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There are various scenarios proposed in literature for transition in plane chan-
nel (Poiseuille) flow. In this work, one of these scenarios, namely, streak break-
down, is tested numerically using a Karhunen-Loeve (K-L) based model. The
K-L basis was empirically generated earlier using a numerical database repre-
senting the flow. This basis is modified in this work to include the mean flow.
A K-L basis provides an optimal parametrization of the underlying flow in
energy norm. Since it is specific to the flow, each basis element carries an in-
dependent characteristic of the flow and has physical interpretation. A system
of model amplitude equations is then obtained by Galerkin projection of the
governing equations onto the space spanned by the K-L basis. The physical
interpretation of the basis elements is used to truncate the resulting system
to obtain a low dimensional model.

1 Introduction

Despite much research and progress, there is still a lack of complete picture
of transition to turbulence in the wall-bounded flows. This is also true in
the case of plane channel (Poiseuille) flow which is a very attractive flow
to study the dynamics of transition due to its simple geometry. It started
with the conflict between the linear stability analysis leading to famous Orr-
Sommerfeld equation predicting stability for Reynolds number Re < 5572
[OP83] and experimental observations showing transition to turbulence for
Re as low as 1000 [PH69!. This conflict motivated much research on nonlinear
analysis and various transition scenarios [RSBH98].

A recent theory on transition through transient growth of disturbances
before decaying is supported by experiments and numerical simulations and
is to play a fundamental role in the initial stages of transition [K1i92, RH93].
In channel flows, the disturbances that yield the greatest transient growth,
called optimals, are independent, or nearly independent, of the streamwise
coordinate. Streamwise streaks periodic in the spanwise direction and their
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subsequent breakdown leading to transition have been proposed as a transition
scenario and investigated in [RSBH98].

In this preliminary study, the breakdown of streamwise streaks is numer-
ically simulated using a low dimensional model reduced from the governing
Navier-Stokes (NS) equations through Karhunen-Loéve (KL) procedure. This
procedure is useful in studying complicated physical phenomena by decom-
posing an experimental or numerical realization of flow into structures (KL
modes) each of which carries an independent character of the flow. This may
be a static analysis in which the evolution of the flow is studied by projecting
an existing database representing a spatial realization of the flow at discrete
times onto the subspace spanned by the KL modes (KL subspace), [WHS97] or
a dynamic analysis in which the evolution of the flow is studied by numerically
integrating a relatively low dimensional model of the governing equations ob-
tained by Galerkin projection onto the KL subspace [S792, Tar03]. Contrary
to the static analysis being limited to the control parameter (such as Reynolds
number) values at which the database is obtained, the dynamic analysis allows
a study in a range of the parameter values.

2 Governing equations

In contrast to the boundary layer slowly growing in the streamwise directon
over a flat plate, the channel flow between two parallel plates is homoge-
neous in both streamwise and spanwise directions after an entrance region
in which both upper and lower boundary layers are growing. That is why
channel flow has a special place in the experimental or numerical study of
the transitional mechanisms. Channel flow is driven by a constant pressure
gradient k£ in the z-direction in a geometry, —oco < z,z < 00; —h < y < h.
Here, x is the streamwise direction, z the spanwise direction and y the di-
rection between the parallel plates. For velocity and spatial coordinates, the
symbols, u = (u1,u2,u3) = (v, v,w) and x = (21, 23,23) = (z,y,2) will be
used interchangibly.

Fig. 1. Flow geometry and the notation
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The governing Navier-Stokes (NS) equations and the boundary conditions
are:

8Uj
e R 1
6%; 0 ap 1 2
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fori=1,2,3, and
u(z,—1,2,t) =u(z,1,2,t) =0 (2)

with periodic boundary conditions in the x and y directions. Here, the stan-
dard normalization is used, based on the friction velocity u, = +/kh/p and
R, = %t is the Reynolds number [TL72].

v

3 KL procedure

KL modes are computed as eigenfunctions, {#(™}, of the integral equation :
fv Ky (x,x') UV () dx’ = AU (x) (3)

whose kernel is the two-point correlation tensor

K
Ky (x,x7) = % 3 0 () 1 () (1)
k=1

obtained using flow database

o

(z,y,2) = w(z,y, 2, kKAL) k=1,2---K, i=1,23. (5)

Since the flow is taken as periodic in the z and z directions, KL modes take
the form

mx

where m = (m,n,q) is an index vector. KL, modes form an orthogonal basis
in an inner product space

3
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and represent the flow in an expansion

ux,t) = am(t) U™ (x), (8)
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where the expansion coeflicients are statistically independent in time,

K
1
(0m, an)e = 2 ];1 am (EAL) an(kAL) = Ambam. (9)

Due to the symmetries in flow geometry [WHS97], KL modes come out de-
generate as such

)\(m,n,q) = )\(m,—n,q) - )\(—m,n,q) = )\(—m,—n,q)' (10)

Consequently, KL modes need to be computed only for the positive index pair
(m,n), m,n > 0, the other members of the index family {m,n, ¢}, where

{m7 n, Q} = {(ma 7, Q’)z (_ma —-n.,q §£m; —n, Q): (_ma n, Q)J} (11)

L. —’

conjugate pairs conjugate pairs

are obtained using the symmetry relations. KL, modes satisfy all the spatial
constraints, such as continuity equation, boundary conditions and form the
building blocks of the flow

vim)(x ¢) = ?(mw(t)U(mw) (%) + A,y (U™ D (x)

complex conjugate pairs

g(—m,n,q)(t)U(_-m,n’q) (X) + a(m,fn;q)(t)U(m’—n’Q) (X) (12)

complex conjugate pairs

for each index family {m,n,q}.

These computed KI. modes, as they satisfy spatial constraints and carry
independent features of the flow, form a convenient basis for reducing NS
equations to a relatively low dimensional dynamical system via Galerkin pro-
jection. Further, their divergence-free nature causes the gradiant term to drop
during projection. In order to construct a relatively low dimensional KL based
dynamical model of the governing ecuations, first, an approximation of the

flow
U U = Z v (x 1) (13)
ngcsS
in terms of a set of KL modes selected based on their physical importance is to
be obtained. Here, S denotes index set of the selected KL modes. This approx-
imation is, in turn, forced to satisfy the governing NS equations (NS(u) = 0)
using Galerkin projection

(U(m),NS(us)) —0 (14)

X

resulting in a dynamical system
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%am = PROD(m) + é—DISS(m; nja, + NLIN(m;n, r)ana,.,  (15)

where, using the index vector representations m = (mq,ms3,¢pn), n =
(n1,ns,qn) and r = (1,73, ), the coeflicients are

PROD(m) = (U<m>,5ﬂ)x, (16)

for mqy =ms =0,

DISS(m;n) = (U<m>,Aus) , (17)
for m; =nqy , m3 = ng, and

NLIN(m;n,r) = (U(m>, u, % (VX us)) (18)

X

for m; = ny <+ 711 , mg = n3 + r3. In the computation of the coeflicients,
NLIN(m;n,r), the use of the equivalent form

u-Vu:%(u-u)wux(VXu) (19)

of the nonlinear term of NS equations is observed to improve the computation
as verified by the satisfaction of the triad relation

NLIN(m;n,v) + NLIN(—n;—m,r) + NLIN(—r;n, ~m) =0 (20)

where —m = (—my, —ms, Gm).

4 Numerical procedure

NS equations are numerically integrated in [WHS97] by using Fourier-Chebyshev
spectral method in which the flow is taken periodic in z and z directions. The
flow variables are expanded in the form

M
g1 -1 p

u(x,t) = Z Zﬂl(m,n,p;t)fl”p(mg)eikl"”“eik&"c3 (21)
m=—_

__ N =
M p=-L p 0

where k1 = 2rm/Lg, k3 = 2mn/Ls and T, (y) are the Chebyshev polynomials.
The values Ly =7, L, =037, P=128 , M =48 , N =24, R, = 135.5 are
selected based on the work [JM90] which corresponds to the minimal channel
geometry to obtain turbulent flow at both upper and lower boundary layers.
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Table 1. KL modes as computed in [WHS97]

KL mode m = (m,n,q)_[(0,L,1)](0,,)](LLD](1,1,2)](0,1,3)](0,1,4)
Energy content % Am/>° An| 13 10 5 5 | 3 2
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Fig. 2. Flow structure of KL modes (0,1,1) and (1,0,1)

The computed flow field after the removal of the mean flow is used to compute
the KL modes as shown in Table 1. Each KL mode carries an independent
feature of the flow.

For example, the most energetic KL mode m = (0,1,1), along which carries
13% of the flow energy, physically represents a pair of counter-rotating rolls
extending in the streamwise direction in the upper and lower sections of the
channel as shown in Figure 2. This rolling motion carries the fluid from the
center towards the wall regions. KL, modes are classified in [WHS97] as roll
modes (m = 0,n # 0,q) , core or propagating modes (m # 0,n,q) , and
net-flux modes (m = 0,n = 0, g) depending on their physical roles. They vary
with respect to the quantum number ¢ in a way of increasing complexity in
y-direction as shown in Figure 3. As ¢ increases KL modes exhibit smaller
scale structures and form symmetric and anti-symmetric pairs in the plane
y = 0. This form necessitates the inclusion of KIb modes in pairs in the set S.

In this work, the KL modes are re-computed in a way to include the mean
flow which was removed in [WHS97]. This eliminates the need to model the
mean flow, which would result in a cubic nonlinear term in the dynamical
system. The inclusion of the mean flow in the extraction process of the KL
modes effects only the net-flux modes m = (0,0, ¢), especially the most en-
ergetic mode m = (0,0,1). As shown in Figure 3, m = (0,0,1) mode is in a
form very similar to the mean profile.

The resulting dynamical system is numerically integrated in time for vari-
ous forcing parameter R, values and for a selected set S of KL modes. Numer-
ical solution is in turn used for a nonlinear stability analysis in two stages. In

1

the first stage, the stability of the laminar flow, U(y) = 5 R-(1 —y?) , is numer-

ically tested againts disturbances having no streamwise variation (m = 0) at
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Fig. 3. Vertical profiles of KL, modes V9(m,n;y) (real part)

various R, values and the secondary flow , to which the laminar flow looses its
stability, is obtained. In the second stage, the stability of the secondary flow is
tested against disturbances that have streamwise variation (m # 0) through
a numerical perturbation procedure. In this study, the (kinetic) energy of the

. E(u) = / dz/ d:z:/ dyu-u (22)

relative to that of laminar flow (E(U(y)di1) = 2L, L, R, /15), relative energy,

E{u)

5(11) == m (23)

is used as a measure.

In this work, KL modes that are thought to play the most important role in
the transition process, are selected as:

S ={(m,n,q) | (0,0,1---25);(0,1,1---4);(1,0,1---4); (1, 1,1 A)}.

Here, the main idea in the the inclusion of the (0,0, ¢) modes with 1 < ¢ < 25
is to have as complete representation of the modes carrying the flow energy
as possible in the dynamical model system. Moreover, the parabolic laminar
flow profile U(y) is included in the system through the projection onto these
modes

am(t) = (U™, U(y)di)x for m=1(0,0,¢9) €S. (24)

Other modes are included in pairs (g = 1;2), (¢ = 3;4) due to the appearance
of the modes in pairwise symmetric and antisymmetric form around y = 0
plane (see Figure 3). Furthermore, the number of modes, 1 < ¢ < 4, is included




250 Ozan Tugluk and Hakan I. Tarman

to provide the necessary degrees of freedom for the highly resolved KL modes
to adjust to the low resolution requirements at low £, values. Recall that KL
modes carry high vertical resolution due to their construction from data at
high R, values (R, = 135.5 in this case).

The dynamical model system is also an initial value problem. In the first
stage of the two stage nonlinear stability analysis, an initial value of

o JAg for (m=0,n#0,q9) €5
Gim,n,q) (E = 0) = { 0 otherwise (25)
is taken for the streamwise independent components (m = 0,n #£ 0,9) € § of
the flow which is superimposed onto the laminar flow (m = 0,n =0,¢) € S of
Eq. 24. Here, Ay is selected for the relative energy € (u(t = 0)) = &§ to take a
particular value £ . In the second stage, the initial value of

Ay for (m=0,n#0,q9) €S
Umng)(t =0) = ¢ A for (m#0,n,q) €S (26)
0 otherwise

is taken for the secondary flow arising from the first stage, (m = 0,n,q) €
S, and for the superimposed streamwise dependent component of the flow,
(m # 0O,n,q) € S. Here, Ay and A; are selected for the relative energy,
e({u(t=0)]A4; =0}) = & and e(u(t = 0) | 4y = 0) = &" take separate
particular values, ¢} and &} .

5 Results

In Figure 4, a typical solution obtained at R, = 20 is shown. This solution, ob-
tained at the particular initial relative energy value of €3 = 1072, shows that
the laminar flow modeled by the system is stable at R, = 20 . The solution
obtained at various other particular values of £ supports the same conclusion.
In another numerical experiment (Figure 5) at R, = 40 and =} = 1072 | the
laminar flow loses its stability to give rise to a secondary flow. The response of
the system to the perturbation is shown as a burst in energy initially. Later,
the flow reaches an equilibrium as a result of the dissipative effects of the
nonlinear terms activated by the initial burst.

The secondary flow is characterized by the transfer of high momentum
at the centre towards the wall layers. This can be seen in Figure 6(a) in the
relative flattness of the mean secondary flow profile due to this momentum
transfer in comparison to the laminar flow profile. A detailed look at the sec-
ondary flow profile in Figure 6(b) shows the streamwise high and low velocity
streaks extending in the streamwise direction in the wall region. This is in
accordance with the streamwise streak formation in literature.
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Fig. 4. The solution obtained at the particular 7, and ) values indicated.

Fig. 6. (a) The comparison between the laminar flow and the mean secondary
flow profiles obtained by the perturbation of the laminar flow at R, = 40. (b)
The highlighted curves indicate the spanwise variation in the streamwise velocity
component of the flow. At each point on these curves, the value of the streamwise
velocity component extend in the streamwise direction wihout varying, thus forming
the streamwise high and low velocity streaks.
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Fig. 7. The solution obtained at the particular R, and 3, 2] values indicated.

!
0 10 20 30 40 50 60 70 80
time

Fig. 8. The solution obtained at the particular R, and 68 values indicated.

The perturbation of the secondary flow obtained at R, = 40 by three
dimensional components of the flow shows the stability of the secondary flow
(Figure 7). The numerical experiments at various other £§ values supports the
same conclusion. Laminar flow, when perturbed at R, = 43 and at various
relative energy values £ similarly loses its stability and gives rise to secondary
flow. A typical solution for € = 1072 is shown in Figure 8. The secondary
flow at R, = 43 loses its stability to perturbations by three dimensional
components of the flow (Figure 9). The numerical experiments at various
other Y values supports the same conclusion. This result is in agreement
with the scenario of transition in literature through the breakdown of high
and low velocity streamwise streaks.
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Fig. 9. The solution obtained at the particular R, and &), £{ values indicated.
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