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Abstract

The eigenvalues of singular Sturm–Liouville problems de-ned over the semi-in-nite positive real axis are
examined on a truncated interval 0¡x¡‘ as functions of the boundary point ‘. As a basic theoretical
result, it is shown that the eigenvalues of the truncated interval problems satisfying Dirichlet and Neumann
boundary conditions provide, respectively, upper and lower bounds to the eigenvalues of the original problem.
Moreover, the unperturbed system in a perturbation problem, where ‘ remains su4ciently small, admits
analytical solutions in terms of the Bessel functions of the -rst kind. Applications to the Schr7odinger equations
of diatomic molecules and a harmonic oscillator con-rm the practical implementation of this approach in
calculating highly accurate numerical eigenvalue enclosures. It is worth mentioning that this study is, therefore,
a completion of the paper (J. Comput. Appl. Math. 115 (2000) 535) where similar problems on the whole
real axis −∞¡x¡∞ were treated along the same lines.
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1. Introduction

Linear di>erential equations of the second order are of crucial importance in the study of di>eren-
tial equations not only for theoretical reasons but also their appearences in any serious investigation
of the classical areas of mathematical physics and applied sciences. It is a well-known fact that
any second order linear equation can always be transformed to Sturm–Liouville form having nice
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mathematical properties. Let us consider such an equation in Sturm–Liouville form

L̂y = 0; L̂ = − d
dx

[
(x − x0)2p(x)

d
dx

]
+ q(x) − �(x − x0)2r(x) (1.1)

de-ned on the interval x∈ (x0;∞), say I∞, where x0 and � are real parameters. We suppose that
the functions p;p′; q and r are real analytic at the point x0 and continuous on any subinterval of
I∞. Besides p and r are assumed to be positive throughout I∞.

We are interested in the eigenvalue problems associated with the di>erential operator L̂ subject
to suitable boundary conditions. More precisely, we are looking for solutions of class L2(x0;∞),
where ∫ ∞

x0

(x − x0)2r(x)[y(x)]2 dx¡∞ (1.2)

and take into account operators L̂ of the limit-point type [1]. That is, if the equation L̂y=0 admits
a non-trivial solution g(x) of class L2(x0;∞) the parameter � must then be necessarily an eigenvalue
and g(x) the corresponding eigenfunction. In such a limit-point case, no boundary conditions are
needed at in-nity.

It is obvious that we have a singular system because of the in-nite interval I∞ under consideration.
Furthermore, the di>erential equation has an additional singularity, namely, a regular singular point
located at x = x0 so that the required solution should behave correctly there as well. From this
argument it follows that the eigenfunctions possess the asymptotic form

y(x) ∼ (x − x0)−1=2; ¿ 0 (1.3)

as x → x0. Here, the parameter  in the exponent of the singularity at x0 can easily be determined
by

= 1
2

√
1 + 4q0=p0; (1.4)

where q0 = q(x0) and p0 = p(x0). Note that  should be positive for the square integrability of
solutions. In fact, we may equate p0 to unity and, without loss of generality, set x0 =0 since a linear
transformation always takes x0 into the origin of a rescaled coordinate system.

In a recent article [10], we treated singular eigenvalue problems over −∞¡x¡∞ with no
further singularity at a -nite point of the whole real axis by means of the purely regular problem
de-ned on the -nite interval (−‘; ‘) of length 2‘. Similarly, instead of (1.1) on the unbounded
interval I∞, we consider here the same di>erential equation over a -nite interval I‘, where x∈ (0; ‘)
with x0 = 0, which has a singularity only at the origin. The present work can, therefore, be viewed
as an extension of the method and techniques in [10] along the same lines to systems having a
su4ciently singular behaviour at a point x0, say x0 = 0. Hence the mathematical problem in question
consists of the di>erential equation in (1.1) on I‘ as well as a regularity condition of type (1.3) as
x → 0 and a common condition

y(x)cos �+ x2p(x)y′(x)sin �= 0; �∈R (1.5)

at x = ‘. Clearly, the particular values of �= 0 and �=2 correspond to Dirichlet and Neumann type
boundary conditions, respectively.

In Section 2 we show how to examine the variation of an eigenvalue as a function of the boundary
parameter ‘ in the cases of both Dirichlet and Neumann problems. Section 3 -nds out the behaviours
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of eigenvalues while ‘ remains small in a regular perturbation problem. The application of the
suggested method to the radial Schr7odinger equation is included in Section 4. Accurate computations
of eigenvalue enclosures, using Rayleigh–Ritz and Lehmann methods, are presented in the last section
together with concluding remarks.

2. Dependence of eigenvalues on the boundary point ‘

The Sturm–Liouville equation on I‘ can be thought for a moment as a partial di>erential equation

Lf(x; ‘) = 0; L = − @
@x

[
xp(x)

@
@x

]
+ s(x) − �(‘)xr(x) (2.1)

in independent variables x and ‘ and the transformed dependent variable

f(x; ‘) =
√
xy(x; ‘); (2.2)

where

s(x) =
1
x

[
q(x) + 1

4 p(x)
]

+ 1
2 p

′(x): (2.3)

The required solution f(x; ‘) of the transformed equation (2.1) obeys the regularity condition

f(x; ‘) ∼ x; = 1
2

√
1 + 4q0; p0 = 1; (2.4)

for all ‘ as x → 0, and the boundary condition

f(x; ‘)cos �+ xp(x)fx(x; ‘)sin �= 0 (2.5)

at x = ‘ where, as usual, the subscript x denotes the partial derivative with respect to x. Such a
solution is obviously square integrable over I‘ which can be normalized to obtain∫ ‘

0
xr(x)[f(x; ‘)]2 dx = 1 (2.6)

for all ‘¿ 0. On the other hand, the di>erentiation of Lf = 0 with respect to ‘ gives

Lf‘(x; ‘) = xr(x)f(x; ‘)
d�
d‘

(2.7)

from which we arrive at the relation

d�
d‘

=
∫ ‘

0
[Lf‘(x; ‘)]f(x; ‘) dx: (2.8)

Equation (2.8) can be put into a form

d�
d‘

= Boundary Terms +
∫ ‘

0
f‘(x; ‘)[L?f(x; ‘)] dx (2.9)

upon introducing the adjoint di>erential operator L?. However, the integral term in (2.9) vanishes
since L is formally self-adjoint and, hence, L?y = Ly = 0. Thus the eigenvalues of the -nite
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interval problem satisfy the relation

d�
d‘

= xp(x)[fx(x; ‘)f‘(x; ‘) − f(x; ‘)fx‘(x; ‘)]|‘x=0 (2.10)

which may be simpli-ed on using (2.5). Actually, the total di>erential of the function f(x; ‘) implies
the operational equivalence

d
d‘

=
@
@x

+
@
@‘

(2.11)

if x = ‘ with dx = d‘. Then the implicit derivative of the boundary condition in (2.5) with respect
to ‘ leads to the identities

f‘(‘; ‘) = −fx(‘; ‘) (2.12)

and

fx‘(‘; ‘) = −fxx(‘; ‘); (2.13)

whenever �=0 and �=2, respectively. Now if we use the formulation above, we obtain the following
propositions.

Proposition 1. Let �+(‘) and f+(x; ‘) denote an eigensolution of the Dirichlet problem. Then it
follows from (2.10), in conjunction with (2.12), (2.4) and (2.5), that

d�+

d‘
= −‘p(‘)[f+

x (‘; ‘)]2¡ 0 (2.14)

for all ‘. Therefore, as ‘ increases the eigenvalues of the Dirichlet problem decreases monotonically
to the eigenvalues, denoted by �∞, of the original problem over I∞.

Proposition 2. Let �−(‘) and f−(x; ‘) denote an eigensolution of the Neumann problem. Then we
see, after some algebra, that the relation in (2.10) reads as

d�−

d‘
= [s(‘) − �−(‘)‘r(‘)][f−(‘; ‘)]2: (2.15)

In many cases in which the mathematical problem describes a physical phenomena such as the
Schr7odinger form of the operator L with p(x) = r(x), it is reasonable to de-ne a turning point
‘ = ‘0 for which

�−(‘0) = v̂(‘0) (2.16)

where v̂(x),

v̂(x) =
s(x)
xr(x)

; (2.17)

is an e>ective potential function. Furthermore, v̂(‘)¡�−(‘) for ‘¡‘0 and v̂(‘)¿�−(‘) for ‘¿‘0.
Hence, Proposition 2 implies that the eigenvalues �−(‘) of the Neumann problem decrease when
‘¡‘0, take on minimum values at ‘ = ‘0 and increase when ‘¿‘0.
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As a signi-cant result, providing ‘ is large enough we deduce that �+(‘) and �−(‘) converge
to �∞ from above and from below as ‘ increases, respectively. In other words, the di>erence
�+(‘) − �−(‘) can be regarded as an error bound in the computation of eigenvalues �∞ of the
singular problem on I∞. Note that this conclusion on the behaviours of Dirichlet and Neumann
eigenvalues as ‘ varies, is a word for word repeat of the corollary given in [10] for the purely
regular system over (−‘; ‘).

3. Small values of ‘ as a perturbation parameter

By making use of the scaling transformation

x = ‘� (3.1)

Eq. (2.1) is written as{
− @
@�

[
�p(‘�)

@
@�

]
+ ‘s(‘�) − ‘2�(‘)�r(‘�)

}
f(�; ‘) = 0; �∈ I1 (3.2)

on the unit interval I1, where �∈ (0; 1]. Note that p;p′ and q contained in the function s in (2.3),
and r are all analytic at x= 0 and so at ‘= 0 as well. In what follows, for su4ciently small values
of ‘, we try an eigensolution of the type

f(�; ‘) = F0(�) + F1(�)‘ + · · · (3.3)

and

‘2�(‘) = �0 + �1‘ + · · · (3.4)

and deduce that the leading order term F0(�) satis-es the Bessel di>erential equation

L0F0(�) = �2F0(�); L0 = −1
�

d
d�

(
�

d
d�

)
+
2

�2 (3.5)

where

�2 = r0�0 = r0 lim
‘→0+

‘2�(‘); r0 = r(0): (3.6)

To derive boundary conditions for the functions Fk(�) at � = 1, we write down the left hand side
of (2.5) as a power series in ‘ and set each coe4cient of ‘ to zero. Thus the conditions imposed
on F0(�) are the boundary condition

F0(1)cos �+ F ′
0(1)sin �= 0 (3.7)

and, from (2.4), the regularity condition F0(�) ∼ � as �→ 0.
Obviously, the solution of (3.5), which behaves correctly at the origin, is the Bessel function of the

-rst kind of order  denoted conventionally by J(��). So the dominant solution of the asymptotic
problem satisfying the boundary condition as well is given, for small values of ‘, by

f(�; ‘) ∼ AJ(��); A∈R (3.8)

provided that � is a positive zero of the equation J(�)cos � + �J ′(�)sin � = 0. As is well known
this transcendental equation has an in-nite number of real positive roots, all of which are simple
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Fig. 1. Typical variations of the Dirichlet and Neumann eigenvalues.

[6]. Notice also that the existence of such � values justi-es at the same time the existence of the
limit in (3.6).

Therefore, the eigenvalues �(‘) of the problem on the -nite interval in Section 2 grows like 1=‘2

as (0; ‘) becomes -ner and -ner, that is,

�(‘) ∼ �2

r0‘2 (3.9)

as ‘ → 0. Recalling the two propositions of Section 2, we now estimate the behaviour of a
typical eigenvalue of each problem of the Dirichlet and Neumann type, as a function of ‘ as shown
in Fig. 1.

4. Applications to the Schr�odinger equation

Let us consider the radial Schr7odinger equation of the form[
− d2

dx2 − 2
x

d
dx

+
l(l− 1)
x2 + v(x)

]
 (x) = E (x); x∈ I∞; (4.1)

where  (x), v(x) and E denote the wavefunction, potential function and the energy eigenvalues,
respectively, and the integral values l=1; 2; : : :, are the eigenvalues of the angular momentum operator
originating from the separation of a three-dimensional quantum system. Eq. (4.1) is a particular form
of our di>erential equation, which can be recovered from (1.1) by setting

x0 = 0; p(x) = r(x) = 1; q(x) = l(l− 1) + x2v(x); �= E: (4.2)
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Two very famous analytically solvable cases corresponding to the wave mechanical treatment of the
harmonic oscillator, where

v(x) = x2; (4.3)

and diatomic molecules via the Morse potential

v(x) = Z2[e−(x−c) − 1]2 = 2Z2e−(x−c)[cosh(x − c) − 1]; Z; c¿ 0 (4.4)

provide a convenient testing ground for the present approach. For all quantum numbers n; l =
1; 2; : : :, the analytical solutions derived on I∞ for the harmonic oscillator are given by

 n;l(x) = An;lxl−1e−
1
2 x

2
Ll−1=2
n−1 (x2); En; l = 4n+ 2l− 3; (4.5)

where the An;l are some normalization constants, and the Lnm stand for the associated Laguerre
polynomials. However, only the eigen-pair of the Schr7odinger equation with l = 1, corresponding
to the purely vibrational energy levels of diatomic molecules modeled by the Morse potential, is
expressible in closed form

 n(x) = Bnx[u(x)]dne−Zu(x)L2dn
n−1[2Zu(x)]; En;1 = (2n− 1)

[
Z − 1

4 (2n− 1)
]

(4.6)

for n= 1; : : : ; K , where K is the integer part of the parameter Z + 1
2 , the Bn are some constants, and

u(x) = e−(x−c); dn = Z − 1
2 (2n− 1)¿ 0: (4.7)

Despite the similarity in form of the two eigensolutions, they in fact possess di>erent spectral
structures. The harmonic oscillator has purely a discrete spectrum whereas the Morse problem has
both a discrete and a continuous spectra. More precisely, the Morse potential has a -nite number K
of real spectral points lying between 0¡E¡Z2 and a continuous spectrum for all E¿Z2 in the
E-complex plane. Note that the number K of the spectral points depends completely on Z , a kind
of atomic charge parameter, and the system has no bound states if Z ¡ 1

2 .
Another important remark is that the analytical solution in (4.6) is obtainable over the interval

(−∞;∞), which contains the unphysical region −∞¡x¡ 0 [4]. Since, here, x denotes the inter-
nuclear distance it should be non-negative. Nevertheless we proved numerically in [9] that Morse’s
original assumption of the inclusion of the unphysical portion (−∞; 0) does not cause any deviation
from the correct eigenvalues representing the physical domain.

Under the assumption that v(x) does not grow faster than 1=x2 at the origin, as is the case for the
potentials in (4.3) and (4.4), we see from (4.2) that the parameter  in (2.4) is written as

= l− 1
2 ; l= 1; 2; : : : (4.8)

and the Schr7odinger equation (4.1) on the unit truncated interval I1 takes the form

T+(�) = E(‘)+(�); T =
1
‘2 L0 + v(‘�); �∈ I1 (4.9)

for a given ‘¿ 0, where � is again the scaled variable in (3.1) and +(�) =
√
� (�). In this setting

the transformed dependent variable + obeys the conditions of the same forms as that of F0(�) in
Section 3.

From a computational viewpoint, we have to introduce a numerical algorithm to cope with the
eigenvalue problem for a prescribed ‘ at which the di>erences between the Dirichlet and Neumann
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eigenvalues are reasonably small. The analytical solutions in closed form of the asymptotic problem
in Section 3 suggest evidently two approximation methods to use. Firstly, the series in (3.3) and
(3.4) have nonzero radii of convergence in the ‘-complex plane because they are regular perturbation
expansions of an eigensolution. So the higher-order corrections can be evaluated by a Rayleigh–
Schr7odinger perturbative scheme, which results in a formula to approximate eigenvalues E(‘) for
every ‘ su4ciently close to ‘ = 0.

Alternatively, since the eigenfunctions of the operator L0 in (3.5) constitute a set of orthogonal
functions on I1, they can be used as an expansion basis in a Rayleigh–Ritz variational method to
approximate the eigenfunctions of the operator T in (4.9). As a matter of fact, we get a sequence
of normalized functions {,n(�)} in the sense that

∫ 1

0
�,m(�),n(�) d�= -mn; (4.10)

where -mn is the Kronecker’s delta. Explicitly speaking, the basis functions ,n(�) satisfying the
equation L0,n = �2

n,n and appropriate conditions are of the form

,n(�) = NnJ(�n�); n= 1; 2; : : : ; (4.11)

where the �n stand for the positive roots of the equation

J(�)cos �+ �J ′(�)sin �= 0; (4.12)

and the normalization constants Nn are de-ned by the relation

N2
n{[J(�n)]2 − J−1(�n)J+1(�n)} = 2: (4.13)

These relations can be simpli-ed in the Dirichlet and Neumann problems. Indeed, for the Dirichlet
type boundary conditions the �n are the roots of the simpler equation J(�) = 0, and hence

Nn =

√
2

J−1(�n)
: (4.14)

For the Neumann problem, on the other hand, J ′(�) = 0, and the normalization constants become

Nn =

√
2�n√

�2
n − 2J(�n)

(4.15)

where, in (4.13)–(4.15), we have used the functional relationships known for the Bessel functions.
Finally, we see from (4.8) that the exponent  is always half an odd integer, and, therefore, the

basis elements ,n contain Bessel functions of fractional orders, which are closely related to the
spherical Bessel functions. These functions can simply be written in terms of the circular functions,
the -rst two of which are

J1=2(z) =

√
2
�z

sin z; J−1=2(z) =

√
2
�z

cos z: (4.16)
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The others may be evaluated by means of the recurrence relation

zJk+3=2(z) = (2k + 1)Jk+1=2(z) − zJk−1=2(z) (4.17)

for k = 0; 1; : : : [2].

5. Specimen numerical computations and discussion

The “state of art” about the numerical evaluation of the bound states of the di>erential eigenvalue
problems is well discussed in [5]. There are indeed many existing software packages that can estimate
to user requested precision eigenvalues of very general Sturm–Liouville problems. However, these do
not provide two-sided bounds explaining why the present study may be interesting. More explicitly,
the reliability and consistency of the eigenvalues can be rechecked by means of the lower and upper
bounds. Of course, this is achieved at the cost of solving two boundary value problems of the
Dirichlet and Neumann types instead of a single one.

Depending on the quality of the basis functions under consideration, we can -nd very accurate
numerical results for the ground and the low-lying states eigenvalues by means of the Rayleigh–Ritz
variational method. So proposing a trial solution for (4.9) of the form

+M (�) =
M∑
n=1

an,n(�); an ∈R (5.1)

and making use of standard techniques, we convert the di>erential eigenvalue problem to a symmetric
matrix eigenvalue problem

M∑
n=1

[Hmn(‘) − E(M; ‘)-mn]an = 0; m= 1; 2; : : : ; M (5.2)

with the matrix elements de-ned by

Hmn(‘) = Vmn(‘) +
�2
n

‘2 -mn; (5.3)

where

Vmn(‘) =
∫ 1

0
�,m(�),n(�)v(‘�) d�; (5.4)

and E(M; ‘) denotes the approximate matrix eigenvalues for E(‘). In general, the -rst N eigenvalues
of (5.2) ordered by magnitude E16E26 · · ·6EN approximate E16E26 · · ·6EN very well, if
the approximation order M is about 2N [5].

Furthermore, it is known from the variational principle that the Rayleigh–Ritz matrix eigenvalues
E(M; ‘) provide upper bounds to the exact eigenvalues E(‘). In the case of the Dirichlet problem
this approach is, therefore, quite appropriate and natural due to the fact that the true Dirichlet
eigenvalues E+(‘) are already upper bounds, for all ‘, to the target eigenvalues E = E∞ of the
original problem (4.1) over I∞. That is to say, concerning the kth representative eigenvalue E∞k we
have the inequalities

E∞k ¡E
+
k (‘)¡E+

k (M; ‘) (5.5)
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valid for all k6M , M and ‘, where the E+
k denote the Rayleigh–Ritz eigenvalues corresponding

to the Dirichlet boundary conditions.
Unfortunately, the situation seems to be complicated in the Neumann problem, where the correct

eigenvalues E−(‘) are lower bounds to E∞, E−(‘)¡E∞, if ‘¿‘0. More speci-cally, the Rayleigh–
Ritz method -nds matrix eigenvalues E−(M; ‘) which are upper bounds to the lower bound eigen-
values; that is, E−(M; ‘)¿E−(‘) for -nite values of M . As a result it may be the case that
E−(M; ‘)¿E∞ due to the truncation errors, or otherwise. In order to overcome this trouble and
introduce reliable eigenvalue enclosures for E∞, we employ the so-called Lehmann method [3,5] for
the calculation of the spectrum of the Neumann problem.

The Lehmann method uses again a trial solution of form (5.1) and determines lower bounds to
the -rst N spectral points E−1 (‘); : : : ; E−N (‘). However, it requires an a priori lower bound 4(N; ‘)
for E−N+1(‘) such that

E−N (‘)¡E−
N (N; ‘)¡4(N; ‘)6E−N+1(‘): (5.6)

To apply the Lehmann method we de-ne a new square matrix W of size N , whose common entry
is de-ned by the integral

Wmn(‘) =
∫ 1

0
�[T,m(�)][T,n(�)] d�; (5.7)

and can be written explicitly as

Wmn(‘) =
1
‘4 [�4

m-mn + ‘2(�2
m + �2

n)Vmn(‘) + ‘4Umn(‘)]; (5.8)

where

Umn(‘) =
∫ 1

0
�,m(�),n(�)[v(‘�)]2 d�; (5.9)

for m; n= 1; 2; : : : ; N . Then we consider the symmetric generalized matrix eigenvalue problem
N∑
n=1

[Amn(‘) − 7(N; ‘)Bmn(‘)]an = 0; m= 1; 2; : : : ; N (5.10)

containing the symmetric matrices A and B with general elements

Amn(‘) = Hmn(‘) − 4(N; ‘)-mn (5.11)

and

Bmn(‘) = [4(N; ‘)]2-mn − 24(N; ‘)Hmn(‘) +Wmn(‘); (5.12)

respectively. Now if we introduce the ordered sequence

D−
k (N; ‘) = 4(N; ‘) +

1
7N+1−k(N; ‘)

(5.13)

then Lehmann’s theorem [5] states that the D−
k (N; ‘) are lower bounds to the Neumann eigenvalues,

D−
k (N; ‘)¡E−k (‘) (5.14)
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for k = 1; 2; : : : ; N . Consequently, (5.5) and (5.14) generalize the two-sided inequality

D−
k (N; ‘)¡E−k (‘)¡E∞k ¡E

+
k (‘)¡E+

k (M; ‘); M¿N (5.15)

for the -rst N spectral points E∞1 ; : : : ; E∞N of the singular system.
Because of the left-hand side inequality in (5.6) the matrix A is negative de-nite whereas, it can

be shown that B is positive de-nite. Hence the eigenvalues 7i(N; ‘) of (5.10) are all negative for
i = 1; : : : ; N . As another computationally important remark, if

B = LLT (5.16)

is the Cholesky decomposition of the positive de-nite matrix B, then (5.10) can be replaced by the
standard problem

N∑
n=1

[Cmn(‘) − 7(N; ‘)-mn(‘)]an = 0; m= 1; 2; : : : ; N (5.17)

implying that the eigenvalues 7(N; ‘) in (5.10) are precisely the eigenvalues of the symmetric matrix
C,

C = L−1A(L−1)T (5.18)

as it is similar to the matrix B−1A [7].
It should be noted that the application of the Lehmann method is not an easy task, even it may

not always be possible because of the existence and computation of a lower bound 4(N; ‘) for
E−N+1(‘) satisfying the conditions in (5.6) (see [5] for details). Fortunately, in this work we estimate
such 4(N; ‘) values in many cases by means of the N th Rayleigh–Ritz eigenvalues E+

N (M; ‘) of the
Dirichlet problem. Actually, for a second-order di>erential operator in Sturm–Liouville form, it is
known from the Sturm oscillation and comparison theorems that the Dirichlet eigenvalues are always
greater than the corresponding Neumann eigenvalues and that

E−N (‘)¡E+
N (‘)¡E−N+1(‘) (5.19)

for all N [1]. Therefore, if M is large enough then E+
N (‘) ∼= E+

N (M; ‘), and choosing 4(N; ‘) as
E+
N (M; ‘) we have

4(N; ‘)6E−N+1(‘) (5.20)

as required. If we are lucky this estimation satis-es the left-hand side inequality in (5.6) as well,
which is generally the case since the eigenvalues are well separated in our speci-c examples. Other-
wise, the numerical implementation of the Neumann boundary value problem by using the Lehmann
method fails.

In our tables, n is the state number of the eigenvalues, and the N stand for the sizes of matrices
used in our numerical algorithm. Illustrative examples are performed for the Schr7odinger equation
with the angular quantum number l = 1, for which the exponent of the singularity at the origin
is  = 1=2. The Lehmann lower and the Rayleigh–Ritz upper eigenvalue bounds are presented as
a function of the boundary point ‘ in Tables 1 and 2 for the harmonic oscillator and the Morse
potential, with Z = 50 and c = 0, respectively. It is clearly shown that more accurate eigenvalue
enclosures are determined as ‘ increases con-rming the conclusions of the two propositions in



718 H. Tas(eli / Journal of Computational and Applied Mathematics 164–165 (2004) 707–722

Table 1
Convergence rates of two-sided Rayleigh–Ritz and Lehmann bounds for the -rst three eigenvalues of the harmonic
oscillator as a function of N and ‘

n ‘ N D−
n (N; ‘) E+

n (N; ‘) E∞
n;1

1 4.5 5 — 3.000 014
10 2.999 998 316 3.000 000 608
15 2.999 998 316 3.000 000 608 3

6.0 10 — 3.000 000 000 006 370
15 2.999 999 999 999 770 3.000 000 000 000 216
20 2.999 999 999 999 770 3.000 000 000 000 216 3

7.5 15 — 3.000 000 000 000 000 075
20 2.999 999 999 999 999 999 999 283 3.000 000 000 000 000 000 000 690
25 2.999 999 999 999 999 999 999 283 3.000 000 000 000 000 000 000 690 3

10 30 3.000 000 000 000 000 000 000 000 3.000 000 000 000 000 000 000 000 3

2 4.5 5 — 7.002
10 6.999 854 7.000 125
15 6.999 854 7.000 125 7

6.0 10 — 7.000 000 003 860
15 6.999 999 999 827 7.000 000 000 161
20 6.999 999 999 827 7.000 000 000 161 7

7.5 15 — 7.000 000 000 000 088
20 6.999 999 999 999 999 998 619 7.000 000 000 000 000 001 326
25 6.999 999 999 999 999 998 619 7.000 000 000 000 000 001 325 7

10 30 7.000 000 000 000 000 000 000 000 7.000 000 000 000 000 000 000 000 7

3 4.5 5 — 11.055
10 10.992 11.006
15 10.992 11.006 11

6.0 10 — 11.000 000 598
15 10.999 999 965 11.000 000 031
20 10.999 999 965 11.000 000 031 11

7.5 15 — 11.000 000 000 028
20 10.999 999 999 999 999 261 11.000 000 000 000 000 706
25 10.999 999 999 999 999 261 11.000 000 000 000 000 706 11

10 30 11.000 000 000 000 000 000 000 000 11.000 000 000 000 000 000 000 000 11

The numerical bounds are compared with the exact analytical eigenvalues E∞
n;1 = 4n− 1 of the singular problem on the

unbounded domain I∞.

Section 2. We see, from Table 1, that the upper and lower bounds of the harmonic oscillator
eigenvalues coincide to the accuracy quoted at ‘ = 10.

We prove that the basis set of Bessel functions is almost constantly e4cient for both problems
considered here numerically, whose spectral characteristics are quite di>erent. A remarkable slowing
down of convergence occurs only for the very weakly bound states of the Morse potential, where the
state number n approaches the actual number of discrete spectral points K de-ned just after (4.6).
In fact, most of the methods applied to a problem of this kind, wherein both discrete and continuous
spectra appear, break down at the border of the continuum [8]. Furthermore, a random distribution
of the matrix eigenvalues En (or Dn), for which n¿K , is encountered. In any case, however, the
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Table 2
Convergence rates of two-sided Rayleigh–Ritz and Lehmann bounds for the -rst three eigenvalues of the Morse potential
with Z = 50 as a function of N and ‘

n ‘ N D−
n (N; ‘) E+

n (N; ‘) E∞
n;1

1 0.8 15 — 49.750 005
20 49.749 999 992 49.750 000 007
25 49.749 999 993 49.750 000 007 49.75

1.0 25 — 49.750 000 000 005
30 49.749 999 999 999 925 49.750 000 000 000 070
35 49.749 999 999 999 925 49.750 000 000 000 070 49.75

1.2 30 — 49.750 000 000 062
35 — 49.750 000 000 000 005 848
40 49.749 999 999 999 999 999 584 49.750 000 000 000 000 000 282
45 49.749 999 999 999 999 999 715 49.750 000 000 000 000 000 153 49.75

2 0.8 15 — 147.750 097
20 147.749 999 215 147.750 000 871
25 147.749 999 215 147.750 000 871 147.75

1.0 25 — 147.750 000 001
30 147.749 999 999 979 147.750 000 000 018
35 147.749 999 999 979 147.750 000 000 018 147.75

1.2 30 — 147.750 000 001 689
35 — 147.750 000 000 000 139
40 147.749 999 999 999 999 922 147.750 000 000 000 000 074
45 147.749 999 999 999 999 925 147.750 000 000 000 000 072 147.75

3 0.8 15 — 243.750 283
20 243.749 950 243.750 046
25 243.749 950 243.750 046 243.75

1.0 25 — 243.750 000 037
30 243.749 999 997 243.750 000 002
35 243.749 999 997 243.750 000 002 243.75

1.2 30 — 243.750 000 007 960
35 — 243.750 000 000 000 811
40 243.749 999 999 999 981 243.750 000 000 000 015
45 243.749 999 999 999 982 243.750 000 000 000 015 243.75

The numerical bounds are compared with the exact analytical eigenvalues in (4.6) of the singular problem on the whole
real line.

present algorithm, a sketch of which is outlined in the Appendix, is not restricted to the two speci-c
potentials in (4.3)–(4.4) and is more generally applicable within the aforementioned limitations.
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Appendix. Sketch of the algorithm and the evaluation of matrix elements

For the numerical computation of the eigenvalues of the Dirichlet problem, it su4ces to determine
the matrix elements Vmn in (5.4). However, we have to calculate the Vmn as well as the matrix
elements Umn in (5.9) in the case of the Neumann boundary conditions. The other matrices are all
constructed by means of either Vmn or Umn or both. Thus, we evaluate the following integrals:

Vmn(‘) = NmNn

∫ 1

0
�v(‘�)J(�m�)J(�n�) d� (A.1)

and

Umn(‘) = NmNn

∫ 1

0
�[v(‘�)]2J(�m�)J(�n�) d� (A.2)

for a given potential function, where = 1=2 in our illustrative examples. Notice that the �n should
be taken as the positive roots of J1=2(�) = 0 or, simply, sin � = 0 in the Dirichlet problem whereas
the Neumann problem requires the positive roots of the equation J ′1=2(�) = 0 or 2� − tan � = 0.

For the harmonic oscillator potential function v(x) = x2 we -nd immediately that

Vmn(‘) = 2‘2[(�m − �n)−2 − (�m + �n)−2] (A.3)

for m �= n and

Vnn(‘) = 1
6 ‘

2(2 − 3�−2
n ) (A.4)

for m = n whenever the basis functions satisfy the Dirichlet boundary conditions. In fact, here the
roots are nothing but �k = k� for k = 1; 2; : : : :

Similarly, we obtain

Vmn(‘) =
2‘2√

(4�2
m − 1)(4�2

n − 1)

[
1 + 4�m�n
(�m + �n)2 − 1 − 4�m�n

(�m − �n)2

]
(A.5)

for m �= n and

Vnn(‘) = 1
6 ‘

2

[
8�4
n + 2�2

n + 3
�2
n(4�2

n − 1)

]
(A.6)

for m= n, whenever the Neumann boundary value problem is under consideration. In this case, the
elements of the matrix U , which is encountered in the application of the Lehmann method, are of
the form

Umn(‘) =
4‘4√

(4�2
m − 1)(4�2

n − 1)

{
(�m + �n)2[(�m − �n)2 − 6] + (�m − �n)2 + 6

(�m − �n)4

− (�m − �n)2[(�m + �n)2 − 6] + (�m + �n)2 + 6
(�m + �n)4

}
(A.7)

for m �= n and

Vnn(‘) = 1
10 ‘

4

[
8�6
n + 22�4

n − 10�2
n − 15

�4
n(4�2

n − 1)

]
(A.8)

for m = n. It is noteworthy that the matrix elements involve elementary expressions in terms only
of the zeros of (4.12), and no evaluation of any Bessel function is required.
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On the other hand, the derivation of the matrix representation of the Morse potential results
again in certain analytical formulas containing the elementary integrals C(x; y) and S(x; y) de-ned,
respectively, by

C(x; y) =
∫ 1

0
e−xt cos (yt) dt

=
x

x2 + y2 +
e−2x

x2 + y2 (y sin y − x cosy); C(0; 0) = 1 (A.9)

and

S(x; y) =
∫ 1

0
e−xt cosh(xt) cos(yt) dt

=
x

4x2 + y2 +
siny
2y

+
e−2x

4x2 + y2

(
1
2 y sin y − x cosy

)
; (A.10)

where

S(x; 0) = 1
4 (1 − e−2x)=x + 1

2 ; S(0; 0) = 1: (A.11)

Now the required matrix elements can easily be calculated for two di>erent sets of the roots �k
corresponding to Dirichlet and Neumann end conditions.

To sum up and to allow a reader to implement the bounds for di>erent examples than the two
families given here, we may sketch step by step the numerical algorithm that solves the more general
case, i.e., the Schr7odinger equation in (4.1) to which the method is applied.

(a) Given the potential function v(x) and the angular quantum number l. Find the parameter  in
(4.8), and choose a boundary parameter ‘ which is large enough.

(b) Evaluate the matrix elements Vmn and Umn in (A.1) and (A.2), respectively. Notice that the
convergence of each integral is guaranteed because the Bessel and the potential functions behave
correctly at the origin. The asymptotic form imposed on the potential function v(x) as x → 0 is
directly a consequence of the regular singularity of the di>erential operator at x0 = 0. When  �=
1=2, it is strongly recommended to use a multiprecision arithmetic on a symbolic software such
as Mathematica, in order to get reliable enough roots of the corresponding Bessel functions or
their derivatives. Furthermore, it is more appropriate to employ the functional equation in (4.17)
for the reduction of the matrix elements to integrals containing the Bessel functions of order
±1=2, for simplicity.

(c) For the Dirichlet problem, identify the Rayleigh–Ritz eigenvalues as the eigenvalues of the real,
symmetric matrix H whose general entry is de-ned by (5.3). In this work, we use EISPACK
Fortran subroutines to diagonalize real, symmetric matrices. It should be noted that these routines
use originally a double precision arithmetic, however, we modify them so as to use quadruple
precision (32 digits) on an IBM-H70 (RISC) main frame.

(d) For the Neumann problem, we -rst use again an EISPACK subroutine called REDUC, which
reduces the generalized eigenproblem in (5.10) to the standard one in (5.17). Then we -nd the
eigenvalues of the resulting real, symmetric matrix C in (5.18) and determine the Lehmann
bounds from (5.13). Recall that the constructions of the matrices in (5.10) fail unless an a priori
lower bound satisfying (5.6) is estimated.
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(e) Compare the Dirichlet and Neumann eigenvalues, i.e., Rayleigh–Ritz and Lehmann bounds, and
increase the value of the boundary parameter ‘ systematically until the required precision within
the machine limits is reached.
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