly independency of 
Gegenbauer polynomials implies that it is necessary to express all q-dependent functions in terms 
of the consecutive fqk, and resulting z-dependent coefficients should be equated to zero. To achieve 
this we need only to propose an explicit form for the equation of surface. The following structure 
is therefore taken: 

r = F ( q )  = e0[1 + f (q) ] ,  f ( q )  = c~iq', (3.19) 
i=1 

which is almost equivalent to the Fourier series representation, providing that f ( q )  is analytic. The 
c~i may be called shape or design parameters. It is obvious that a sphere of  radius e0 is under 
consideration if all ei with i/> 1 vanish. For an arbitrary body, the geometrical conditions imposed 
on the shape function f ( q )  are those that it should be positive and finite-valued: 

0 < f ( q )  < oc for all q E [ -1 ,  1]. (3.20) 
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There are no further restrictions on the shape function. Now, the ~]i may be transformed into an 
expansion in terms of Gegenbauer polynomials making use of the expansion of the form 

qi~ j (q )  = ~ f/d, kffk(q). (3.21) 
k=0 

Multiplying both sides of (3.21) by (1 - qZ)f~m(q) and integrating from - 1  to 1, the f,d,k can be 
defined as 

f f~,j,k = r/~(1 - qz)ffj(t/)f#k(q) dr/ (3.22) 
1 

due to the orthonormality of the fCk(r/), i.e., 

f (1 - r /2)Cff ,  n ( q ) f f n ( r / )  d r  / = 6m, n, (3.23) 
1 

where 6m, n is the Kronecker delta. Hence, substituting (3.21 ) into (3.18) and employing the recurrence 

21/ ~ fqk+,(r/) + ~ f#k_,(t/) 
~ ( ~ )  - k +---5- k +-----i- 

and differential relations [1] 

(1 - ~2)~(~)  = (k + 2 ) f f - ~  ~k- , ( . )  - kn~k(n) 

of the ~k(t/), we may define the following matrices: 

Aj, k = 2 ~ aijS, j,,, 
i=l  

Bj, k = E Ctm~n[(1 -- nm)fn+m,J, k + nmfn+m-2,j,k], 
m=l n=l  

Cjk = ~ io~i ( k - j ) f i ,  j , k - ( k  ÷ ) ~ / T J ~ - l , j , k - 1  + ( j +  2) f i - - l ,k , j - -1  
i=1 

Dj, k = (k + 1 )(k + 2)6j, k, 

where the normalization factor ~ is given by 

2(k + 1 )(k + 2) ~ =  
(2k + 3) 

The homogeneous equation (3.18) can then be written in the form 

[z + F ( q ) ]  z - ~ 2 - ,  , ~ 
~ - ~  ;z: ~utz, r/) = ~ ,__., ffj(t/){~o2[(Z/ao + 1)26j.k + (z/Cto + 1)Aj.k 

j=O k=O 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

, (3.28) 

(3.29) 

(3.30) 

.q_ It Bj, k]X/, ( z )  - otoCj, kX~(z)  -- Dj, kXk(z)}. (3.31) 
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Now, the linearly independency of  the fCk(q) evidently implies that 
o¢) 

[ d 2 d _ Dj~ Xk(~) = 0, j = 0, 1, . . ,  (3.32) L( ¢Z rJ'k + ¢Ai'k + BJ'k ) - ~  -- CJ'k ~ " 
k=O 

where, for conciseness, we have changed the variable from z to ~, 
T 

= - -  + 1, ~ E [1,oc). (3.33) 
~0 

Finally, we obtain the equation 

TX(~) = 0 (3.34) 

in vector-matrix notation for the determination of  the vector-valued function X(¢) whose transpose 
is formed by means of  the functions Xk(~), i.e., 

Xt(~) = [X0(~),X,(~)... ,X~(~),...]. (3.35) 

In (3.34), T is a differential operator, 

T = (¢21 + ~A + B)~--~ - C - D, (3.36) 

where A, B, C and D are matrices defined in (3.26)-(3.29),  and I stands for the identity matrix. 
On the other hand, the inhomogeneous equation 5e 2 ku = ~ considered in the form 

o~ 

e~ [¢ + F(t/)] 2 2 ,2~(¢, t / )  = e2[~ + f(q)]2 ~ Xk(~)f#k(t/) (3.37) 
1 - r/z 

k=O 

may be worked out in a similar fashion to find the relation 

Nj(t/) Tj, kYk(~) = e2 f~j(t/) ~---~ (~ 6j, k + ~Aj, k + Ej, k)Xk(~). (3.38) 
j = 0  k=0 j = 0  k=0 

It is readily seen that the left-hand side has been derived analogous to (3.31) on replacing Xk(~) by 
Yk(¢), and an additional matrix Ej-,k on the right-hand side, 

Ei, k = ~ C~mTnfn+m,j,k, (3.39) 
m=l n=l  

has been defined for the transformation of f2(t/) into an expansion in terms of  Gegenbauer polyno- 
mials. Now (3.38) leads to 

TY(~) = ~02(~2I + ~A + E)X(~) (3.40) 

in vector-matrix form, where the transpose of  Y(¢) is 

yt(~) = [Y0(¢), Y1(¢) . . . . .  Yk(¢),...]. (3.41) 

The systems (3.34) and (3.40) are referred to as the vector differential equations which have to be 
solved simultaneously. The investigation of  the general solutions of  the systems is left to a future 
study. We may, however, state that the complete solution will be valid for all bodies provided that 
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their surface equations are given by (3.19). As a matter of fact, changing the variable from z to 4, an 
arbitrary body in question has been transformed to a fixed region in the new fluid domain, and the 
shape effects are now characterized by the matrices A, B, C and E appearing in the operator T and 
on the right-hand side of (3.40) as matrix-valued coefficients. The determination of these matrices 
depends on the shape parameters ct~. Since f~,j,k is symmetric in the second and third indices, it 
should be noted that A, B and E are symmetric; C is skew-symmetric. Furthermore, the last matrix 
D in T is diagonal. Another remark is that the f,,j,k can be evaluated recursively by utilizing the 
recurrence relation (3.24) of the ffk(~/). 

Finally, we may rewrite some of the basic flow quantities by taking into consideration the foregoing 
new representation of the problem. According to (2.5), the velocity components are 

t )¢ (¢ , r / )  ----- ~g[~  + f ( r / ) ]  2 - -  f ' (q )  (1 - ~/2) y~  Yk(¢lf~k(q) , 
k=0 

(3.42) 

v/1 _ q,/2 o ~  

v,(¢. r/) -- ~2[¢ + f(q)]  ~ Y,'(¢)~k(t/) 
k=O 

(3.43) 

in the (~,q) coordinates. From (3.4), the drag is expressible as 

(1 - tl 2) ~ ~ X;.(¢)X,(¢)r~j(r/)(~,(r/) dr/de 
D = ~a0 l y=0 *=0 

(3.44) 

which can be reduced to 

D = ~ 0  k=0 (3.45) 

on recalling again the orthonormality of the fqk(~/). 

3.1. Reconstruction o f  the boundary conditions 

The boundary conditions (2.11 ) and (2.12) given on the velocity components have to be modified 
so as to correspond to the vector differential equation (3.40) for the completion of the methodology. 
On the body surface, or equivalently when ~ = 1, the no-slip condition requires that 

v¢(1,r/) = 0, v,(1,q) = 0. (3.46) 

It is evident from (3.43) that the condition v,(1,q) ---0 is fulfilled if the Y[(1) are equated to zero 
for k~>O, i.e., 

Y'(1) = 0 (3.47) 

since Gegenbauer polynomials are linearly independent. Substitution of (3.47) into (3.42) gives 

- = o 

k=O 

(3.48) 
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to satisfy the other condition v¢(1,r/) : 0. Since (3.48) is identically valid for all q, q E [-1, 1], one 
can take the derivative with respect to i /o f  both sides of the equality and arrive at 

O ~  

~--~(k + 1)(k + 2)Yk(1)f¢k(q) = 0 (3.49) 
k=0 

by recalling the results, (3.14) and (3.15), of the eigenvalue problem (3.8). Again taking into account 
the linearly independency of the f#k(r/), it may be seen that 

Yk(1) ---- O, k = O, 1,2 .. . .  (3.50) 

o r  

Y(1) = 0. (3.51) 

The condition of uniform flow at infinity, on the other hand, requires that 

v¢(~,q) = q, lim v,(~,r/) = -V/1 - q2. (3.52) lim 

According to (3.43), the second condition in (3.52) may be written as 

[ , ]  ~ ~ ~'(~)Nk(t/) ~ --co 2 1 + ~f(t /)  (3.53) 
k=O 

for sufficiently large values of 4. Multiplying the left-hand side by ~/--XoNo(q) (= 1) and using the 
relations (3.19), (3.21) and (3.26), the equation takes the form 

1 ~ 1 2 [ 1 ~ ] 
~ Yk'(~)f#k(q) ~ --~oV/-~o 2f¢0(q) + ~ ~ Ao, kfffk(rl) (3.54) 
k=0 k=O 

which implies, for k = 0, 1,..., that 

~ Yk'(~) ~ l z -  ~oVC-Joo (26o,~ + ~Ao, k ) l  

or in vector-matrix notation 

+Y'(~) ~ 12 (21 el 

and that, in the limiting case of ~ ~ e~, we must have 

lim 1 ~-+~ ~'(¢)=-~C-~o~0,~, k=o,1,..., 

where e~ denotes the unit vector 

etl = [ 1 , 0 , . . . , 0  . . . .  ]. 

Similarly, the first condition in (3.52) may be written from (3.42) as 

~- ~ ~ ( ~ ) [ ( 1  - , 72 )~ ( ,7 )1  ' - (1 - ,~2)f,(,~) ~ ~,(~)~(,~) 
k=0 k=0 

(3.55a) 

( 3 . 5 5 b )  

(3.56) 

(3.57) 

1 2 
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for large enough values of  ~. Taking again the derivative of  both sides with respect to ~/ and 
neglecting the terms which decay proportional to 1/~ 2 at infinity, we obtain 

- ( k  + 1)(k + 2)~TYk(~ ) ~ -e~x/'-~o ~O,k + ~(Ao,k -- Co,k) , k = O, 1,. . .  (3.59a) 

o r  

' E ! l ~--2Y(~) ~ -~2v/--XoD-1 I + ¢(A - C)  el (3.59b) 

which leads to the condition that 

1 1 2 
lim ~2Yk(~) = -~0c0v/--70f0,k, k = 0, 1,.. (3.60) 

where the inverse of  the diagonal matrix is immediately defined by 

6j, k (3.61 ) D},-~ = 
(k+ 1)(k + 2) 

It should be noted that the definitions of  the related quantities and the condition (3.55) have been 
employed in intermediate steps of  the derivation. Therefore, the conditions (3.47), (3.51), (3.56) 
and (3.60) can be taken as the accompanying boundary conditions of  the vector differential equation 
(3.40). 

3.2. A particular case." Streaming flow past a sphere 

The problem of  streaming flow past a stationary sphere when setting f ( r / )  = 0 is a particular case 
of  our presentation, which was originally treated and solved in [26]. It may be interesting to take up 
this well-known problem for checking purposes. In this case the matrices, whose elements depend 
on the shape parameters, are all identical to the zero matrix. So, the operator T is reduced to 

, ~ 5  - ( k +  1 ) ( k + 2 )  6j, k (3.62) 

and the homogeneous equation TX(¢) = 0 turns out to be a Cauchy-Euler equation which possesses 
solutions of the type 

Xk(~) = ak~ k+2 + bk¢ -(k+l), k = 0, 1,2 . . . .  (3.63) 

The general solution of the inhomogeneous equation TY(~)= 0c2~2X(~) then takes the form 

ak 5)~k+4 bk -l) + Ck~k+2 Yk(~) -- 2(2k + " 2(2k + 1)¢-(k + dk~ -(k+l). (3.64) 

Here, the ak, bk, ck and dk are constants, and ~0 has been taken as one to consider a sphere with 
unit radius, for simplicity. The boundary conditions imply that 

dk = _1  V/--~00fk,0, ck = 2dk, bk = 6dk, ak = 0. (3.65) 
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Therefore, all constants vanish except the first ones when k = 0. Upon substituting these constants 
into (3.I7), the stream function can be terminated to give 

' (1  r/2)(2~ 2 3 ~ + ~ ) .  
e (4 ,q )  = - ~  - - (3.66) 

Returning to the original variables in spherical coordinates, it is possible to deduce that this is exactly 
the same as the Stokes' solution in terms of the dimensionless stream function [13]. Hence, all flow 
quantities such as the drag can also be obtained exactly by the present formalism. 

4. Truncated solutions in the one-dimensional subspace 

Keeping in mind that N goes to infinity, it may be appropriate to express the vector differential 
equations (3.34) and (3.40), for j = 0, 1,.. .  , N -  1, in the form 

N--1 

r , ;kx~(4)  = o, (4 .1)  
k=0 

N - I  N - I  

E2r, krk(4) E2 2 = (4 6j, k + 4Aj, k + Ej, k)Xk(4). (4.2) 
k=0 k=0 

It is obvious that the best approximations to q~(4,t/) and 7J(4,r/) in the least-squares sense are 
assumed for a finite N. We, therefore, consider the resulting N-tnmcated simultaneous systems of 
differential equations. Such a truncation will be justified properly in the last section. However, the 
investigation of the general solution in N-dimensional subspace is left to the second part of this work. 
In this section, we attempt to obtain a first approximate solution in the one-dimensional subspace 
by letting N =  1. Hence, q~ and 'P can be written, from (3.16) and (3.17), as 

~li(~, q) = ~'o-J /2(1  _ r/2)Xo(~), (4.3) 

~(~,r/) = jVo-I/2(1 - q2)yo(~) ' (4.4) 

where Xo(4) and Yo(~) will be determined by solving the following simultaneous equations: 

To, oXo(4) = o, (4 .5)  

To, oYo(~)  2 2 = ~o(~ 6o, o + ~Ao, o + Eo, o)Xo(~). (4.6) 

In this case, the matrix-valued coefficients are reduced to scalar quantities such that 

I---~6o, o = 1, D-+26o ,  o = 2, C---+Co, o = O, 

A-"+Ao, o = a, g--+Bo, o = b, E---~Eo, o =/~, 

and the operator To, o is 

(4.7) 

(4.8) 

d 2 
To, o = (¢2 + a¢ + b) - :~ .  - 2. (4.9) 
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The coefficients a, b and b are evaluated from the definitions of  the matrices A, B and E respectively, 
as follows: 

4 ~ 1 + ( - 1 )  i 
(4.10) 

a = ~00 2_.,;=1 ( i +  1 ) ( i + 3 )  cq' 

~-~ ~ 1 + ( -  1 )i+j cci~j, 
8 ~ i J ( i + j _ l ) ( i + j + l ) ( i + j + 3 )  b = b + 7 °  j=l (4.11) 

2 ~ ~ l+( -1 ) i+J  
b =  A# o E E ( i + j +  l ) ( i + j + 3 )  °~i°~j" 

i=1 j = l  

For brevity, if we now transform the variable from ¢ to x, 

x = ~--~o(2¢ + a), x E Ix0, 0<3), 

wherein 

A~(2 + a), A0 = v / ~  - a 2 X0 

the differential operator T0,0 can be altered to 3-, 

d 2 
~--= (x 2 + 1)~x2 - 2 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

and the homogeneous equation J 'Xo(x)= 0 possesses an obvious solution of  the type 

ul(x) = x 2 + 1. (4.16) 

Then it is not difficult to obtain a second linearly independent solution, 

u2(x) = ul(x) arc cotx - x (4.17) 

by the reduction of  order of  the differential equation. Therefore, the complementary solution can be 
written as 

Xo(x) = ClUl(X) + C2U2(X), (4.18) 

where c1 and c2 are arbitrary constants. 
The inhomogeneous equation, on the other hand, becomes 

1 2 2 2 = otoAo(x + 2)[ClUl(X) + C2U2(X)] (4.19)  -Yo(x) 

in terms of  x, where 2 parameter is 

4/~ - a 2 
2 - 4b - a ~ (4.20) 

If yp,(X) and yp2(X) are particular integrals of  (4.19), we can provide a general solution of  the form 

1 ~ 2 A 2 r  Yo(x) = ~ o olClyp,(X) + c2yp2(x) + c3ul(x) + c4u2(x)], (4.21) 
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where c3 and c4 are additional arbitrary constants. The following trial solutions 

yp, (x) = ul (x)yl (x), (4.22) 

yp2(x) = Uz(x)yl(x) + y2(x), (4.23) 

may be suggested to satisfy the equations 

g-yp, (x)(x) = (x 2 + 2)ul (x), (4.24) 

3-yp2(x ) = (x 2 + 2)Uz(X), (4.25) 

respectively, the integrations of  which result in 

y,(x) = ~0 {3Ul(X)+ ( 5 2 - 1 ) [ l n U l ( X )  Ul~X)l}'  (4.26) 

ix x ]} y2(x) = - 6 x  + (52 - 1) lnul(x) - ul(x-----) + 2(1 - ln2)x - ul (x)g(x)  . (4.27) 

Note here that the function g(x)  in (4.27) is a special function which cannot be expressed as a finite 
combination of  elementary functions and is known as the Clausen integral [1] defined by 

8(x)  = - In 2 sin dt = ~5 sin[kO(x)] (4.28) 
k = l  

whose derivative is in the elementary form 

u,(x) 

where 

O(x)  = 2 arc cotx. (4.30) 

In the case of  the one-dimensional subspace, the corresponding boundary conditions worked out in 
Section 3.1 are 

lim Yo(x) 1 2 2 --  ~ % A 0 v ~ 0  , (4 .31 )  
x---*oc X 2 

lim Yd(x) 1 2 2 -- ~%A0 x/~00 (4.32) 
X----~ ~ X 

and 

Yo(xo) = Y~(xo) = O. (4.33) 

Since the first term of  Yo(x) in (4.21), i.e., yp,(x), goes to infinity as x 4, the first condition requires 
that c~ must vanish. Without giving the details of  the limit operations, the second condition at infinity 
implies that 

c3 lim u'l(x) - v/--Yoo (4.34) 
x---+oo X 
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from which we obtain 
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c3 - 5 x/--700. (4.35) 

The conditions (4.33) yield the following system of algebraic equations: 

U2(X0) ypz(XO)][C4] 1 [ u,(xo)] 
U'z(Xo) yp2(Xo)]' [ ]c2 = ~x /~0  [u'~(Xo)] (4.36) 

for the determination of c2 and c4. Hence, we find that 

c2 = W{uz(xo), yp2(Xo)}' (4.37) 

1 
C 4 = ~ C 2 W { u 2 ( x o )  , yp2(Xo)}, ( 4 . 3 8 )  

where W{F(t) ,  G(t)} denotes the Wronskian conventionally defined by 

[ F(t)  G(t)] 
W = det[F,( t  ) G'(t)J" (4.39) 

Consequently, substituting the complete form of the Xo(x) and Yo(x) into (4.3) and (4.4), respectively, 
the approximate solution of the flow problem which satisfies the original boundary conditions (2.11 ) 
and (2.12) is obtained. Therefore, the desired flow quantities may be derived by means of the function 
¢(x, q) and the stream function kU(x, q). As an example, from (3.45) the drag can be written as 

/5 D = 1 XZ(x)dx = 1 2 g~oA0 g~oAoe2Io(xo), (4.40) 

where Io(xo) is 

Io(xo) = u (x)dx = -  xo(3xo - 2 )  +  ,e(Xo) 

+ ~[(3xo 2 + 1)Ul(Xo) - 41n ¼ Ul(Xo)] arc cotx0 

- lx0(3x4 + 10x02 + 15) arccotZx0. (4.41) 

It is clear that the drag is an implicit function of the design parameters c~,-, except e0. 

4.1. An illustrative application: Prolate spheroid 

It may be interesting to apply the first approximate solution to a particular body for which the 
drag is known, in order to test the precision of the present theory. A prolate spheroid is considered 
to this end (Fig. 2). The dimensionless drag force on a prolate spheroid is given exactly by 

4 2 
gaff (4.42) 

Dexact = 1+fl22~ In ( ~ )  -- 1' 
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Fig. 2. Stokes flow past a prolate spheroid. 

where 

,=~i - (!)' (4.43) 

in which a is longest of the two semiaxes [13, 7]. According to the aforementioned normalization in 
4 in order to deal with a unit characteristic Section 2, the volume of the body may be equated to g~z 

length, i.e., on putting l = 1 we find that 

a = ( ! )  -2/3 . (4.44) 

This condition also implies that ~0 in Eq. (3.19) can be written in terms of the rest shape parameters. 
If we look at the volume expression in spherical coordinates 

~0 ~ ~0 F(O) V = 2 ~  r 2 sin 0 dr dO (4.45) 

which is equivalent to 

/; j' V _  3 -  2_~ ~ F3(q) dq = ~2 ~Zao3 1 [1 + f(q)]3 dq, (4.46) 

4 and set l = 1, or V = g n, Cto results in 

~o = (1 + Vl + V2 + V3) -1/3, (4.47) 

where 

3 ~ 1 + ( - 1 )  i 
V~=~j=I i + l  ~i, (4.48) 

3 ~ 1 + ( - - 1 )  i+j 
V2 = ~ e=~ j=l i + j  + 1 °~i°~J' (4.49) 

l ~ 1 + ( -  1 )i+j+k 
V3 = ~ i=l j=l k=l i + j + k +  l ~i~J~k" (4.50) 
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Table 1 
The comparison of the drag obtained by employing the first approximation of the present method for a prolate spheroid 
as a function of the ratio b/a 

b M D Dexact Error a 

1.0 0 1.0 1.0 o. 
0.95 4 0.993 899 0.993 428 0.000 474 
0.9 6 0.988 966 0.987 065 0.001 926 
0.75 12 0.981 789 0.969 932 0.012 226 
0.5 32 0.999 548 0.955 569 0.046 024 

We now need to derive the expansion of  the surface equation of  the prolate spheroid 

r2 (sin2 0 COS2 0~ 
k a---7- + b2 j = 1 (4.51) 

in terms of  r/. This therefore leads to 

b I ~rlzi~2i F(2i) ] (4.52) 
r - ~/1 - ~zrl2 -- b 1 + 2 ~ 22--- 7- Y(i)F(i  + 1) 

i = l  

which, by comparison with (3.19), shows that 

b = ~0, (4.53) 

' r ( 2 i )  
~2i - -1  = 0 ,  ~2i : 2 F(i)F(i + 1)' i = 1,2,. . .  (4.54) 

It is evident that the vanishing of  the shape parameters with odd indices is due to the central 
symmetry of  the body. 

Hence, from (4.40), the first approximate drag of  the prolate spheroid can be obtained for 
a given b/a. Results are presented in Table 1 as a function of  b/a. The M values show how 
many terms have been taken from the series expansion of  the shape function f ( q ) .  They are deter- 
mined in such a way that the drag remains constant up to six significant digits. It may be observed 
that the number M increases because of  the relatively slow convergence of  f(~/) in (4.52) as the 
ratio b/a decreases. The table also includes the exact drag values and relative errors calculated by 
( O  - Dexact)/Oexac t for comparison. 

5. Conclus ion  and a discussion on the convergence  o f  the method  

In this work, a new approach has been presented to solve the Stokes equation for a wide class 
of  axisymmetrical bodies of  arbitrary shapes. The first approximate drag calculations for flow past 
prolate spheroids having various b/a ratios yield quite encouraging results which show that the 
method can satisfactorily be used in physical applications in a simple and concise manner. Actually, 
it is shown from Table 1 that the qualitative behavior of  the solution [N = 1,M] is in a good 
agreement with that of  the exact solution in the range of  0.75 <<,b/a<~ 1. Such an approximation, 
however, starts to lose its efficiency for b/a <<, 0.5. So, for a prolate spheroid having a small b/a ratio 
it is necessary to increase the dimension of  the Hilbert subspace N in order to achieve more accuracy. 
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Giving further particular comments on the method itself may be unnecessary since the mathematical 
presentation is clear and fairly detailed. However, it is worthwhile to state that the method is closely 
related to the classical eigenfunction expansion in a spherical coordinate system. Such a classical 
expansion of the stream function in terms of Legendre or Gegenbauer polynomials, however, does 
not allow one to find the solution for an arbitrary body. As a result, the validity of  our procedure for 
a wide class of axisymmetrical bodies of  arbitrary shapes seems to make a significant contribution 
to the classical theory. Actually, the embedding of  the shape function into the independent variable 
through a transformation standardizes the scheme. Therefore, the orthogonal expansion over resulting 
coordinates gives the possibility of  taking care of  the contributions of  the separate terms in the series 
representation of  the shape function in a systematic way. 

The following stage of this work is the investigation of  general solutions of the resulted system of 
ordinary differential equations, (4.1) and (4.2), in a finite-dimensional subspace. The construction of  
the truncated solutions of  the vector-valued functions Y(~) and X(¢)  of order N will be presented in 
the second part of  this series of papers. Here we shall not give a rigorous proof on the convergence 
of those solutions as N ~ oo, but shall at least make it plausible. 

The infinite series expansion of the stream function may be written in the form 
oo N - - I  

~(~, ~) = (1 - r/2) y~  Yk(~)~Ck(n) = (1 -- r/2) ~ Yk(~)~Ck(n) + (1 -- ,72)'/~RN(¢,,7), (5.1) 
k = 0  k = 0  

where RN(¢,rl) is the remainder defined by 

R(~, r/) = ~ Yk(~)[(1 - qZ)l/2f#k(r/)]. (5.2) 
k=N 

If, for a fixed ~, the norm of  the remainder, 

f 1 2 
6N(~) j_~ R~(~,r/)d,7~>o (5.3) 

is considered, then we have to show that 6N(¢) is bounded for all ¢~> 1 saving only the point at 
infinity. Using the orthonormality of  the Gegenbauer polynomials and the following identity: 

Yk(~) --- T(~,q)fak(q) d~/, k = 0, 1 , . . . ,  (5.4) 

we obtain the relation 

f l dr/ N-1 
6~(~) = ~,2(~,~) r/~ ~ r[(~). (5.5) 

1 1 - -  k = 0  

Since 5N 1> 0, we find the Bessel-like inequality 

N - -  l fl dr/ 
Y~ Y}(~)~< J_ Tz(~'r/) r/2" (5.6) 
k=O 1 1 -  

We may deduce from a physical consideration that the integral on the right-hand side exists. Indeed, 
it is well known that the stream function vanishes along the symmetry axis of  the body when 0 = 0 
and ~, or at r /=  3:1 in the transformed domain. For this reason we introduced the weighting factor 
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1 -1/2 in the expansion of the stream function. Therefore, the stream function is square integrable 
with respect to the weight (1 - ~/:)-1 in the domain of 11 E [ -1 ,  1], resulting a function of  4, S(¢) 
say, which is related to the ~-dependence of kv2(~,q). Hence, S(¢) is a continuous function of 
since the differential operator in (3.5) has no singularity when z ~>0, or equivalently when ~ ~> 1. As 
a consequence, each Yk(~) in (5.4) is uniformly convergent from the usual Schwarz's inequality. 
Furthermore, we have for 1 ~< ~ < 

N--I 
Z Y2(~)<~S(~)<~m' (5.7) 
k=0 

where m is a positive real number. The last inequality implies also that the norm of  the remainder 
6N vanishes as N ~ cxD. Therefore, we suffer no trouble to consider the truncated problem for 
computational purposes. 

At the left-end point ~ = 1, the expansion of  ~(~, r/) is convergent, and the no-slip condition is 
fulfilled by the conditions Y~( 1 ) =  0 and Y~( 1 ) =  0. On the other hand, the situation with the limiting 
value of  ~ as ¢ ---* c~ is rather different. We need not, and this is not really so, to show that ~(¢,  r/) 
remains finite as ~ --, c~. Unboundedness of the stream function as ~ --, co may also be seen from 
the Stokes' solution (3.66) of  the sphere problem. What we have to show as ~ ---, ~ may be derived 
according to the boundary conditions in (3.52). Employing the expressions (3.42) and (3.43) we see 
that the stream function obeys the conditions 

lim _ _  _ %2(1 _~/2) (5.8) 

and 
1 ~3~u 

lim _ _  _ ~2~/ (5.9) 
{__+~ ~2 ~/~ 

for all q. So the infinite expansion of  the stream function in terms of Gegenbauer polynomials is no 
longer valid as { --+ cx~. However, imposing the condition (3.56) on Yk({), the expression in (5.7) can 
be treated by means of  our formalism. More specifically, for large enough values of { we may write 

, 
- ( 1  - ( 5 . 1 0 )  

which consists of  only the first term of the expansion of  ~({,t/).  Similarly, the condition (3.60) is 
sufficient to satisfy (5.8). Therefore, our stream function satisfies the conditions at infinity. Moreover, 
the conditions (3.56) and (3.60) make sure the square integrability of Xk({) in { E [1,e~) and the 
existence of  the drag given by (3.45), because of  the differential relation (3.40) between Xk({) and 

Finally, it is noteworthy to indicate that a two-dimensional array of  approximants IN, M] will 
be obtained similar to the Pade table. On the one hand, the dimension of the vector space, i.e., 
N may be extended up to any desired order of  truncation to characterize the exact solution more 
accurately. On the other hand, the shape function contains infinite number of design parameters. 
Hence, a specified body can be represented accurately by an appropriate selection of the number of 
the parameters, say M. Another useful aspect of  proposing the shape function with such a parametric 
structure is that it gives us a flexibility to adjust some or all of  the parameters in order to optimize 
a fluid mechanical problem such as the minimization of the drag [27, 28]. 
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