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a b s t r a c t

Almost all, regular or singular, Sturm–Liouville eigenvalue problems in the Schrödinger
form

−Ψ ′′(x)+ V (x)Ψ (x) = EΨ (x), x ∈ (ā, b̄) ⊆ R, Ψ (x) ∈ L2(ā, b̄)

for a wide class of potentials V (x)may be transformed into the form

σ(ξ)y′′ + τ(ξ)y′ + Q (ξ)y = −λy, ξ ∈ (a, b) ⊆ R

by means of intelligent transformations on both dependent and independent variables,
where σ(ξ) and τ(ξ) are polynomials of degrees at most 2 and 1, respectively, and λ
is a parameter. The last form is closely related to the equation of the hypergeometric
type (EHT), in which Q (ξ) is identically zero. It will be called here the equation of
hypergeometric type with a perturbation (EHTP). The function Q (ξ) may, therefore, be
regarded as a perturbation. It iswell known that the EHThas polynomial solutions of degree
n for specific values of the parameter λ, i.e. λ := λ

(0)
n = −n[τ ′ + 1

2 (n − 1)σ
′′
], which

form a basis for the Hilbert space L2(a, b) of square integrable functions. Pseudospectral
methods based on this natural expansion basis are constructed to approximate the
eigenvalues of EHTP, and hence the energies E of the original Schrödinger equation.
Specimen computations are performed to support the convergence numerically.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

There has been a constant interest in the numerical solution of Sturm–Liouville eigenvalue problems, especially the
one-dimensional Schrödinger equation described by the Hamiltonian

H = −
d2

dx2
+ V (x), x ∈ (ā, b̄), −∞ ≤ ā < b̄ ≤ ∞ (1)

for a variety of quantum mechanical potentials V (x). Several approximation methods have been proposed for computing
the eigenvalues of the problem by numerous researchers. Among these we may recall shooting methods [1], Prüfer
transformation followed by a shooting procedure [2,3], constant perturbationmethods [4,5], finite differencemethods [6,7],
variational methods [8–10], the Wronskian approach [11], the Hill determinant method [12–14], WKB and JWKB
approximations [15–20], the recursive series method [21], the path-integral approach [22] and pseudospectral methods
such as the quadrature discretization method [23,24] and pseudospectral methods based on classical orthogonal
polynomials [25–27].
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The so-called Liouville’s transformations reduce the classical Sturm–Liouville eigenvalue problems to the Schrödinger
form. In general, because of its simple structure, authorswould rather approximate the Sturm–Liouville eigenvalue problems
in the Schrödinger form. However, in contrast, Taşeli and Alıcı [25] transformed the Schrödinger equation over the real line

HΨ (x) = EΨ (x), x ∈ (−∞,∞), Ψ ∈ L2(−∞,∞) (2)

into a more complicated but beneficial form

y′′ − 2ξy′ +
[
ξ 2 − c−2V

(
c−1ξ

)]
y =

[
1− c−2E

]
y, ξ ∈ (−∞,∞) (3)

having a regular solution y(ξ) in the new independent variable ξ . Furthermore, for a symmetric potential V (x) := v(x2),
they showed that another pair of special transformations lead to two similar equations

ξy′′ + (γ + 1− ξ)y′ +
1
4

[
ξ − c−2v(c−2ξ)

]
y =

1
4

[
2(γ + 1)− c−2E

]
y, ξ ∈ (0,∞) (4)

on the half-line for the treatment of even (γ = −1/2) and odd (γ = 1/2) states of (2), separately [26]. Here c appears to
be a scaling parameter. One, with a closer look, can easily see that (3) and (4) resemble Hermite

y′′ − 2ξy′ = −2ny, n ∈ N (5)

and Laguerre

ξy′′ + (γ + 1− ξ)y′ = −ny, γ > −1, n ∈ N (6)

equations, respectively, especially when the modified potentials ξ 2 − c−2V
(
c−1ξ

)
and 14

[
ξ − c−2v(c−2ξ)

]
are viewed as

perturbations on the zero potential. Thus, they conclude that the Hermite basis {Hn(ξ)} for a general potential and the
Laguerre basis {Lγn (ξ)} with γ = ±1/2 for a symmetric potential are the most appropriate choices for a pseudospectral
approximation of (2).
In this article, we generalize this idea to the Schrödinger equation defined over an arbitrary subset of the real line. To this

end, we consider instead of specific cases such as (5) and (6) the unperturbed case as the general EHT

σ(ξ)y′′ + τ(ξ)y′ = −λ(0)y, ξ ∈ (a, b) ⊆ R (7)

leading not only to the Hermite and Laguerre but also the Jacobi polynomials as well. Therefore, in Section 2, we show that
besides (2), certain eigenvalue problems of physical and practical interest can indeed be reduced to the form

σ(ξ)y′′ + τ(ξ)y′ + Q (ξ)y = −λy, ξ ∈ (a, b) ⊆ R (8)

which we have called the EHTP. Clearly, (3) and (4) are now particular cases of (8) in this setting. In Section 3, we then
construct a very general pseudospectral formulation of the EHTP based on any polynomial solutions of the EHT including
every possible selection of σ(ξ) and τ(ξ). Section 4 is concerned with the construction of a general algorithm to determine
the zeros of classical orthogonal polynomials. The last section concludes the paper with numerical examples and remarks.

2. Transformation into EHTP

Excluding a few degenerate cases such as that of quadratic σ with a double root, any EHT can be transformed into a
Hermite (5), Laguerre (6) or Jacobi

(1− ξ 2)y′′ + [β − α − (α + β + 2)ξ ]y′ = −n(n+ α + β + 1)y, α, β > −1, n ∈ N (9)

differential equation by simple scaling and shifting operations; these are called the canonical forms [28]. Accordingly, Eq. (8)
with σ(ξ) = 1, ξ and 1− ξ 2 will be called here the EHTP of the first, second and the third kind, respectively. Therefore, the
associated unperturbed cases, that is, EHTs in (5), (6) and (9), admit the classical orthogonal polynomials as their solutions,
i.e. the Hermite polynomials Hn(ξ), Laguerre polynomials L

γ
n (ξ) of order γ and the Jacobi polynomials P

(α,β)
n (ξ) of order α

and β , corresponding to the three kinds of problems.
We deal with, as a first example of the second kind, the radial Schrödinger equation[
−
d2

dr2
−
M − 1
r

d
dr
+
`(`+M − 2)

r2
+ V (r)

]
R(r) = ER(r), r ∈ (0,∞), (10)

which is naturally defined over the half-line so thatR(r) ∈ L2(0,∞). Here, M = 1, 2, . . . and ` = 0, 1, . . . are the space
dimension and angular quantum number, respectively, and V (r) is an arbitrary potential regular at the origin. Note that the
Hamiltonian in (1), when considered over the half-line, is the particular case of (10) with M = 1 and ` = 0 or ` = 1. First
introducing the scaled quadratic variable

ξ = (cr)2, c > 0, ξ ∈ (0,∞) (11)
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we get the operational equivalences

1
r
d
dr
≡ 2c2

d
dξ

and
d2

dr2
≡ 4c2ξ

d2

dξ 2
+ 2c2

d
dξ

(12)

for the first and second derivatives, respectively, so Eq. (10) reads as[
−ξ
d2

dξ 2
−
M
2
d
dξ
+
`(`+M − 2)

4ξ
+
1
4c2
V (c−1

√
ξ)

]
R(ξ) =

E
4c2

R(ξ). (13)

Then, proposing a solution of the type

R(ξ) = ξ `/2e−ξ/2y(ξ) (14)

satisfying the asymptotic boundary condition at infinity and the regularity condition at the origin, we end up with an EHTP
of the second kind

ξy′′ +
(
1
2
M + `− ξ

)
y′ +

1
4

[
ξ − c−2V (c−1

√
ξ)
]
y =

1
4

(
M + 2`− c−2E

)
y (15)

where y(ξ) should be regular. Note that the perturbation Q (ξ) and the γ parameter in (6) are

Q (ξ) =
1
4

[
ξ − c−2V (c−1

√
ξ)
]
and γ =

1
2
M + `− 1 (16)

respectively.
Next, as a second example, we consider the angular part of the internal amplitude function

T Θ(θ;m) = EΘ(θ;m), θ ∈

(
−
1
2
π,
1
2
π

)
, Θ(θ;m) ∈ L2

(
−
1
2
π,
1
2
π

)
(17)

described by the trigonometric Hamiltonian

T = −
1
cos θ

d
dθ

(
cos θ

d
dθ

)
+

m2

cos2 θ
+ V (sin2 θ), m = 0, 1, . . . (18)

wherem stands for the magnetic quantum number. This problem results in a Schrödinger equation of a two-particle system
by separation of variables under the assumption that the potential energy of the system is to be the sumof a central potential
depending only on r and an angular potential which is a polynomial in even powers of sin θ [29]. Singularities of (17) as
well as the unboundedness of the trigonometric potential at θ = ± 12π imply that the eigenfunction Θ must vanish at
the boundaries. Clearly, such an eigenfunction will be in the space L2(− 12π,

1
2π) of the square integrable functions which

suggests the use of the Dirichlet conditions Θ(± 12π;m) = 0 at the boundaries. Furthermore, the reflection symmetry of
the system under the replacement of θ by −θ implies that the spectrum can be decomposed into two subsets containing
solely the even and odd states such that the corresponding eigenfunctions are even and odd functions of θ , respectively. For
even states, introduction of the mapping

ξ = cos 2θ, ξ ∈ (−1, 1), (19)

which is not one-to-one, leads to the operational equivalences

tan θ
d
dθ
≡ −2(1− ξ)

d
dξ

and
d2

dθ2
≡ 4(1− ξ 2)

d2

dξ 2
− 4ξ

d
dξ

(20)

which transform (17) into the form[
(1− ξ 2)

d2

dξ 2
+

(
1
2
−
3
2
ξ

)
d
dξ
−

m2

2(1+ ξ)
−
1
4
V

(√
1
2
(1− ξ)

)]
Θe(ξ ;m) = −

1
4
EΘe(ξ ;m) (21)

subject to the conditionΘe(−1;m) = 0 for allm, whereΘe(ξ ;m) stands for an even eigenfunction in the original variable
θ when ξ is replaced by cos 2θ . Next, to avoid the use of the term proportional to (1+ ξ)−1, we suggest an eigenfunction of
the type

Θe(ξ ;m) = (1+ ξ)m/2y(ξ) (22)

satisfying the above boundary condition as long as the new dependent variable y remains bounded at ξ = −1, to arrive at
the EHTP of the third kind

(1− ξ 2)y′′ +
[
m+

1
2
−

(
m+

3
2

)
ξ

]
y′ −

1
4
V

(√
1
2
(1− ξ)

)
y =

1
4
[m(m+ 1)− E]y (23)
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with α = − 12 and β = m. It is not difficult to see that the last equation yields even states of (17) on returning back to the
original variable θ via (22) and (19). On the other hand, odd state eigenfunctions can be expressed in the form

Θo(θ;m) = sin θΦ(θ;m) (24)

whereΦ is necessarily an even function of θ . After straightforward manipulations, we see thatΦ satisfies the equation[
−
d2

dθ2
+ (tan θ − 2 cot θ)

d
dθ
+

m2

cos2 θ
+ 2+ V (sin θ)

]
Φ(θ;m) = EΦ(θ;m), Φ

(
±
1
2
π

)
= 0. (25)

The evenness of Φ implies the application of the same transformations (19) and (22), that is, ξ = cos 2θ and Φ(ξ ;m) =
(1+ ξ)m/2y(ξ)which have been used for even states. Thus, we again reach at the EHTP of the third kind

(1− ξ 2)y′′ +
[
m−

1
2
−

(
m+

5
2

)
ξ

]
y′ −

1
4
V

(√
1
2
(1− ξ)

)
y =

1
4
[(m+ 1)(m+ 2)− E]y (26)

but this time with α = 1
2 and β = mwhich gives rise to odd states of (17).

The number of singular examples over a finite interval can be further increased. For instance, we have the equation[
−
d2

dθ2
+

µ(µ+ 1)
2(1+ cos θ)

+ V (cos θ)
]
Θ(θ;µ) = EΘ(θ;µ), µ > 0, θ ∈ (−π, π) (27)

whose square integrable exact solutionsΘ(θ;µ) have been examined in [30,31] when the regular part V (cos θ) of the total
potential is zero. Both the singularities and reflection symmetric structure of the system suggest the use of a procedure
similar to that of (17). To be concise we omit the details of the transformations after which we obtain two similar EHTPs

(1− ξ 2)y′′ + [µ+ 1− (µ+ 2)ξ ] y′ − V (ξ)y =
[
1
4
(µ+ 1)2 − E

]
y (28)

and

(1− ξ 2)y′′ + [µ− (µ+ 3)ξ ] y′ − V (ξ)y =
[
1
4
(µ+ 2)2 − E

]
y (29)

of the third kind for the even (α = − 12 , β = µ +
1
2 ) and odd (α =

1
2 , β = µ +

1
2 ) states, respectively. So far we have just

verified that a wide class of regular or singular eigenvalue problems can be treated by means of an EHTP. The next section
introduces the general pseudospectral formulation in this frame.

3. Pseudospectral formulation of the EHTP

Roughly speaking, a pseudospectral method, also known as a spectral collocation method, is based on the Nth-degree
polynomial interpolation of a function y(ξ) denoted by PN(ξ),

PN(ξ) =
N∑
n=0

`n(ξ)yn, (30)

where the yn = y(ξn) are the actual values of y(ξ) at the specified nodes ξ = ξn for n = 0, 1, . . . ,N [32]. The set of Lagrange
interpolating polynomials {`n(ξ)} of degree N is defined by

`n(ξ) =
π(ξ)

(ξ − ξn)π ′(ξn)
(31)

for each n = 0, 1, . . . ,N , in which

π(ξ) = κ

N∏
m=0

(ξ − ξm) (32)

stands for a polynomial of degree N + 1 with the real and distinct roots at the nodes. The Lagrange polynomials have the
very well-known cardinality property `n(ξm) = δmn where δmn is Kronecker’s delta. As a result, both the interpolant PN(ξ)
and the function y(ξ) agree, at least at the nodes, y(ξn) = PN(ξn). Although the normalization constant κ is theoretically
unnecessary, it plays a remarkable role in the numerical algorithm.
It is also possible to approximate the derivatives of the function y(ξ) by differentiating the interpolant PN(ξ).

Furthermore, the derivative values at the nodes ξn may be determined in terms of function values yn = PN(ξn) by means of
a differentiation matrix defined by

D(k) := [d(k)mn] =
dk

dξ k
[`n(ξ)]

∣∣∣∣
ξ=ξm

, k = 1, 2, . . . ,N (33)
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for m, n = 0, 1, . . . ,N . The approximate derivative values y(k) =
[
P (k)N (ξ0), P

(k)
N (ξ1), . . . , P

(k)
N (ξN)

]T
may therefore be

written in matrix–vector form

y(k) = D(k)y (34)

where y = [y0, y1, . . . , yN ]T is the vector of function values at the nodes. In particular, the entries of the first-order and the
second-order differentiation matrices are defined by

d(1)mn =
1
2


2π ′(ξm)

(ξm − ξn)π ′(ξn)
ifm 6= n

π ′′(ξn)

π ′(ξn)
ifm = n

(35)

and

d(2)mn =
1
3


3

ξm − ξn

[
π ′′(ξm)

π ′(ξn)
− 2d(1)mn

]
if m 6= n

π ′′′(ξn)

π ′(ξn)
ifm = n

(36)

respectively [32,25].
Let us denote the classical orthogonal polynomial solutions of the EHT by y(ξ) = pn(ξ) corresponding to the values

λ(0)n = −n
[
τ ′ +

1
2
(n− 1)σ ′′

]
(37)

of λ(0) for n = 0, 1, . . .. Each pn(ξ) has exactly n real and distinct zeros which are interlaced [28], i.e. sorting all the roots
in ascending order, the roots of pn+1(ξ) alternate with those of pn(ξ), so it obeys the definition of π(ξ) in (32). Therefore,
setting

π(ξ) = κ

N∏
m=0

(ξ − ξm) = pN+1(ξ) (38)

to be the polynomial solution pN+1(ξ) of the EHT, we define, from (35), the first-order differentiation matrix

d(1)mn =
1
2


2

ξm − ξn

p′N+1(ξm)
p′N+1(ξn)

ifm 6= n

−
τ(ξn)

σ (ξn)
ifm = n

(39)

in which the main diagonal entries have been simplified by using the fact that pN+1(ξ) satisfies the EHT in (7). Similarly,
after some algebra, the elements of the second-order differentiation matrix in (36) take the form

d(2)mn =
1
3


−

3
ξm − ξn

[
τ(ξm)

σ (ξm)
+

2
ξm − ξn

]
p′N+1(ξm)
p′N+1(ξn)

ifm 6= n

1
σ(ξn)

{
τ(ξn)

σ (ξn)

[
σ ′(ξn)+ τ(ξn)

]
+ N

[
τ ′ +

1
2
(N + 1)σ ′′

]}
ifm = n

(40)

with the help of (7) and (37). Higher order differentiationmatricesmay be obtained in a similarmanner; however, first-order
and second-order differentiation matrices are sufficient for a treatment of a second-order differential operator.
Now the interpolant PN(ξ) in (30) is proposed to be an approximate solution of the EHTP, where N may be regarded as

the approximation or truncation order. Therefore, we require that the EHTP is satisfied at the nodal points ξm

N∑
n=0

[
σ(ξm)`

′′

n(ξm)+ τ(ξm)`
′

n(ξm)+ Q (ξm)`n(ξm)
]
yn = −λ

N∑
n=0

`n(ξm)yn (41)

form = 0, 1, . . . ,N leading to the discrete representation

B̂y = −λy (42)

of the differential eigenvalue problem. Here, the vector y = [y0, y1, . . . , yN ]T involves the values of an eigensolution
at the nodal points, and the general entry B̂mn of the matrix B̂ = [B̂mn] is given by

B̂mn = σ(ξm)d(2)mn + τ(ξm)d
(1)
mn + Q (ξm)δmn, m, n = 0, 1, . . . ,N. (43)
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By using (39) and (40) the first two terms in (43) can be incorporated to define

K̂mn := σ(ξm)d(2)mn + τ(ξm)d
(1)
mn =


−2σ(ξm)
(ξm − ξn)2

p′N+1(ξm)
p′N+1(ξn)

if m 6= n

τ(ξn)

6σ(ξn)

[
2σ ′(ξn)− τ(ξn)

]
+
1
3
N
[
τ ′ +

1
2
(N + 1)σ ′′

]
if m = n

(44)

which represents the effect of kinetic energy terms independent of a specified potential.
It seems that the evaluation of K̂mn requires the computation of the derivatives p′N+1(ξn) of the classical orthogonal

polynomials at the nodes. Fortunately, a nice similarity transformationB = S−1B̂S in which S = diag{s0, s1, . . . , sm, . . . ,
sN}with

sm =
√
σ(ξm)p′N+1(ξm), m = 0, 1 . . . ,N (45)

makes it possible to avoid such onerous labor. Furthermore, the matrix in (42) reduces to a symmetric one, say
B = S−1(K̂ + Q )S , whose entries are given by

Bmn = Kmn + Qmδmn (46)

where

Kmn = −
1
6


12
√
σ(ξm)σ (ξn)

(ξm − ξn)2
if m 6= n

τ(ξn)

σ (ξn)

[
τ(ξn)− 2σ ′(ξn)

]
− 2N

[
τ ′ +

1
2
(N + 1)σ ′′

]
if m = n

(47)

and Q = [Qmδmn] with Qm = Q (ξm). Thus, the eigenvalues of (42), and, hence, the approximate eigenvalues of the EHTP
can be determined by the symmetric matrix eigenvalue problem

Bu = −λu (48)

since the similarmatrices participate of the same spectrum. The construction of the resulting symmetric, squarematrixB of
size N + 1 can be accomplished by the calculation of the coefficient functions σ(ξ), τ(ξ) and Q (ξ) in EHTP (8) at the nodes.
Therefore, it remains only to determine the roots ξm of the appropriate classical orthogonal polynomial pN+1(ξ) employed
in the set-up of the Lagrange interpolating polynomials. Recall that pN+1(ξ) is the polynomial solution of degree N + 1 of
the associated EHT in (7) with Q (ξ) = 0 when λ(0) = −(N + 1)

[
τ ′ + 1

2Nσ
′′
]
for a prescribed approximation order N .

4. Roots of the classical orthogonal polynomials

The classical orthogonal polynomials are characterized by the celebrated Rodrigues formula

pn(ξ) =
Kn
ρ(ξ)

dn

dξ n
[
σ n(ξ)ρ(ξ)

]
= knξ n + · · · (49)

for n = 0, 1, . . . , where ρ(ξ) is a weight function satisfying the Pearson equation [ρ(ξ)σ (ξ)]′ = τ(ξ)ρ(ξ). Clearly, kn is
the coefficient of the leading order term, and Kn denotes a renormalization constant which depends on the standardization.
For instance, the values of Kn for the Hermite, Laguerre and the Jacobi polynomials are taken as (−1)n, 1/n! and (− 12 )

n/n!,
respectively, for historical reasons.
Our aim is to find the roots of pn(ξ) when n = N + 1. Instead of pn(ξ), consider the normalized polynomials ψn(ξ) =

pn(ξ)/hn having the same roots, where hn is the L2(a, b) norm of the pn(ξ), i.e., h2n =
∫ b
a p

2
n(ξ)ρ(ξ)dξ . In [33], Taşeli has

expressed the usual three-term recursion for ψn(ξ) in the form

Anψn+1(ξ)+ (Bn − ξ)ψn(ξ)+ An−1ψn−1(ξ) = 0, n = 0, 1, . . . (50)

with the coefficients

An =
kn
kn+1

hn+1
hn

and Bn = ηn−1 − ηn (51)

where A−1 ≡ 0. These coefficients can be identified completely by means of the coefficients in the EHT. Indeed, the ratios
kn+1/kn and hn+1/hn are expressible as

kn+1
kn
= −

Kn+1
Kn

λ
(0)
2n λ

(0)
2n+1

2(2n+ 1)λ(0)n
, k0 = K0 (52)
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Table 1
The first few eigenvalues of ADWP for a1 = 100, as a function of a2 . The last two columns include the results from MATSLISE and SLEIGN2, respectively,
for comparison.

a2 copt N n En: Present work En: MATSLISE [4] En: SLEIGN2 [2]

0.25 4.4 69 0 −4.277 344 849 182 474 166 847 348 848 02 −4.277 344 849 182 477 −4.277 344 849 171
69 1 7.080 517 391 364 158 656 090 710 350 21 7.080 517 391 364 156 7.080 517 391 364
72 2 19.817 761 502 618 821 399 175 325 525 2 19.817 761 502 618 819 19.817 761 502 6
73 3 36.209 337 296 287 706 584 558 242 608 6 36.209 337 296 287 693 36.209 337 296 497

0.50 4.4 58 0 −6.816 052 047 536 736 982 561 430 365 98 −6.816 052 047 536 741 −6.816 052 047 576
58 1 4.675 693 930 558 290 057 997 135 848 24 4.675 693 930 558 290 4.675 693 930 56
59 2 15.973 204 136 317 836 561 600 922 534 7 15.973 204 136 317 833 15.973 204 136 345
62 3 31.505 546 630 519 551 260 800 075 872 1 31.505 546 630 519 540 31.505 546 630 52

0.75 4.4 57 0 −9.459 479 212 224 512 858 546 562 584 43 −9.459 479 212 224 517 −9.459 479 212 179
57 1 0.010 560 072 717 619 621 379 801 416 92 0.010 560 072 717 621 0.010 560 072 9
59 2 10.866 977 233 476 768 562 653 506 503 7 10.866 977 233 476 764 10.866 977 233
61 3 24.888 991 175 519 381 797 134 001 071 9 24.888 991 175 519 376 24.888 991 176

and (
hn+1
hn

)2
= 4

(
kn+1
kn

)2
λ
(0)
n

λ
(0)
2n+2λ

(0)
2n

[
(n+ 1)2σ(0)− (n+ 1)ηnσ ′(0)+

1
2
η2nσ

′′

]
(53)

where the parameter ηn, that also appears in Bn, is given by

ηn−1 = n
[
τ(0)+ (n− 1)σ ′(0)
τ ′ + (n− 1)σ ′′

]
(54)

whose proofs can be found in [33].
Running recursion (50) over the range n = 0, 1, . . . ,N we obtain an inhomogeneous linear algebraic system (R−ξ I)x =

b, where

R =


B0 A0 0
A0 B1 A1

A1 B2
. . .

. . .
. . . AN−1

0 AN−1 BN

 (55)

is a tridiagonal symmetric square matrix of size N + 1. Notice here that b = [0, 0, . . . , 0, ANψN+1(ξ)]T is an N + 1 vector
with only one nonzero component. Therefore, if we setψN+1(ξ) = 0 or, equivalently, pN+1(ξ) = 0 then the system reduces
to a standard eigenvalue problem Rx = ξx with the eigenvalue parameter ξ , which provides us with the roots of pN+1(ξ)
as required. Consequently, the nodal points ξn in the pseudospectral scheme of Section 3 turn out to be the eigenvalues of
the symmetric tridiagonal matrix R defined by (55).

5. Numerical applications and discussion

The pseudospectral algorithm suggested in this article is applied to a set of problems handled in Sections 1 and 2 for
various potential functions V (ξ). Recall that EHTP (8) characterizes basically three kinds of problems depending on the
degree of the coefficient σ(ξ); the cases σ(ξ) = 1, ξ and 1− ξ 2 which have been referred to as the EHTP of the first, second
and the third kind, respectively. A few examples falling into the three categories are treated for illustration.
First we consider the EHTP of the first kind in (3) with the asymmetrical double-well potential (ADWP)

V (x) = a1x2(x+ a2)(x− 1), a1 > 0, 0 < a2 < 1, x ∈ (−∞,∞) (56)

which has twominima located asymmetrically about the origin [34]. It is clear that the left hand limiting value of a2, a2 = 0,
does not represent a double-well oscillator any longer where the potential has an inflection point at x = 0 while a2 = 1
corresponds to a symmetrical two-well potential. These potentials are of practical interest for the protonic movement of
hydrogen-bonded systems [35,34,14].
Obviously, the Hermite method is suitable for addressing this problem, which leads to the diagonalization of the matrix

B in (48) by taking σ(ξ) = 1, τ(ξ) = −2ξ and Q (ξ) = ξ 2 − c−2[a1(c−1ξ)2(c−1ξ + a2)(c−1ξ − 1)]. Thus the energy
levels En = c2(1+ λn) of Schrödinger equation (2) with an ADWP are listed in Table 1, where the range of a2 is covered by
choosing a2 = 0.25, a2 = 0.50 and a2 = 0.75. In all tables, n stands for the eigenvalue index, N the truncation order for
which the desired (machine) accuracy of the corresponding eigenvalue is obtained, and c denotes a scaling or an optimization
parameter which may be exploited to accelerate the convergence rate of the method. The effect of c on the accuracy of the
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Table 2
The convergence rate of E0 for ADWP, where a1 = 100 and a2 = 0.25, with respect to optimization parameter c when N = 69.

c E0

1.1 −4.27
2.2 −4.277 344 849 182
3.3 −4.277 344 849 182 474 166 847 34
4.4 −4.277 344 849 182 474 166 847 348 848 02
5.5 −4.277 344 849 182 474 166 847 3
6.6 −4.277 344 84
7.7 −4.277

Table 3
The first few nearly degenerate eigenvalues of SDWP with N = 60, c = 2.05. The last two columns include the results from MATSLISE and SLEIGN2,
respectively, for comparison.

n En: Present work En: MATSLISE [4] En: SLEIGN2 [2]

0 −149.219 456 142 190 888 029 163 966 538 −149.219 456 142 190 8 −149.219 456 142 345
1 −149.219 456 142 190 888 029 163 958 974 −149.219 456 142 190 8 −149.219 456 142 114
2 −135.324 512 011 840 858 579 892 393 334 −135.324 512 011 840 9 −135.324 512 011 826
3 −135.324 512 011 840 858 579 887 397 260 −135.324 512 011 840 9 −135.324 511 213
4 −121.688 950 604 621 648 258 910 138 759 −121.688 950 604 621 6 −121.688 950 608
5 −121.688 950 604 621 648 257 347 725 677 −121.688 950 604 621 6 −121.688 982

Table 4
The convergence rate of E100 of the SDWP, where c = 2.6.

N E100

90 625.512 519 838 7
95 625.512 519 838 760 54
100 625.512 519 838 760 543 998
105 625.512 519 838 760 543 998 347 7
110 625.512 519 838 760 543 998 347 757 56
115 625.512 519 838 760 543 998 347 757 560 1
116 625.512 519 838 760 543 998 347 757 560 1

ground state eigenvalue E0 of an ADWP is displayed in Table 2. Note that we used quadruple-precision arithmetic on a
main frame computer with machine accuracy of about 32 digits, by truncating the results to 29–31 significant figures. For
comparison, Table 1 also contains eigenvalues calculated by the two algorithms MATSLISE and SLEIGN2, requesting their
maximum achievable accuracy. The routines are executed with a double-precision arithmetic (16 digits), and the results are
in good agreement with those of the present work to the accuracy quoted. To be specific, MATSLISE gives about 15 correct
digits while SLEIGN2 seems to provide only 9-11 figures for the problem being considered.
Next, we discuss the same system (2) with the symmetric double-well potential (SDWP)

V (x) = x4 − 25x2, x ∈ (−∞,∞) (57)

having twominima located symmetrically about the origin. The interesting property of its energy spectrum is that the lower
eigenvalues are very closely bunched in pairs if the wells are sufficiently separated. To determine the gap between nearly
degenerate eigenvalues of SDWPs, several methods have been proposed such as WKB and JWKB approximations [18–20],
finite difference calculation [7], the path-integral approach [22], the recursive series method [21] and the Rayleigh–Ritz
variational method [8].
Since the SWDP (57) is even, the EHTP corresponding to this example is (4) havingσ(ξ) = ξ , τ(ξ) = γ+1−ξ andQ (ξ) =

1
4

[
ξ − c−6ξ 2 − 25c−4ξ

]
, for which the Laguerre pseudospectral method becomes appropriate with γ = − 12 and γ =

1
2 for

the even and odd states, respectively. Therefore, the energy eigenvalues E2n = c2 (1+ 4λn) and E2n+1 = c2 (3+ 4λn) of the
SDWP calculated by this algorithm and those of MATSLISE and SLEIGN2 are listed in Table 3.
From Table 3 it is shown that the matrix size N = 60 is sufficient to calculate the first six eigenvalues to the machine

accuracy, where the optimization parameter is copt = 2.05. It is clear that the determination of the gaps requires a high
precision algorithm. Again the present results are in agreement with those of MATSLISE and SLEIGN2; however, the gaps
between the nearly degenerate states are unclear, especially in SLEIGN2.
In addition, our method gives not only satisfactory results for lower eigenvalues but also for higher states. For instance,

in Table 4 we illustrate the convergence rate of E100 as a function of the truncation size N . Observe that eigenvalue E100
stabilizes when N = 115 and N = 116. In general, the accuracy of the results in all tables reported here has been checked
similarly by inspecting the number of stable digits between two consecutive truncation orders. On the other hand,MATSLISE
and SLEIGN2 give the results 625.512 519 838 762 and 625.512 519 835 819 for this eigenvalue, respectively, which are
accurate only to 14 and 11 digits.
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Table 5
The convergence rate of E0,0(3) for the Gaussian potential as a function of δ. The last column includes some results from the literature for comparison.

δ copt N E0,0(3) E0,0(3) calculated by other algorithms

0.001 0.15 10 −0.907 019 292 592
15 −0.907 019 292 592 812 08 SLEIGN2 [2] −0.907 019 290
20 −0.907 019 292 592 812 082 715 MATSLISE [4] −0.907 019 292 592 810
27 −0.907 019 292 592 812 082 715 416 167 1 Reference [36] −0.907 019 292 592 812 082 715 5/0

0.01 0.30 15 −0.719 168 933 445 0
25 −0.719 168 933 445 090 397 SLEIGN2 [2] −0.719 168 936
35 −0.719 168 933 445 090 397 309 290 MATSLISE [4] −0.719 168 933 445 089
45 −0.719 168 933 445 090 397 309 290 824 9 Reference [36] −0.719 168 933 445 090 397 5/0

0.1 0.33 60 −0.254 340 163 216 611 8
80 −0.254 340 163 216 611 811 747 SLEIGN2 [2] −0.254 340 161
100 −0.254 340 163 216 611 811 747 716 MATSLISE [4] Failed.
122 −0.254 340 163 216 611 811 747 716 919 8 Reference [36] Not reported.

Thirdly, we take into account the radial Schrödinger equation (10) defined over the half-line with the nonpolynomial
Gaussian potential

V (r) = −e−δr
2
, δ > 0 (58)

having a finite number of discrete eigenvalues located on the negative real axis together with a continuous spectrum over
the entire positive real axis for small values of the parameter δ. There exist a threshold value δthr , of the parameter δ, for
which the discrete negative spectral points can no longer survive and melt fully into the continuous spectrum. Zafer and
Taşeli [36] calculated lower and upper bounds for the discrete states by truncating the usual unbounded domain of the
system to a finite interval.
The Laguerre method suggested by EHTP (15) associated with (58) is performed for γ = 1

2M + `− 1. Then the energies,
denoted by En,`(M), of (10) are given by the simple formula En,`(M) = c2(M + 2` − 4λn) in terms of the eigenvalues λ of
matrixB. In Table 5, we present the convergence rate of the ground state energy E0,0(3) of the vibrational levels ` = 0 of the
Gaussian potential in three dimensionsM = 3 as δ varies. Table 5 exhibits the fact that, as in the other methods [2,4,36], a
noticeable slowing down of convergence is encountered for the discrete states just below zero, as δ approaches its threshold
value.
We now consider the angular spheroidal wave equation{
−
d
dt

[
(1− t2)

d
dt

]
+ C2t2 +

m2

1− t2

}
u(t) = Eu(t), u(t) ∈ L2(−1, 1) (59)

where the angular momentum m is an integer and the oblateness parameter C real, which results from the Helmholtz
equation by separation of variables in the prolate spheroidal coordinates. It arises in different areas of physics such as
atomic andmolecular physics, light scattering in optics and the nuclear shell model [37]. The asymptotic iterationmethod is
applied to calculate the angular spheroidal eigenvalues En(m, C2) by Barakat et al. [37]. Miyazaki et al. [38] and Volkmer [39]
proposed a matrix method and a Rayleigh–Ritz approximation, respectively, for computing the eigenvalues which obtained
precise and explicit error estimates for the approximated eigenvalues as well.
Actually, the spheroidal wave equation is no more than system (17) with V (sin θ) = C2 sin2 θ , whenever the inverse

substitution

θ = arcsin t, θ ∈

(
−
1
2
π,
1
2
π

)
(60)

is applied to the spheroidal wave equation in (59). Therefore, the EHTPs corresponding to the even and odd states of (59)
are (23) and (26) with V (

√
(1− ξ)/2) = C2(1 − ξ)/2, respectively, which suggest the use of the Jacobi pseudospectral

methods having the parameter sets {α, β} = {− 12 ,m} and {
1
2 ,m}. Thus the eigenvalues of the spheroidal wave equation,

E2n(m, C2) = m(m+1)+4λn and E2n+1(m, C2) = (m+1)(m+2)+4λn are given in Table 6. It demonstrates the convergence
rates of several states with m = 0 and C2 = 10. The extremely fast convergence rate of the method for an arbitrary state
number n is quite impressive. Moreover, in Table 7, we compare the truncation sizes necessary to obtain the ground state
energy with the prescribed accuracy as m and C2 vary. It is observed that the increase in the angular quantum number m
causes the decrease in the matrix size N whereas the increase in the oblateness parameter C2 implies an increment in N .
The last example is the Schrödinger equation with a periodic potential[
−
d2

dζ 2
+ V (cos 2ζ )

]
Θ(ζ ) = EΘ(ζ ), ζ ∈

(
−
1
2
π,
1
2
π

)
(61)

subject to the conditions Θ
(
±
π
2

)
= 0. Rescaling the independent variable by putting θ = 2ζ , we obtain an equivalent

equation
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Table 6
The convergence rate of eigenvalues En(0, 10) of the spheroidal wave equation as n varies.

N E0(0, 10) N E100(0, 10)

5 2.305 040 10 51 10105.0
6 2.305 040 107 940 52 10105.000 433
7 2.305 040 107 940 431 6 53 10105.000 433 246 48
8 2.305 040 107 940 431 635 6 54 10105.000 433 246 482 907 99
9 2.305 040 107 940 431 635 679 732 55 10105.000 433 246 482 907 993 562 45
10 2.305 040 107 940 431 635 679 732 102 9 56 10105.000 433 246 482 907 993 562 450 0
11 2.305 040 107 940 431 635 679 732 102 9 57 10105.000 433 246 482 907 993 562 450 0

N E200(0, 10) N E400(0, 10)

101 40205.00 201 160405.00
102 40205.000 108 8 202 160405.000 027 2
103 40205.000 108 835 777 203 160405.000 027 275 870 8
104 40205.000 108 835 777 578 646 2 204 160405.000 027 275 870 838 131 19
105 40205.000 108 835 777 578 646 209 290 205 160405.000 027 275 870 838 131 198 65
106 40205.000 108 835 777 578 646 209 290 206 160405.000 027 275 870 838 131 198 65

Table 7
Truncation sizes for calculating E0(m, C2) to the machine accuracy as functions ofm and C2 .

C2 N for m = 0 N for m = 10 m N for C2 = 10 N for C2 = 100

1 7 5 1 9 15
10 10 7 10 7 11
100 15 11 100 4 6
1000 25 20 1000 3 6
10000 42 38 10000 2 5

[
−
d2

dθ2
+
1
4
V (cos θ)

]
Θ(θ) =

1
4
EΘ(θ), Θ (±π) = 0 (62)

which is the limiting case of (27) when µ → 0+ with V (cos θ) and E scaled by 14 . Therefore, the EHTPs of the third kind
corresponding to even and odd states are written from (28) and (29),

(1− ξ 2)y′′ + (1− 2ξ)y′ −
1
4
V (ξ)y = −λy, E2n = 1+ 4λn (63)

and

(1− ξ 2)y′′ − 3ξy′ −
1
4
V (ξ)y = −λy, E2n+1 = 4(1+ λn) (64)

respectively, where {α, β} = {− 12 ,
1
2 } and {

1
2 ,
1
2 }.

Well-known particular cases of (61) are the Mathieu and Coffey–Evans equations, if V (cos 2ζ ) = 2q cos 2ζ and
V (cos 2ζ ) = ν2 sin2 2ζ−2ν cos 2ζ , respectively,where q and ν denote real parameters. The parameter ν in the Coffey–Evans
equation controls the depth of the well potential under consideration. As ν increases, nearly degenerate triple states
may occur. Ledoux et al. [4] prepared the Matlab package MATSLISE for numerical solution of Sturm–Liouville eigenvalue
problems including theMathieu and Coffey–Evans equations by high order piecewise constant perturbationmethods. There
is other software SLEDGE based on the stabilized shooting method developed in [40].
From (63) and (64), several eigenvalues of the Schrödinger equation in (61) with Mathieu and Coffey–Evans potentials

are reported in Tables 8 and 9, respectively, only for the parameter values of q = 1 and ν = 50 in order not to overfill the
content of the paper with tabular material any further. In fact, the convergence properties of the algorithm in the Mathieu
case are typically the same for all q although a slight slowing down of convergence is observed as q increases. A truncation
order of N = 72 suffices to get the reported accuracy in Table 9 for the low lying states of the Coffey–Evans equation. It is
shown that, as for the symmetric double-well oscillator over the real line, the method is capable of determining the gaps
between the nearly degenerate triple states of the Coffey–Evans equation successfully. Clustering of the eigenvalues does
not seem to cause any difficulties in computations which is a serious trouble for many other methods [41]. Moreover, when
high accuracy is required, the above codes [4,40] have to work hard on some of the triplets to produce reasonable results.
We report also in Table 8 eigenvalues of the Mathieu equation calculated by MATSLISE and SLEIGN2 for comparison. It

is shown that our results are in excellent agreement with those of MATSLISE. SLEIGN2 is, on the other hand, accurate to
9–11 digits and fails to compute the eigenvalues En with a high quantum number n, typically when n > 310. To sum up,
we observe that MATSLISE yields in general 15–16 correct digits, which is the machine accuracy of the algorithm that uses
double-precision arithmetic. Then, one can argue that it could reach the precision of the present method if it were executed
in the quadruple-precision arithmetic. On the other hand, this is probably not the case for SLEIGN2. Clearly, SLEIGN2 cannot
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Table 8
Several eigenvalues of Mathieu differential equation with q = 1. The last two columns include the results from MATSLISE and SLEIGN2, respectively, for
comparison.

n N En: Present work En: MATSLISE [4] En: SLEIGN2 [2]

0 9 −0.110 248 816 992 095 169 906 547 85 −0.110 248 816 992 095 −0.110 248 816 990 864
100 55 10201.000 049 019 607 990 453 093 342 0 10201.000 049 019 61 10201.000 048 997 7
200 105 40401.000 012 376 237 626 132 297 845 2 40401.000 012 376 22 40401.000 012 279 6
300 154 90601.000 005 518 763 797 119 609 337 90601.000 005 518 73 90601.000 004 267 9
400 204 160801.000 003 109 452 736 355 989 67 160801.000 003 109 Failed
500 254 251001.000 001 992 031 872 519 841 33 251001.000 001 992 Failed
1000 504 1002001.000 000 499 001 996 008 139 4 1002001.000 000 499 Failed

Table 9
Triple eigenvalues of the Coffey–Evans equation with ν = 50, N = 72.

n En n En

0 0.000 000 000 000 000 000 000 000 0 9 947.047 491 585 860 179 592 142 658 2
1 197.968 726 516 507 291 450 189 104 5 10 1122.762 920 067 901 205 616 045 550 3
2 391.808 191 489 053 841 050 234 434 6 11 1122.762 920 071 056 526 891 891 942 2
3 391.808 191 489 053 841 832 241 249 9 12 1122.762 920 074 211 848 168 115 209 4
4 391.808 191 489 053 842 614 248 065 8 13 1293.423 567 331 707 081 413 958 872 2
5 581.377 109 231 579 654 864 715 898 8 14 1458.746 557 025 357 659 317 371 063 0
6 766.516 827 285 532 616 579 817 794 1 15 1458.746 558 472 128 708 810 534 887 1
7 766.516 827 285 535 505 431 430 237 3 16 1458.746 559 918 899 832 786 248 167 6
8 766.516 827 285 538 394 283 042 681 3 17 1618.391 008 042 643 345 932 885 816 0

Table 10
Comparison with the standard Chebyshev Pseudospectral Method (CPM) for the first eigenvalue of the Mathieu equation with q = 1.

NCPM E0 N E0

7 −0.10 2 −0.10
14 −0.110 248 4 3 −0.110 248 4
20 −0.110 248 817 3 4 −0.110 248 816 9
27 −0.110 248 816 991 9 5 −0.110 248 816 992 08

reach the 16-digit machine accuracy, giving only 9-11 significant figures. So increasing the precision of computer arithmetic
does not seem to improve the results considerably, at least for the problems being considered here.
In this paper, we present a unified pseudospectral framework based on the classical orthogonal polynomials for

computing the eigenvalues of a wide class of physical problems, which can be transformed into an EHTP. A symmetric
matrix representation of the differential eigenvalue problem is formulated,where thematrix elements are determined using
simple and elegant analytical expressions. In this setting the collocation points are also computed numerically to an arbitrary
precision as the eigenvalues of a tridiagonal symmetric matrix.
One of the most commonly used methods in the literature is the Chebyshev pseudospectral method, which has two

main practical advantages. First the zeros of the Chebyshev polynomials are expressible in closed form, and the second kth
differentiation matrix D(k) can be obtained from D(1) by taking its kth power. Nevertheless, our approach enables us to work
automatically with the best appropriate classical orthogonal polynomial in the construction of the Lagrange interpolation,
depending on the specific structure of the problem in question. For example, our algorithm suggests the use of the Jacobi

polynomial P
(− 12 ,

1
2 )

N+1 (ξ) for the even states of the Mathieu equation. If the standard Chebyshev method is used directly, then
the loss of accuracy is as illustrated in Table 10. To be specific, to compute the ground state of theMathieu equation accurate
approximately to 10 digits the standard Chebyshev method requires the diagonalization of a matrix of order NCPM = 27
whereas the same accuracy is reached at N = 5 in our algorithm. Actually, this is typical for all problems considered in this
study.
We have taken advantage of the Hermite, Laguerre and the Jacobi pseudospectral methods for the problems over the real

line, half-line and finite intervals, respectively. Numerical results verify the exponential rate of convergence, as expected
theoretically for spectralmethods [42]. Recall also that the separation of even andodd states of reflection symmetric systems,
such as (28) and (29) of (27) provides an additional numerical advantage of dealingwith twomatrices of orderN rather than
a matrix of order 2N .
Finally, the convergence of the Hermite and Laguerre pseudospectral methods may be accelerated by a scaling

transformation. There exists an optimum value of the scale factor c in (3) for which the desired accuracy is achieved at
the smallest possible matrix size N . From Table 2 we notice that at a fixed truncation size of N = 69, E0 converges to 30
digits when c = 4.4 whereas at the same truncation size we get merely three or four correct digits when c = 1.1 and
c = 7.7, respectively. The optimum value of c can be estimated by inspecting the actual solution or, at least, its asymptotic
behavior if it is known in advance [43]. Otherwise it can be determined roughly by numerical experiments, i.e. by the trial
and error technique. In this process, if a user takes a ‘‘bad’’ value for c then either the algorithmdiverges or the convergence is
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Fig. 1. Number of correct digits versus matrix size N for E100 of Mathieu equation with q = 1, and SDWP in (57).

reached at the cost of employing very high truncation orders N . In fact, a scaling transformation maps unbounded intervals
onto themselves by solely rescaling the location of the points in the interval, whereas it is useless for the finite interval
problems since it just shrinks or stretches the whole picture. In spite of the existence of such an optimization parameter in
the Hermite and Laguerre methods the convergence is still slower when compared to the Jacobi pseudospectral methods.
In Fig. 1, we demonstrate how quickly the accuracy is improved as N increases in a typical Jacobi and a Laguerre method.
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