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Preface

Geometry is nothing but an expression of a symmetry group. Fortunately,
geometry escaped this stifling straitjacket description, an urban legend for-
mulation of Felix Klein’s Erlangen Program. Nonetheless, there is a valuable
ge(r)m of truth in this vision of geometry. Arithmetic and geometry have
been intertwined since Euclid’s development of arithmetic from geometric
constructions. A group, in the abstract, is a set of elements, devoid of con-
crete form, with just one operation satisfying a minimalist set of axioms.
Representation theory is the study of how such an abstract group appears
in different avatars as symmetries of geometries over number fields or more
general fields of scalars. This book is an initiating journey into this subject.

A large part of the route we take passes through the representation theory
of semisimple algebras. We will also make a day-tour out of the realm of
finite groups to look at the representation theory of unitary groups. These
are infinite, continuous groups, but their representation theory is intricately
interlinked with the representation theory of the permutation groups, and
hence it seemed a worthwhile detour from the main route of this book.

Our navigation system is set to avoiding speedways as well as slick short-
cuts. Efficiency and speed are not high priorities in this journey. For many of
the ideas we view the same set of results from several vantage points. Some-
times we pause to look back at the territory covered or to peer into what lies
ahead. We stop to examine glittering objects - specific examples - up close.

The role of the characteristic of the field underlying the representations
has made me go back and forth between different choices. There is definitely
no intention in this book to study representations over fields of finite char-
acteristic, a subject with a very distinctive flavor rather different from the
characteristic zero theory. Yet I felt hesitant to put a blanket assumption
of zero characteristic, choosing instead to point out the role played by the
characteristic in nearly all the major results. A somewhat easier choice to
make concerns algebraic closure. At one extreme a choice would be to as-
sume that the field of definition for the representations is the complex field
C. While this is certainly the field of greatest use and interest in physical
applications, it seems excessive to bring in the largely unnecessary analytic
completeness feature of C. Thus, a reasonable choice would be to work with
an algebraically closed field of characteristic zero, or even to simply work with
Q, the algebraic closure of Q. Arguably, not much is lost in working with just
complex representations. However, [ have chosen a middle ground, and have
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generally formulated the results and discussions in a way that highlights the
role played by algebraic closure when it is needed.

Authors generally threaten readers with the admonishment that they
must do the exercises to appreciate the text. This could give rise to in-
somnia if one wishes to peruse parts of this text at bedtime. However, for
daytime readers, there are several exercises to engage in, some of which may
call for breaking intellectual sweat, if the eyes glaze over from simply reading.

For whom is this book? For students, graduate and undergraduate, for
teachers, researchers, and also, hopefully, for many who want to simply ex-
plore this beautiful subject for itself. This book is an introduction to the
subject; at the end, or even part way through, the reader will have enough
equipment and experience to take up more specialized monographs to pursue
roads not traveled here.

A disclaimer on originality needs to be stated. To the best of my knowl-
edge, there is no result in this book which is not already “known.” Math-
ematical results evolve in form, from original discovery through mutations
and cultural forces, and I have added historical remarks or references only
for some of the major results.

Acknowledgment for much is due to many. To friends, family, strangers,
colleagues, students, and a large number of fellow travelers in life and math-
ematics, I owe thanks for comments, corrections, criticism, encouragement
and discouragement. Many discussions with Thierry Lévy have influenced my
view of topics in representation theory. It would be unfair not to thank the
referees whose comments, ranging from the insightful to the infuriating, led
to innumerable improvements in presentation and content. Vaishali Damle,
my editor at Springer-Verlag, was a calm and steady guide all through the
process of turning the original rough notes to the final form of the book. Fi-
nancial support for my research program from both Louisiana State Univer-
sity, Baton Rouge, and US National Science Foundation Grant DMS-0601141
is gratefully acknowledged. Here I need to add the required disclaimer: Any
opinions, findings and conclusions or recomendations expressed in this ma-
terial are those of the author and do not necessarily reflect the views of the
National Science Foundation. Beyond all this, I thank Ingeborg for support
that can neither be quantified in numbers nor articulated in words.
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Chapter 1

Concepts and Constructs

A group is an abstract mathematical object, a set with elements and an
operation satisfying certain axioms. A representation of a group realizes the
elements of the group concretely as geometric symmetries. The same group
may have many different such representations. Thus, even a group which
arises naturally and is defined as a set of symmetries may have representations
as geometric symmetries at different levels.

In quantum physics the group of rotations in three-dimensional space
gives rise to symmetries of a complex Hilbert space whose rays represent
states of a physical system; the same abstract group appears once, classically,
in the avatar of rotations in space and then expresses itself at the level of a
more ‘implicate order’ in the quantum theory as unitary transformations on
Hilbert spaces.

In this chapter we acquaint ourselves with the basic concepts, defining
group representations, irreducibility and characters. We work through cer-
tain useful standard constructions with representations, and explore a few
results which follow very quickly from the basic notions.

All through this chapter G denotes a group, and F a field. We will work
with vector spaces, usually denoted V', W, or Z, over the field F.

1.1 Representations of Groups

A representation p of a group G on a vector space V' associates to each
element g € G a linear map

p(g): V=V v p(g)

11
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such that
p(gh) = p(g)p(h) ~ forall g,h € G, and
ple) =1,

where I : V — V is the identity map. Here, our vector space V is over a
field F. We denote by

(1.1)

the ring of endomorphisms of a vector space V. A representation p of G on

V' is thus a map
p: G — Endg(V)

satisfying (1.1). The homomorphism condition (1.1), applied with h = g~!,
implies that each p(g) is invertible and

plg™") = plg)™" forallgeG.

A representation p of G on an F-vector-space V is said to be faithful if
p(g) # I when g is not the identity element in G. Thus, a faithful represen-
tation p provides an isomorphic copy p(G) of G sitting inside Endg(V).

A complex representation is a representation on a vector space over the
field C of complex numbers.

The vector space V' on which the elements p(g) operate is the repre-
sentation space of p. We will often say ‘the representation V'’ instead of ‘the
representation p on the vector space V’. Sometimes we stick p as a subscript,
writing V), for the representation space of p.

If V is finite dimensional then, on choosing a basis by, ..., b,, the endo-
morphism p(g) is encoded in the matrix

p(g)ir p(g)12 P(9)1n
p(9)21 p(g:)zz P(9)2n 12)
p(Pnt P(9)n2 P(9)nn

Indeed, when a fixed basis has been chosen in a context, we will often not
make a distinction between p(g) and its matrix form.

By a matriz element we mean a function on G which arises from a repre-
sentation p as

G—F:g— o(plg)v),
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where v is a vector in the representation space of p, and ¢ is in the dual
space.

As an example, consider the group S, of permutations of [n] = {1,...,n}.
This group has a natural action on the vector space F" by permutation of
coordinates:

Sp x F" — F"

def (1.3)

(0, (V1 ey v3)) = R(0)(V1, ooy 0n) = (Vom1(1), cons Ugm1(n))-
Another way to understand this is by specifying
R(0)e; = eq(j) for all j € [n].

Here e; is the j-th vector in the standard basis of F"; it has 1 in the j-th
entry and 0 in all other entries. Thus, for example, for S, acting on F*, the
matrix for R((134)) relative to the standard basis of F*, is

0
R((130)) = |
0

O O = O
_— o O O
o O O

For the transposition (7,5 + 1), we have

R((ﬂ?] + 1))€j = €j+1, R((]a] + 1)>6j+1 = €j
R((j,j+1))er = ex if k & {j,7 +1}.

Thus, at least when F is R, we can think of R((j,7 + 1)) geometrically
as reflection across the hyperplane perpendicular to the vector e; — €.
Writing a general permutation o € S,, as a product of transpositions, R(o)
is a product of such reflections. The determinant

(o) = det R(o) (1.4)

is —1 on transpositions, and hence is just the signature of o, being 41 if ¢ is
a product of an even number of transpositions, and —1 otherwise. The signa-
ture map e is itself a representation of .S,,, a one dimensional representation,
when each €(0) is viewed as the linear map F — F : ¢ — €(0)c.

Exercise 1.3 develops the idea contained in the representation R a step
further to explore a way to construct more representations of S,,.



14 Ambar N. Sengupta

The term ‘representation’ will, for us, always mean representation on a
vector space. However, we will occasionally notice that a particular complex
representation p on a vector space V' has a striking additional feature: there
is a basis in V relative to which all the matrices p(g) have integer entries,
or that all entries lie inside some other subring of C. This is a glimpse of
another territory: representations on modules over rings. We will not explore
this theory, but will cast an occasional glance at it.

1.2 Representations and their Morphisms
If p; and ps are representations of G on vector spaces Vi and V5 over F, and
T:FE — B
is a linear map such that
p2(9) o T =T o pi(g) forallge G (1.5)

then we consider T' to be a morphism from the representation p; to the
representation py. For instance, the identity map [ : V' — V; is a morphism
from p; to itself. The condition (1.5) is also described by saying that T is an
intertwining operator between the represents p; and ps.

The composition of two morphisms is clearly also a morphism, and the in-
verse of an invertible morphism is again a morphism. An invertible morphism
of representations is called an isomorphism or equivalence of representations.
Thus, representations p; ans ps are equivalent if there is an intertwining
operator from one to the other which is invertible.

1.3 Sums, Products, and Tensor Products

If p; and p, are representations of G on V; and V5, respectively, then we have
the direct sum

P1 D p2

representation on Vi @ Va:

(p1 @ p2)(9) = (p1(9), p2(9)) € Endr(V1 & V5). (1.6)
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If bases are chosen in F; and FEj then the matrix for (p; @ p2)(g) is block
diagonal, with the blocks p1(g) and ps(g) on the diagonal:

9 [pl(()g) pz?g)] '

This notion clearly generalizes to a direct sum (or product) of any family
of representations.

We also have the tensor product p; ® py of the representations, acting on
Vi ® Vs, specified through

(p1 @ p2)(g) = p1(g) @ p2(9)- (1.7)

1.4 Change of Field

There is a more subtle operation on vector spaces, which involves changing
the ground field over which the vector spaces are defined. Let V' be a vector
space over a field IF, and let F; D FF be a field which contains [F as a subfield.
Then V specifies an F;-vector-space

Ve, =F, @p V. (1.8)

Here we have, on the surface, a tensor product of two F-vector-spaces: F1,
treated as a vector space over the subfield F, and V itself. But Vg, acquires
the structure of a vector space over F; by the multiplication rule

cla®v) = (ca) ® v,

for all ¢,a € F; and v € V. More concretely, if V' # 0 has a basis B then Vf,
can be taken to be the the Fi-vector-space with the same set B as basis but
now using coefficients from the field ;.

Now suppose p is a representation of a group G on a vector space V' over
F. Then a representation py, on Vg, arises as follows:

pry(9)(a ®v) = a @ p(g)v (1.9)

foralla e F;,veV,and g € G.
To get a concrete feel for pp, let us look at the matrix form. Choose a
basis by, ..., b, for V', assumed finite-dimensional and non-zero. Then, almost
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by definition, this is also a basis for Vf,, only with scalars to be drawn from
[F,. Thus,

the matriz for pr,(g) is exactly the same as the matriz for p(z)

for every g € GG. The difference is only that we should think of this matrix
now as a matrix over [F; whose entries happen to lie in the subfield F.

This raises a fundamental question: given a representation p, is it possible
to find a basis of the vector space such that all entries of all the matrices
p(g) lie in some proper subfield of the field we started with? A deep result of
Brauer [7] shows that all irreducible complex representations of a finite group
can be realized over a field obtained by adjoining suitable roots of unity to
the field Q of rationals. Thus, in effect, under very simple requirements,
the abstract group essentially specifies a certain number field and geometries
over this field in which it is represented as symmetries.

1.5 Invariant Subspaces and Quotients
A subspace W C V is said to be invariant under p if
p(g)W C W for all g € G.

In this case,
pIW g = p(g)|W € Endp(W)

is a representation of G on W. It is a subrepresentation of p. Put another
way, the inclusion map

W-=V:iw—w

is a morphism from p|W to p.
If W is invariant, then there is induced, in the natural way, a representa-
tion on the quotient space

V/W
given by
pvyw(g) :a+W = p(x)a+ W, foralla € V (1.10)
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1.6 Dual Representations

For a vector space V over a field FF, let V' be the dual space of all linear

mappings of V' into F:
V' = Homg(V, F). (1.11)

If p is a representation of a group GG on V, there arises a representation p’ on
V' as follows:
0(9)f = foplg) ™! forall g € G, and f € V. (1.12)
The adjoint of A € Endr(V) is the element A" € Endgp(V”) given by
AT f = fo A. (1.13)

Thus,
Pg)=plg )"
We will see another formulation of this shortly in (1.15) below.
When working with a vector space and its dual, there is a visually ap-

pealing notation due to Dirac. A vector in V is denoted

[0)

and is called a ‘ket’, while an element of the dual V' is denoted

(/]

and called a ‘bra.” The evaluation of the bra on the ket is then, conveniently,
the ‘bra-ket’

(flv) € F.

Suppose now that V' is finite-dimensional, with a basis |b1), ..., |b,). Cor-
responding to this there is a dual basis of V' made up of the elements
(b1], ..., {(by| € V' which are specified by

o [1 ifj=k;
bilby) = 6, ’ 1.14
<]| k> ik {O ifj%k‘. ( )

If T:V — V is a linear map its matrix relative to the basis |b1), ..., |b,) has
entries

Ty, = (b |T'bw)
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Note that, by convention and definition, T} is the j-th component of the
vector obtained by applying 7" to the k-th basis vector.

There is one small spoiler: the notation (b;| wrongly suggests that it is
determined solely by the vector |b;), when in fact one needs the full basis
|b1), ..., |bn) to give meaning to it.

Let us work out the matrix form of the dual representation p’ using dual
bases. If |by), ..., |b,) is a basis of the representation space of p then

P (@i = (0'(9)bklb;)
= (bk|p(g)~"|b))
= (97" ks

Thus, the matrix for p/(g) is the transpose of the matrix for p(g=1):
0(g9) = plg~H™, for all g € G, (1.15)

as matrices.
Here is an illustration of the interplay between a vector space V' and its
dual V'. The annihilator W° in V' of a subspace W of V is

WO ={{¢| €V’ : (¢p|u) =0 for all |u) € W}. (1.16)

This is clearly a subspace in V'. Running in the opposite direction, for any
subspace N of V/ we have its annihilator in V:

No=A{lu) eV : (¢lu) =0 for all (¢| € N}. (1.17)

The association W + W9, from subspaces of V' to subspaces of V', reverses
inclusion and has some other nice features, which we package into:

Lemma 1.6.1 Let V' be a vector space over some field, W and Z subspaces
of V., and N a subspace of V'. Then

(WO =W, (1.18)

and WO C Z° if and only if Z C W. If A € Endg(V) maps W into itself
then A™ maps W° into itself, and if A™ maps N into itself then A(Ny) C Np.
If o : W — V is the inclusion map, and

rV =W : o o
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the restriction map, then r induces an isomorphism of vector spaces
re VWO W p+ WO (). (1.19)
When V' is finite dimensional,
dim Z° = dim V — dim Z

. . . (1.20)
dim Ng = dimV — dim V.

Proof. Clearly W C (W?),. Now consider a vector v € V outside the
subspace W. Choose a basis of W and extend it out to a basis of V' containing
v, and set ¢(y) equal to 0 on all vectors y in this basis except for y = v on
which take ¢(v) = 1; then ¢ € WY is not 0 on v, and so v is not in (W?).
Hence, (W%)y C W. This proves (1.18).

The mappings M — M and L — Lg are clearly inclusion reversing. If
WO c Z° then (W% 2 (2%, and so Z C W.

If AW) c W and ¢ € W° then A™) = o A is 0 on W, and so
AW ¢ WO, Similarly, if A"(N) C N and v € Ny then for any ¢ € N we
have

P(Av) = (A"Y)(v) =0,
which means Av € N,.

Now, turning to the restriction map r, first observe that kerr = WP,
Next, if ©» € W’ then choose a basis of W and extend it to a basis of V', and
define ¢y € V' by requiring it to agree with v on the basis vectors in W and
setting it to 0 on all basis vectors outside W; then r(¢;) = ¢. Thus, r is a
surjection onto W’ and so induces the isomorphism (1.19).

We will prove the dimension result (1.20) using bases, just to illustrate
working with dual bases. Choose a basis |by), ..., |bm) of Z and extend to
a basis |b1), ..., |b,) of the full space V' (so 0 < m < n). Let {(b;|} be the
dual basis in V’. Then (f| € V' lies in Z° if and only if (f|b;) = 0 for
i € {1,...,m}, which, in turn, is equivalent to (f| lying in the span of (b;| for
i € {m+1,...n}. Thus, a basis of Z° is formed by the kets (b1 11|, ---, (bnl,
and this proves (1.20). The result (1.20) now follows by viewing the finite

dimensional vector space V as the dual of V.

1.7 Irreducible Representations

A representation p on V' is irreducible if V' # 0 and the only invariant sub-
spaces of V are 0 and V. The representation p is reducible if V' is 0 or has a
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proper, nonzero invariant subspace.

Thus, an irreducible representation is a kind of ‘atom’ (or, even better,
‘elementary particle’) among representations; there is no smaller representa-
tion than an irreducible one, aside from the zero representation.

A starter example of an irreducible representation of the symmetric group
S, can be extracted from the representation R of S, as a reflection group
in an n-dimensional space we looked at back in (1.3). For any ¢ € S,,, the
linear map R(c) : F" — F" is specified by

R(o)ej = eq(j) for all j € {1,...,n},

where ey, ..., e, is the standard basis of F”. In terms of coordinates, R is
specified by
S, x F* = F": (0,v) = R(oc)v =voo !, (1.21)

where v € F™ is to be thought of as a map v : {1,...,n} = F : j +— v;. The
subspaces
Ey = {(v1, .., vn) €EF" 01+ 40, = 0} (1.22)

and
D ={(v,v,...,v) : veTF} (1.23)

are clearly invariant subspaces. Thus, R itself is reducible (if n > 2). If nly #
0 in F then the subspaces D and Ej have in common only the zero vector,
and provide a decomposition of F” into a direct sum of proper, invariant
subspaces. In fact, R restricts to irreducible representations on the subspaces
D and Ejy (work this out in Exercise 1.2.)

As we will see later, for a finite group G, for which |G| # 0 in the field F,
every representation is a direct sum of irreducible representations.

A one dimensional representation is automatically irreducible. Our def-
initions allow the trivial representation on the trivial space V = {0} as a
representation as well, and we have to try to be careful everywhere to ex-
clude, or include, this silly case as necessary.

Even with the little technology at hand, we can prove something inter-
esting:

Theorem 1.7.1 Let V' be a finite dimensional representation of a group G,
and equip V' with the dual representation. Then V is irreducible if and only
if V' is irreducible.
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Proof. This is an application of Lemma 1.6.1. If W is an invariant suspace of
V then the annihilator W is an invariant subspace of V. and if W is a proper,
nonzero invariant subspace of V' then WY is also a proper invariant subspace
of V'. In the other direction, for any subspace N C V', the annihilator Ny is
invariant as a subspace of V if N is invariant in V’. Comparing dimensions,
Ny is a proper, nonzero, invariant subspace of V' if N is a proper, nonzero,
invariant subspace of V.

The following fundamental result, and variations on it, all based on
Schur’s original discovery [65, §2.1], is called Schur’s Lemma. We will re-
visit and reformulate it later.

Theorem 1.7.2 A morphism between irreducible representations is either
an isomorphism or 0. In more detail, if py and py are representations of a
group G on vector spaces Vi and Vs, over some field ¥, and if T : Vi — V5 is
a linear map for which

Toig) = po(9)T  for all g € G, (1.24)

then T is either invertible or is 0.

Schur’s Lemma is the Incredible Hulk of representation theory. Despite

its innocent face-in-the-crowd appearance, it rises up with enormous power
to overcome countless challenges.
Proof. The idea is utterly simple: look at kerT. From the intertwining
property (1.24) it follows readily that ker 7" is invariant under the action of
the group. So kerT is either {0} or Vi. So, if T" # 0 then T is injective.
Next, applying the same reasoning to Im 7T C V5, we see that if 7' # 0 then
T is surjective. Thus, either T"= 0 or T" is an isomorphism.

For an illustration of the power of Schur’s Lemma (in a slightly stronger
form) look ahead to Theorem 3.3.2.

1.8 Character of a Representation

The character x, of a representation of a group G on a finite dimensional
vector space V' is the function on G given by

Xo(9) Ty p(9) for all g € G. (1.25)
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The simplest representation, where p(g) is the identity [ on V for all g € G,
the character is the constant function with value dimg V. (For the trivial
case of V' = {0}, we can set the character to be 0.)

It may seem odd to single out the trace, and not, say, the determinant
or some other such natural function of p(g). But observe that if we know
the trace of p(g), with g running over all the elements of G, then we know
the traces of p(g?), p(¢®), etc., which means that we know the traces of all
powers of p(g), for every g € G. This is clearly a lot of information about a
matrix. Indeed, as we shall see later, p(g) can, under some mild conditions, be
written as a diagonal matrix with respect to some basis (generally dependent
on g). Then knowing traces of all powers of p(g) would mean that we know
this diagonal matrix completely, up to permutation of the basis vectors (for
a computational procedure for this, work out Exercise 1.20 after you have
read section 1.9 below). Thus, knowledge of the character of p pretty much
specifies each p(g) up to basis change. In other words, under some simple
assumptions, if p; and p, are finite dimensional non-zero representations with
the same character then for each g, there are bases in which the matrix of
p1(g) is the same as the matrix of py(g). This leaves open the possibility,
however, that the special choice of bases might depend on g. Remarkably, this
is not so! As we see much later, in Theorem 7.1.2, the character determines
the representation up to equivalence. For now we will be satisfied with a
simple observation:

Proposition 1.8.1 If p; and py are equivalent representations of a group G
on finite dimensional vector spaces then

Xor(9) = Xpu(g)  forallgeG. (1.26)

Proof. Let vy, ...,v4 be a basis for the representation space V for p; (if this
space is {0} then the result is obviously and trivially true, and so we discard
this case). Then in the representation space W for po, the vectors w; = T'v;
form a basis, where T is any isomorphism V' — W. We take for T the
isomorphism which intertwines p; and ps:

pa(g) = Tpi(g) T for all g € G.

Then, for any g € G, the matrix for py(g) relative to the basis wy, ..., wy is
the same as the matrix of p;(g) relative to the basis vy,...,v4. Hence, the
trace of ps(g) equals the trace of pi(g).

The following observations are readily checked by using bases:
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Proposition 1.8.2 If p; and py are representations of a group on finite
dimensional vector spaces then

Xp1©p2 = Xp1 + Xp2
Xp1®p2 = Xp1 Xp2

(1.27)

Let us work out the character of the representation R of the permutation
group S, on F", and on the subspaces D and Ej given in (1.22) and (1.23),
discussed earlier in section 1.7. Recall that for ¢ € S,,, and any standard-

basis vector e; of F",
def
R(a)e; = eq(5)
Hence,
Xr(0) = number of fixed points of o. (1.28)

Now consider the restriction Rp of this action to the ‘diagonal’ subspace
D =T(e; +---+e,). Clearly, Rp(o) is the identity map for every o € S,
and so the character of Rp is given by

xp(o) =1 forall c € S,,.
Then the character x, of the representation Ry = R(-)|Ey is given by:

Xo(0) = xr(0) = xp(o) = {j:0(j) =} - 1. (1.29)

Characters can get confusing when working with representations over
different fields at the same time. Fortunately there is no confusion in the
simplest natural situation:

Proposition 1.8.3 If p is a representation of a finite group G on a finite
dimensional vector space V over a field F, and pg, is the corresponding rep-
resentation on Vy,, where Fy is a field containing F as a subfield, then

Xpr, = Xp- (130)

Proof. As seen in section 1.4, pp, has exactly the same matrix as p, relative
to suitable bases. Hence the characters are the same.

If p; is a one dimensional representation of a group G then, for each
g € G, the operator p;(g) is simply multiplication by a scalar, which we
will always denote again by p1(g). Then the character of p; is p; itself! In
the converse direction, if x is a homomorphism of G into the multiplicative
group of invertible elements in the field then y provides a one dimensional
representation.
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1.9 Unitarity

Let G be a finite group and p a representation of G on a finite dimensional
vector space V over a field F. Remarkably, under some mild conditions on
the field IF, every element p(g) can be expressed as a diagonal matrix relative
to some basis (depending on ¢) in V', with the diagonal entries being roots
of unity in F:

G(g) 0 0 0
0 (f(g) O 0
p(g) = )
0 0 0 Ca(9)

where each (;(g), when raised to the |G|-th power, gives 1.

An endomorphism in a vector space which has such a matrix relative to
some basis is said to be unitary. (This terminology is generally used when
the field is C.) A representation p is said to be unitary if p(g) is unitary for
all g in the group. Thus, what we shall show is that, under some minimal
conditions on the field, all representations of finite groups are unitary.

An m-th root of unity in a field F is an element ( € F for which ("™ = 1.

Proposition 1.9.1 Suppose F is a field which contains m distinct m-th roots
of unity, for some m € {1,2,3,..}. If V # 0 is a vector space over F and
SV — Vs a linear map for which S™ = I, then there is a basis of V
relative to which the matrixz for S is diagonal and each diagonal entry is an
m-th root of unity.

Proof. Let 7y, ...,m, be the distinct elements of F for which the polynomial
X™ — 1 factors as

X" =1=(X—=m)..(X — ).
Then
(S —mlI)..(S—n,I)=5"—-1=0.

A result from linear algebra (Theorem 12.8.1) assures us that V' has a basis
with respect to which the matrix for S is diagonal, with entries drawn from

the .

As consequence we have:
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Proposition 1.9.2 Suppose G is a group in which g™ = e for all g € G, for
some positive integer m; for instance, G is finite of order m. Let T be a field
which contains m distinct m-th roots of unity. Then, for any representation
p of G on a vector space V, # 0 over F, for each g € G there is a basis of V,
with respect to which the matriz of p(g) is diagonal and the diagonal entries
are each m-th roots of unity in IF.

When the representation space is finite dimensional this gives us an un-
expected and intriguing piece of information about characters:

Theorem 1.9.1 Suppose G is a group in which g™ = e for all g € G, for
some positive integer m; for instance, G may be finite of order m. Let F be
a field which contains m distinct m-th roots of unity. Then the character x
of any representation of G on a finite dimensional vector space over F is a
sum of m-th roots of unity.

A form of this result was proved by Maschke [56], and raised the question
as to when there is a basis of the vector space relative to which all p(g) have
entries in some number field generated by a root of unity.

There is a way to bootstrap our way up to a stronger form of the preceding
result. Suppose that it is not the field I, but rather an extension, a larger
field F; D F which contains m distinct m-th roots of unity; for instance,
might be the reals R and F; is the field C. The representation space V' can
be dressed up to V; = F; ®r V, which is a vector space over [y, and then a
linear map 7" : V' — V produces an F-linear map

Tp, Vi—=V1:1®@v— 1 Tv. (1.31)

If B is a basis of V then {1 ® w: w € B} is a basis of 1}, and the matrix of
T relative to this basis is the same as the matrix of 71" relative to B, and so

TrTy =TrT. (1.32)

(We have seen this before in (1.30).) Consequently, if in Theorem 1.9.1 we
require simply that there be an extension field of F in which there are m
distinct m-th roots of unity and p is a finite dimensional representation over
[F then the values of the character x, are again sums of m-th roots of unity
(which, themselves, need not lie in F).
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There is another aspect of unitarity which is very useful. Suppose the
field F has an automorphism, call it conjugation,

F—-F:z2—7%

which takes each root of unity to its inverse; let us call self-conjugate elements
real. For instance, if F is a subfield of C then the usual complex conjugation
provides such an automorphism. Then, under the hypotheses of Proposition
1.9.2, for each g € GG and representation p of GG on a finite-dimensional vector
space V, # 0, there is a basis of V, relative to which the matrix of p(g) is
diagonal with entries along the diagonal being roots of unity; hence, p(g~1),
relative to the same basis, has diagonal matrix, with the diagonal entries
being the conjugates of those for p(g). Hence

Xo(97") = x0(9). (1.33)

In particular, if an element of G is conjugate to its inverse, then the value of
any character on such an element is real. In the symmetric group 5, every
element is conjugate to its own inverse, and so:

the characters of all complex representations of S,, are real-valued.

This is an amazing, specific result about a familiar concrete group which falls
out immediately from some of the simplest general observations. Later, with
greater effort, it will become clear that, in fact, the characters of S, have
integer values!

1.10 Unitarity 2.0

Suppose now that our field F is a subfield of C, the field of complex numbers,
and G is a finite group.
Consider any hermitian inner product (-,-) on V, a vector space over F.

This is a map
VXV =F:(vw)— (v,w)

such that

(1.34)
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for all v, w,vy,v9, w1, wy € V and a € F. The norm |v| of any v € V is

defined by
[ol = v/ {v,v). (1.35)

Note that in (1.34) we used the complex conjugation z — Z. If F is the field
R of real numbers then the conjugation operation is just the identity map.

Now we modify the inner product so that it sees all p(g) equally; this is
done by averaging;:

(v, w)o = %l S (o(g)v, plg)w) (1.36)

geG

for all v,w € V. Then it is clear that

(p(h)v, p(h)w)o = (v, w)o,

for all h € G and all v,w € V. You can quickly check through all the
properties needed to certify (-,-)o as an inner product on V.
Thus we have proved:

Proposition 1.10.1 Let G be a finite group and p a representation of G' on
a vector space V' over a subfield F of C. Then there is a hermitian inner
product (-, -)o on V' such that for every g € G the operator p(g) is unitary in
the sense that

(p(g)v, p(g)w)o = (v, w)g for allv,w eV and g € G.

In matrix algebra one knows that a unitary matrix can be diagonalized
by choosing a suitable orthonormal basis in the space. Then our result here
gives an alternative way to understand Proposition 1.9.2.

1.11 Rival Reads

There are many books on representation theory, even for finite groups, rang-
ing from elementary introductions to extensive expositions. An encyclopedic,
yet readable, volume is the work of Curtis and Reiner [16]. The book of Burn-
side [9] (2nd edition), from the early years of the theory, is still worth explor-
ing, as is the book of Littlewood [55]. Among modern books, Weintraub [74]
provides an efficient and extensive development of the theory, especially the
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arithmetic aspects of the theory and the behavior of representations under
change of the ground field. The book of Serre [69] is a classic. With a very
different flavor, Simon [70] is a fast paced exposition, and crosses the bridge
from finite to compact groups. For the representation theory of compact
groups, for which there is a much larger library of literature, we recommend
Hall [40]. Another introduction which bridges finite and compact groups,
and explores a bit of the non-compact group SLy(R) as well, is the slim vol-
ume of Thomas [71]. Returning to finite groups, Alperin and Bell [1] and
James and Liebeck [48] offer introductions with a view to understanding the
structure of finite groups. Hill [43] is an elegant and readable introduction
which pauses to examine many enlightening examples. Lang’s Algebra [53]
includes a rapid but readable account of finite group representation theory,
covering the basics and some deeper results.

1.12 Afterthoughts: Lattices

Logic and geometry interweave in an elegant, and abstract, lattice frame-
work developed by von Neumann and Birkhoff [4] for classical and quantum
physics. There is an extensive exposition of this theory, and much more, in
Varadarajan [72].

A symmetry transforms one entity to another which preserves certain
features of interest. The minimal setting for such a transformation is simply
as a mapping of a set into itself. An action of a group GG on a set S is a
mapping

GxP—P:(g,p)= Ly(p) =9 p,

for which e-p = p for all p € P, where e is the identity in G, and g- (h-p) =
(gh) - p for all g,h € G, and p € P. Taking h to be g~! shows that each
mapping Ly : p — g - p is a bijection of S into itself. As a physical example,
think of S as the set of states of some physical system; for instance, S could
be the phase space of a classical dynamical system. If instead of a single
point p of S we consider a subset A C S, the action of g € G carries A
into the subset Ly(A). Thus on the set P(S), of all subsets of S, is induced
the action given by A — L,(A). Unlike S, the set P(S) does have some
structure: it has a partial ordering given by inclusion A C B, and there is a
minimum element 0 = () and a maximum element 1 = S. This partial order
relation makes P(S) a lattice in the sense that any A, B € P(S) have both
an infimum AA B = AN B and a supremum AV B = AU B. This lattice
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structure has several additional nice features; for one thing, it is distributive:

(PUM)NB=(PNB)U(MnNB) (137)
PUMNB)=(PUM)n(PUB), '
for all P, M, B € L(H). Moreover, the complementation A — A¢ specified
by

ANA°=( and AUA°=S, (1.38)

is an order-reversing bijection of P(S) into itself, and is an involution, in the
sense that (A°)¢ = A for all A € P(S). The action of G on P(S) clearly
preserves the partial order relation and hence the lattice structure, given by
infimum and supremum, as well as complements. Conversely, at least for a
finite set .S, if a group G acts on P(S), preserving its partial ordering, then
this action arises from an action of G on the underlying set .S.

For the framework of quantum theory, Birkhoff and von Neumann [4]
proposed that the classical Boolean logic, an example of which is the lattice
structure of P(S), is replaced by a different lattice, encoding the ‘logic of
quantum mechanics’. This is a lattice IL(H) of subspaces of a vector space H
over some field F, with additional properties of the lattice being reflected in
the nature of F and an inner product on H. The set of subspaces is ordered
by inclusion, the infimum is again the intersection, but the supremum of
subspaces A, B € L(H) is the minimal subspace in L(H) containing the sum
A+ B. Unlike the Boolean lattice P(S), the distributive laws do not hold; a
weaker form, the modular law does hold:

(P+M)NB=(PNB)+M if MCB. (1.39)

(We will meet this again later in (5.29)).

The construction of the field F and the vector space H is part of classical
projective geometry. The inner product arises from logical negation which
is expressed as a complementation in L(H): Birkhoff and von Neumann [4,
Appendix] show how a complementation A — A~ in the lattice IL(H) induces,
when dimH > 3, an inner product on H for which A+ is the orthogonal
complement of A. In the standard form of quantum theory [ is the field C
of complex numbers, and IL(H) is the lattice of closed subspaces of a Hilbert
space H. More broadly, one could consider the scalars to be drawn from
a division ring, such as the quaternions. Consider now a set A of closed
subspaces of H such that any two distinct elements of A are orthogonal to
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each other, and the closed sum of elements of A is all of H. Then the set
L(A) of all subspaces which are direct sums of elements of A is a Boolean
algebra, corresponding to a classical physical system, unlike the full lattice
L(H) which describes a quantum system. The simplest instance of this is
seen for H = C?, with two complementary atoms, which are orthogonal
one dimensional subspaces, which is the model Hilbert space of a ‘single
qubit’ quantum system. Aside from the lattice framework, an analytically
more useful structure is the algebra of operators obtained as suitable (strong)
limits of complex linear combinations of projection operators onto the closed
subspaces of H. This is a quantum form of the commutative algebra formed
on using only the subspaces in the Boolean algebra LL(.A).

A symmetry of the physical system in this framework is an automorphism
of the complemented lattice L(H) and, combining fundamental theorems
from projective geometry and a result of Wigner, such a symmetry is realized
by a linear or conjugate-linear unitary mapping H — H (see Varadarajan [72]
for details and more). If p is a unitary representation of a finite group G on a
finite dimensional inner product vector space H, then p, : A — p(g)A, for A €
L(H), is an automorphism of the complemented lattice L(H), and thus such
a representation p of G provides a group of symmetries of a quantum system.
The requirement that p be a representation may be weakened, requiring only
that it be a projective representation, where p(g)p(h) must only be a multiple
of p(gh), for it to produce a group of symmetries of IL(H).

Exercises

1. Let G be a finite group, P a nonempty set on which G acts; this means
that there is a map

GxP—P:(g9,p) = g-p,

for which e -p = p for all p € P, where e is the identity in G, and
g-(h-p)=(gh)-pforall gh € G, and p € P. The set P, along with
the action of G, is called a G-set. Now suppose V' is a vector space
over a field F, with basis the set P. Define, for each g € G, the map
p(g) : V — V to be the linear map induced by permutation of the basis
elements by the action of g:

p(g):V%V:ZappHZapg-p.

peEP peEP
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Show that p is a representation of . Interpret the character value
X,(g9). Next, if P; and P, are G-sets with corresponding representations
p1 and po, interpret the representation pi5 corresponding to the natural
action of G on the product P; X P, in terms of the tensor product p; ®p,.

2. Let n > 2 be a positive integer, I a field in which nlg # 0, and consider
the representation R of S, on F" given by

R(0)(v1, ..y Un) = (Vo-1(1)5 s Vo-1(n))
for all (vy,...,v,) € F" and 0 € S,,.

Let
D ={(v,...v) ;v € F} CF"
and
Eo={(vi,....,vn) €EF": vy + -+ v, =0}
Show that:

(i) no nonzero vector in Ejy is in D (since n > 2, Ey does contain a
nonzero vector!);

(ii) each vector e; — e; lies in the span of {R(c)w : 0 € S, };

(iii) the restriction Ry of R to the subspace Ej is an irreducible repre-
sentation of S,,.

3. Let Py be the set of all partitions of {1, ...,n} into k disjoint nonempty
subsets, where k € {1,...,n}. If c € S,, and p € Py then let o -p =
{o(B) : B € p}. In this way S,, acts on P,. Now let V} be the vector
space, over a field F, with basis P, and let Ry : S, — Endg(V}) be
the representation given by the method of Exercise 1.1. What is the
relationship of this to the representation R in Exercise 1.27

4. Determine all one-dimensional representations of S, over any field.
5. Prove Proposition 1.8.2.

6. Letn € {3,4,...}, and nlp # 0 in a field F. Denote by Ry the restriction
of the representation of S,, on F" to the subspace Fy = {x € F" :
1+ -+ x, = 0}. Let € be the one-dimensional representation of .S,
on [ given by the signature, where o € S, acts by multiplication by
the signature €(0) € {41, —1}. Show that R; = Ry®¢ is an irreducible
representation of S,,. Show that R; is not equivalent to Rj.
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Consider S3, which is generated by the cyclic permutation ¢ = (123)
and the transposition r = (12), subject to the relations

Let IF be a field. The group Ss acts on F? by permutation of coordinates,
and preserves the subspace Ey = {(x1,x9,23) : x1 + 22 + x3 = 0}; the
restriction of the action to Ej is a 2-dimensional representation Ry of
S3. Work out the matrices for Ry(-) relative to the basis u; = (1,0, —1)
and us = (0,1, —1) of Ey. Then work out the values of the character
Xo on all the six elements of S3 and then work out

Z Xo(9)xo(o™").

o€ES3

Consider Ay, the group of even permutations on {1,2,3,4}, acting
through permutation of coordinates of F4, where F is a field. This action
restricts to a representation Ry on the subspace Ey = {(x1, x2, 23, x4) €
F: 21+ a0+ 25 +24 = 0};. Work out the values of the character of
Ry on all elements of Ay.

Give an example of a representation p of a finite group G on a finite
dimensional vector space V over a field of characteristic 0, such that
there is an element g € G for which p(g) is not diagonal in any basis
of V.

Explore the validity of the statement of Theorem 1.7.1 when V is infi-
nite dimensional.

Let V and W be finite dimensional representations of a group G, over
some common field. Show that: (i) V” ~ V and (ii) V ~ W if and
only if V' ~ W' where ~ denotes equivalence of representations.

Suppose p is an irreducible representation of a finite group G on a
vector space V over a field F. If F; D [F is an extension field of F, is
the representation pp, on Vg, irreducible?

If H is a normal subgroup of a finite group GG, and p a representation
of the group G/H, then let pg be the representation of G specified by

pc(x) = p(zH) for all z € G.
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14.

15.

16.

17.

Show that pg is irreducible if and only if p is irreducible. Work out the
character of pg in terms of the character of p.

Let p be a representation of a group G on a finite dimensional vector
space V' £ 0 over some field F.

(i) Show that there is a subspace of V' on which p restricts to an
irreducible representation.

(ii) Show that there is a chain of subspaces V; C Vo, C --- C V,, =V,
such that (a) each Vj is invariant under the action of p(G), (b)
the representation p|V; is irreducible, and (c¢) the representation
obtained from p on the quotient V;/V,_; is irreducible, for each

Jje{2,...,m}.

Let p be a representation of a group GG on a vector space V over a field
FF, and suppose by, ..., b, is a basis of V. There is then a representation
7 of G on EndgV given by:

7(9)A=p(g)oA  forall g€ Gand A € EndrV.

Let
S:EndgV - Va&---aV:A— (Ab,..., Ab,)

Show that S is an equivalence from 7 to p @ --- @ p (n fold sum of p
with itself).

Let p; and py be representations of a group G on vector spaces Vj
and V5, respectively, over a common field F. For g € G, let p12(g) :
Hom(V3,V3) — Hom(Vi, V,) be given by

p12(9)T = p2(9)Tpr(g) "

Show that pi5 is a representation of G. Taking V; and V5 to be finite
dimensional, show that this representation is equivalent to the tensor
product representation pj ® py on V{ @ V5.

Let p be a representation of a group G on a finite-dimensional vector
space V over a field F. There is then a representation o of G x G on
EndpV given by:

o(g,h)A = p(g)o Ao p(h)™! for all g € G and A € EndgV.
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Let
B:V'®@V — EndeV — (f| ® |[v) — [v){f],

where |[v)(f| is the map V — V carrying any vector |w) € V to
(flw)(v|]. Show that B is an equivalence from o to the representation
0 of G x G on V' ®V specified by

0(g, h){fl @ |v) = p'(R){f| ® p(g)Iv),
where p’ is the dual representation on V.

Let p be a representation of a group G on a vector space V' over a field F.
Show that the subspace V®? consisting of symmetric tensors in V @ V
is invariant under the tensor product representation p® p. Assume that
G is finite, containing m elements, and the field [F has characteristic # 2
and contains m distinct m-th roots of unity. Work out the character of
the representation p, which is given by the restriction of p ® p to V®2,
(Hint: Use unitarity.)

Let p be an irreducible complex representation of a finite group G on
a space of dimension d,, and y, its character. If g is an element of G
for which |x,(g)| = d,, show that p(g) is of the form ¢/ for some root
of unity ec.

Let x be the character of a representation p of a finite group G on a
finite dimensional vector space V' # 0. Dixon [24] describes a conve-
nient way to recover the diagonalized form of p(g) from the values of x
on the powers of g; in fact, he explains how to recover the diagonalized
form of p(g), and hence also the value of x(g), given only approximate
values of the character. Here is a pathway through these ideas:

(i) Suppose U is an n x n complex diagonal matrix such that U¢ = I,
where d is a positive integer. Let ( be any d-th roots of unity.
Show that

1 d—1
y > T(Ur)
k=0

= number of times ( appears on the diagonal of U.

(1.40)

(Hint: If w? = 1, where d is a positive integer, then 1 + w + w? +
oot witis0of w# 1, and is d if w=1.)
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(i)
(i)

If all the values of the character x are known, use (i) to explain how
the diagonalized form of p(g) can be computed for every g € G.
Now consider g € G, and let d be a positive integer for which
g? = e. Suppose we know the values of y on the powers of x within
an error margin < 1/2. In other words, suppose we have complex
numbers 21, ..., zg with |z; — x(¢’)] < 1/2 for all j € {1,...,d}.
Show that, for any d-th root of unity (, the integer closest to
A" S0, 2 is the multiplicity of ¢ in the diagonalized form
of p(g). Thus, the values zi, ...,z can be used to compute the
diagonalized form of p(g) and hence also the exact value of y on
the powers of x. Modify to allow for approximate values of the
powers of ( as well.
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A Reckoning

He sits in a seamless room
staring

into the depths

of a wall that is not a wall,
opaque,

unfathomable.

Though deep understanding
lies

just beyond that wall,

the vision he desires

can be seen

only from within the room.

Sometimes a sorrow transports him
through the door that is not a door,
down stairs that are not stairs

to the world beyond the place of seeking:

down fifty steps
hand carved into the mountains stony side
to a goat path that leads to switchbacks,
becoming a trail that becomes a road;
and thus he wanders to the town beyond.

Though barely dusk,
the night lights brighten
guiding him
to the well known place of respite.

They were boisterous within,

but they respect him as the one who seeks,
and so they sit subdued,

waiting,

hoping for the revelation that never comes.

Amidst the quiet clinking of glasses
and the softly whispered reverence,
a woman approaches,
escorts him to their accustomed place.

37

They speak with words that are not words
about ideas that are not ideas
enshrouded by a silence that is not silence.

His presence stifles their gaiety,

her gaiety,

and so he soon grows restless

and desires to return to his hopeless toil.

The hand upon his cheek,

the tear glistening in her eye,

the whispered words husband mine,
will linger with him

until he once again attains

his room that is not a room.

As he leaves,
before the door can slam behind him,
he hears their voices
rise
once again
in blessed celebration,
hers distinctly above the others.

But he follows his trail
and his switchbacks
and his goat path
and the fifty steps
to his seamless world

prepared once again

to let his god

who is not a god

take potshots at his soul.

Charlie Egedy
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Chapter 2

Basic Examples

We will work our way through examples in this chapter, looking at repre-
sentations and characters of some familiar finite groups. For ease of reading,
and to maintain sanity, we will work with the field C of complex numbers.
Of course, any algebraically closed field of characteristic zero could be sub-
stituted for C.

Recall that the character x, of a finite dimensional representation p of a
group G is the function on the group specified by

Xo(9) = Trp(g). (2.1)

Clearly, x(g) remains unchanged if g is replaced by a conjugate hgh~!. Thus,
characters are constant on conjugacy classes.

Let Cq be the set of all conjugacy classes in G. If C' is a conjugacy class
then we denote by C'~! the conjugacy class consisting of the inverses of the
elements in C'. We have seen before (1.33) that

Xp(gfl) = X,(9) for all g € G. (2.2)

It will be useful, while going through examples, to keep at hand some facts
about characters that we will prove later in Chapter 7. The most fundamental
facts are: (i) a finite group G has only finitely many inequivalent irreducible
representations and these are all finite-dimensional; (ii) two finite dimensional
representations are equivalent if and only if they have the same character;
(ili) a representation is irreducible if and only if its character y, satisfies

> IClxO)F =1; (2.3)

CeCa
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and (iv) the number of conjugacy classes in GG exactly matches the number
of inequivalent irreducible complex representations.

We denote by R a maximal set of inequivalent irreducible complex rep-
resentations of G.

In going through the examples in this chapter we will sometimes pause to
use or verify some standard properties of characters, which we prove in gen-
erality later. The properties are summarized in the character orthogonality
relations:

ZXp gh Xp1 ) |G’XP( ) PP1
heG

(2.4)
Y Xl @)x(CT = :g: cre

PERG

where 04, is 1 if @ = b and is 0 otherwise, the relations above being valid
for all p, p1 € Rgq, all conjugacy classes C,C" € C, and all elements g € G.
Specializing this to specific cases (such as p = py, or g = €), we have:

3" (dimp)’ = |G

PERG
Z dimpx,(g) =0 ifg#e (2.5)
PERG
Z Xpl sz ) ‘G’(SPI ,P2 dlmp fOI‘ P1, P2 S RG

geG

2.1 Cyclic Groups

Let us work out all irreducible representations of a cyclic group C,, containing
n elements. Being cyclic, ), contains a generator ¢, which is an element such
that C,, consists exactly of the power ¢, c?, ...,c", where ¢ is the identity e
in the group.

Let p be a representation of C, on a complex vector space V # 0. By
Proposition 1.9.2, there is a basis of V relative to which the matrix of p(c)
is diagonal, with each entry being an n-th root of unity:

0 0 ... 0
matrix of p(c) = | . 77.2 . :

0 0 0 ... ny
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Figure 2.1: A picture for the cyclic group Cg

Since ¢ generates the full group C),, the matrix for p is diagonal on all the
elements ¢/ in C,,. Thus, V is a direct sum of one dimensional subspaces,
each of which provides a representation of C),. Of course, any one dimensional
representation is automatically irreducible.

Let us summarize our observations:

Theorem 2.1.1 Let C,, be a cyclic group of ordern € {1,2,...}. Every com-
plex representation of C,, is a direct sum of irreducible representations. Fach
irreducible representation of C,, is one dimensional, specified by the require-
ment that a generator element ¢ € G act through multiplication by an n-th
root of unity. Fach n-th root of unity provides an irreducible representation
of C,,, and these representations are mutually inequivalent.

Thus, there are exactly n inequivalent irreducible representations of C,.

Everything we have done here goes through for representations of C), over
a field which contains n distinct roots of unity.

Let us now take a look at what happens when the field does not contain
the requisite roots of unity. Consider, for instance, the representations of
Cj5 over the field R of real numbers. There are three geometrically apparent
representations:

(i) the one dimensional p; representation associating the identity operator
(multiplication by 1) to every element of Cs;

(i) the two dimensional representation py on R? in which ¢ is associated
with rotation by 120°;
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(iii) the two-dimensional representation p, on R? in which ¢ is associated
with rotation by —120°.

These are clearly all irreducible. Moreover, any irreducible representation of
C5 on R? is clearly either (ii) or (iii).

Now consider a general real vector space V' on which C3 has a represen-
tation p. Choose a basis B in V, and let V¢ be the complex vector space
with B as basis (put another way, V¢ is C ®g V viewed as a complex vector
space). Then p gives, naturally, a representation of C5 on V. Then V¢ is a
direct sum of complex one dimensional subspaces, each invariant under the
action of (3. Since a complex one dimensional vector space is a real two-
dimensional space, and we have already determined all two dimensional real
representations of (5, we are done with classifying all real representations of
C3. Too fast, you say? Then proceed to Exercise 2.6.

Finite abelian groups are products of cyclic groups. This could give the
impression that nothing much interesting lies in the representations of such
groups. But this impression is wrong. Even a very simple representation can
be of great use. For any prime p, the nonzero elements in Z, = Z/pZ form a
group Zy; under multiplication. Then for any a € Z; define

this being 1 in the case p = 2. Since its square is a?~! = 1, \,(a) is necessarily
+1. Clearly,

Ap 1 Zyy — {1, —1}
is a homomorphism, and hence gives a 1-dimensional representation, which
is the same as a 1-dimensional character of Z;. The Legendre symbol (%) is

defined for any integer a by
(a) _ JAp(amodp) if a is coprime to p
p) |0 if a is divisible by p.

The celebrated law of quadratic reciprocity, conjectured by Euler and Leg-
endre and proved first, and many times over, by Gauss, states that

(g) (g) = (—1)=D/2(_1)a/2

if p and q are odd primes. For an extension of these ideas using the character
theory of general finite groups, see the paper of Duke and Hopkins [25].



Representing Finite Groups 12/05/2010 43

2.2 Dihedral Groups

The dihedral group D,,, for n any positive integer, is a group of 2n elements
generated by two elements ¢ and r, where ¢ has order n, r has order 2, and

conjugation by r turns c into ¢!

" =e, r? =e, rer~t = ¢! (2.6)

Geometrically, think of ¢ as rotation in the plane by the angle 27 /n and r as
reflection across a fixed line through the origin. The distinct elements of D,

are

e,c, ... o er, 2 Pyt A

Figure 2.2: A picture for the dihedral group D,

The geometric view of D,, immediately yields a real two dimensional rep-
resentation: let ¢ act on R? through rotation by angle 27 /n and r through
reflection across the z-axis. Complexifying this gives a two dimensional com-
plex representation p; on C2:

im0 101
no=o N me=[} g (2.7
where 7 is a primitive n-th root of unity, say
2mi/n

n=e

More generally, we have the representation p,, specified by requiring

i@ =[Sl =} ]
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for m € Z; of course, to avoid repetition, we may focusonm € {1,2,...,n—1}.
The values of p,, on all elements of D,, are given by:

: mj . 0 mj
pm(cj) = l:no n—mj:| ) pm(C]T) = |:77—mj 770 :|
Having written this, we note that this representation makes sense over any
field F containing n-th roots of unity. However, we stick to the ground field
C, or at least Q with any primitive n-th root of unity adjoined.

Clearly, p,, repeats itself whem m changes by multiples of n. Thus we
need only focus on pq, ..., pp_1.

Is p,, reducible? Yes if, and only if, there is a non-zero vector v € [F?
fixed by p,,(r) and p,,(c). Being fixed by p,,(r) means that such a vector
must be a multiple of (1,1) in C?. But C(1,1) is also invariant under p,,(c)
if and only if n™ is equal to n™™, i.e., if and only if n = 2m.

Thus, pp, for m € {1,...,n— 1}, is irreducible if n # 2m, and is reducible
if n = 2m.

Are we counting things too many times? Indeed, the representations
pm are not all inequivalent. Interchanging the two axes, converts p,, into
P—m = Pn—m- Thus, we can narrow our focus onto p,, for 1 < m < n/2.

We have now identified n/2 — 1 irreducible two dimensional representa-
tions if n is even, and (n — 1)/2 irreducible two dimensional representations
if n is odd.

The character x,, of p,, is obtained by taking the trace of p,, on the
elements of the group D,,:

Xm() =0 +07™, xu(dr) = 0.

Now consider a one dimensional representation 6 of D,, (over any field).
First, from 0(r)? = 1, we see that 6(r) = 1. Applying @ to the relation
that rer~! equals ¢! it follows that 6(c) must also be +1. But then, from
" = e, it follows that 6(c) can be —1 only if n is even. Thus, we have the
one dimensional representations specified by:

Or1(c)=1, 64 41(r)==1 if n is even or odd

2.8
0_1(c)=—-1, 60_4,(r)==1 if n is even. (28)

This gives us 4 one dimensional representations if n is even, and 2 if n is odd.
Thus, for n even we have identified a total of 34+n/2 irreducible represen-
tations, and for n odd we have identified (n+3)/2 irreducible representations.
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According to results we will prove later, the sum
2
> &
X

over all distinct complex irreducible characters is the total number of elements
in the group. In this case the sum should be 2n. Working out the sum over
all the irreducible characters y we have determined, we obtain:

(g — 1) 22 4+ 4 =2n for even n;
(2.9)

—1
(n2 )22+2:2n for odd n.

Thus, our list of irreducible complex representations contains all irreducible
representations, up to equivalence.

Our objective is to work out all characters of D,,. Since characters are
constant on conjugacy classes, let us first determine the conjugacy classes in
D,.

Since rer—!

is ¢!, it follows that
r(dr)yrt =cr ="y

This already indicates that the conjugacy class structure is different for n
even and n odd. In fact notice that conjugating ¢/r by c results in increasing
J by 2:

c(dr)ct =dM ety Tty = It er = I

If n is even, the conjugacy classes are:

{6}, {C, Cn_l}, {02,Cn_2}, - {Cn/2—17cn/2+1}, {Cn/2},

2.10
{r,c®r, ..., *r}, {er,cr, ..., " 1r} (2.10)
Note that there are 3 + n/2 conjugacy classes, and this exactly matches the
number of inequivalent irreducible representations obtained earlier.
To see how this plays out in practice let us look at Dy. Our analysis
shows that there are five conjugacy classes:

{e}, {c,c*}, {*}, {r, *r}, {er, & r}.



46 Ambar N. Sengupta

There are 4 one dimensional representations ¢4 1, and one irreducible two
dimensional representation p; specified through

no=y O mo=[5 g

In Table 2.1 we list the values of the characters of D4 on the various
conjugacy classes. The latter are displayed in a row (second from top),
each conjugacy class identified by an element which it contains; above each
conjugacy class we have listed the number of elements it contains. Each
row in the main body of the table displays the values of a character on the
conjugacy classes.

1 2 2
e ¢ & r er
6,+11 1 1 1 1 1 2 3
.- 11 1 1 -1 -1 0+ 11 1 1
o_+11 -1 1 1 -1 0,11 1 -1
-1 -1 1 -1 1 xi |2 -1 0
xi 12 0 -2 0 0 Table 2.2: Character Table

for D3 = 53
Table 2.1: Character Table
for Dy

The case for odd n proceeds similarly. Take, for instance, n = 3. The
group Ds is generated by elements ¢ and r subject to the relations

The conjugacy classes are:

{e}, {c, S}, {r,cr,?r}

The irreducible representations are: 6, y, 0, _, p;. The character table is
produced in Table 2.2, where the first row displays the number of elements
in the conjugacy classes listed (by choice of an element) in the second row.
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Number of elements | 1 6 8 6 3

Conjugacyclass of | ¢ (12) (123) (1234) (12)(34)

Table 2.3: Conjugacy classes in Sy

The dimensions of the representations can be read off from the first column
in the main body of the table. Observe that the sum of the squares of the
dimensions of the representations of S5 listed in the table is

12 4+ 1% 422 = 6,

which is exactly the number of elements in D3. This verifies the first property
listed earlier in (2.5).

2.3 The Symmetric Group 5;

The symmetric group S3 is isomorphic to the dihedral group D3, and we have
already determined the irreducible representations of D3 over the complex
numbers.

Let us turn now to the symmertic group Sy, which is the group of permuta-
tions of {1,2,3,4}. Geometrically, this is the group of rotational symmetries
of a cube.

Two elements of Sy are conjugate if and only if they have the same cycle
structure; thus, for instance, (134) and (213) are conjugate, and these are not
conjugate to (12)(34). The following elements then belong to all the distinct
conjugacy classes:

,o (12),  (123),  (1234),  (12)(34)

where ¢ is the identity permutation. The conjugacy classes, each identified
by one element it contains, are listed with the number of elements in each
conjugacy class, in Table 2.3.

There are two 1-dimensional representations of S; we are familiar with:
the trivial one, associating 1 to every element of Sy, and the signature rep-
resentation € whose value is 41 on even permutations and —1 on odd ones.



48 Ambar N. Sengupta

We also have seen a 3-dimensional irreducible representation of Sy; recall
the representation R of S; on C* given by permutation of coordinates:

(3:17 T2, X3, .1’4) — (1'0-71(1), ceny 1'0-71(4))

Equivalently,
R(O')ej = 60(]‘) j c {1, 2, 3, 4}

where ey, ..., e, are the standard basis vectors of C*. The 3-dimensional sub-
space
EO = {(xl,xQ,x3,$4) € C4 N +x2 + T3 —|—{E4 = O}

is mapped into itself by the action of R, and the restriction to Ej gives an
irreducible representation Ry of Sy. In fact,

C'=E,®C(1,1,1,1)

decomposes the space C* into complementary invariant, irreducible sub-
spaces. The subspace C(1,1,1,1) carries the trivial representation. Exam-
ining the effect of the group elements on the standard basis vectors, we can
work out the character of R. For instance, R((12)) interchanges e; and e,
and leaves e3 and e, fixed, and so its matrix is

o O = O
S OO
O = O O
_— o O O

and the trace is
xr((12)) = 2.

Subtracting off the trivial character, which is 1 on all elements of Sy, we
obtain the character yo of the representation Ry. All this is displayed in the
first three rows of Table 2.4.

We can manufacture another 3-dimensional representation R; by tensor-
ing Ry with the signature e:

R1:R0®6.

The character y; of Ry is then written down by taking products, and is
displayed in the fourth row in Table 2.4.
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Conjugacy class of | ¢ (12) (123) (1234) (12)(34)
XR 4 2 1 0 0
Xo 3 1 0 -1 -1
X1 3 -1 0 1 —1

Table 2.4: The characters xr and yo on conjugacy classes

Since Ry is irreducible and R; acts by a simple +1 scaling of Ry, it
is clear that R; is also irreducible. Thus, we now have two 1-dimensional
representations and two 3-dimensional irreducible representations. The sum
of the squares of the dimensions is

12 4+1%2+3%2+3%2=20.

From the first relation in (2.5) we know that the sum of the squares of the
dimensions of all the inequivalent irreducible representations is |Sy| = 24.
Thus, looking at the equation

24 = 1% + 12 4+ 3% 4 32472

we see that we are missing a 2-dimensional irreducible representation R.
Leaving the entries for this blank, we have the following character table:

As an illustration of the power of the character method, let us work out
the character ys of this ‘missing’ representation R, without even bothering
to search for the representation itself. Recall from (2.5) the relation

Zdimpxp(a) =0, if o #£4,
p

where the sum runs over a maximal set of inequivalent irreducible complex
representations of S, and ¢ is any element of S;. This means that the vector
formed by the first column in the main body of the table (that is, the column
for the trivial conjugacy class) is orthogonal to the vectors formed by the
columns for the other conjugacy classes. Using this we can work out the
missing entries of the character table. For instance, taking o = (12), we have

2x2((12)) +3% (—1) +3*x 1+ 1% (—1)+1x1=0,
~——

x1((12))
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1 6 8 6 3
L (12) (123) (1234) (12)(34)
trivial | T 1 1 1 1
e |1 -1 1 ~1 1
xo |3 1 0 ~1 ~1
x1 |3 -1 0 1 ~1
X2 |2 7 ? ? ?

Table 2.5: Character Table for S; with missing row

which yields
x2((12)) = 0.
For o = (123), we have

2x2((123)) +3% 0 +3*0+1x1+1%x1=0

x1((123))

which produces
x2((123)) = —1.

Filling in the entire last row of the character table in this way produces Table
2.6.

Just to be sure that the indirectly detected character y, is irreducible
let us run the check given in (2.3) for irreducible characters: the sum of the
quantities |C||x2(C)|? over all the conjugacy classes C' should work out to 1.
Indeed, we have

D ICIX2AC)P = 1522+ 650> + 8% (—1)* + 6% 0> + 3% 2% = 24 = |5y,
C

a pleasant proof of the power of the theory and tools promised to be developed
in the chapters ahead.
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1 6 8 6 3
¢ (12) (123) (1234) (12)(34)
trivial | 1 1 1 1 1
€ 1 -1 1 —1 1
Yo |3 1 0 —1 1
X1 3 -1 0 1 -1
X2 2 0 —1 0 2

Table 2.6: Character Table for S,

2.4 Quaternionic Units

Before moving on to general theory in the next chapter, let us look at another
example which springs a little surprise. The unit quaternions

1,—-1,2,—,7,—7,k,—k
form a group @) under multiplication. We can take
—1,2,5,k
as generators, with the relations
(-1)?=1,2=42=k=-1,ij =k
The conjugacy classes are
{10 A=10{6 —i3 {0, =53 £k, =k

It is easy to spot the 1-dimensional representations: since

ijij =k =—-1==j%

the value of any 1-dimensional representation on —1 must be 1, and then
the values on i and j must (and could) each be £1. Thus, there are four
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1-dimensional representations. Given that ) contains 8 elements, writing
this as a sum of squares of dimensions of irreducible representations, we have

8=1+1*+1> + 1°+7?

Clearly, what we are missing is an irreducible representation of dimension 2.
The incomplete character table is displayed in Table 2.7.

1 2 _11 z 1 2 1 2
o |1 1 1 T 1 S — i
: ool T 1 1 1

X+1,-1 1 1 1 -1 -1
Xaiq1 |1 -1 1 1 -1

X-1,-1 1 -1 1 —1 1

? ? ? ?

Table 2.7: Character Table for @),

- Table 2.8: Character Table for @)
missing last row

Remarkably, everything here, with the potential exception of the missing
last row, is identical to the information in Table 2.1 for the dihedral group Dj.
Then, since the last row is entirely determined by the information available,
the entire character table for () must be identical to that of D,. Thus the
complete character table for () is as in Table 2.8.

A guess at this stage would be that ) must be isomorphic to Dy, a guess
bolstered by the observation that certainly the conjugacy classes look much
the same, in terms of number of elements at least. But this guess is dashed
upon second thought: the dihedral group D, has four elements r, cr, ¢?r, ¢3r
each of order 2, whereas the only element of order 2 in () is —1. So we have an
interesting observation here: two non-isomorphic groups can have identical

character tables!
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2.5 Afterthoughts: Geometric Groups

In closing this chapter let us note some important classes of finite groups,
though we will not explore their representations specifically.

The group @ of special quaternions we studied in section 2.4 is a particular
case of a more general setting. Let V' be a finite dimensional real vector space
equipped with an inner product (-,-). There is then the Clifford algebra
Cleal,a, Which is an associative algebra over R, with a unit element 1, whose
elements are linear combinations of formal products v;...v,, (with this being
1 if m = 0), linear in each v; € V', with the requirement that

vw + wv = —2(v, w)1 for all v,w € V.

If e4,..., eq form an orthonormal basis of V', then the products +e;,...e;,
for k € {0, ...,d}, form a group ()4 under the multiplication operation of the
algebra Ciea1q. When d = 2, we write ¢ = €1, j = ey, and k = ejeq, and
obtain @y = {1, —1,4,—1,j, —7j, k, —k}, the quaternionic group.

In chemistry one studies crystallographic groups, which are finite sub-
groups of the group of Euclidean motions in R3. Reflection groups are groups
generated by reflections in Euclidean spaces. Let V' be a finite dimensional
real vector space with an inner product (-,-). If w is a unit vector in V' then
the reflection r,, across the hyperplane

wt = {v e R": (v,w) = 0},
takes w to —w and holds all vectors in the ‘mirror’ w* fixed; thus
ro(v) = v — 2(v, w)w, for all v € V. (2.11)

If r; and 7y are reflections across planes wi and w;, where w; and w, are
unit vectors in V' with angle 6 = cos™' (w;,ws) € [0, 7] between them, then,
geometrically,

ri =713 =1,
1o = TaoT if <U1, ’U2> = 0; (212)

riro = rotation by angle 26 in the wi-ws plane.

An abstract Cozxeter group is a group generated by a family of elements r; of
order 2, with the restriction that certain pair products r;r; also have finite
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order. Of course, for such a group to be finite, every pair product r;7; needs to
have finite order. An important class of finite Coxeter groups is formed by the
Weyl groups which arise in the study of Lie algebras. Consider a very special
type of Weyl group: the group generated by reflections across the hyperplanes
(e; —ex)™, where ey,..., €, form the standard basis of R", and j, k are distinct
elements running over [n]. We can recognize this as essentially the symmetric
group Sy, realized geometrically through the faithful representation R back in
(1.3). In this point of view, S,, can be viewed as being generated by elements
Ty .y Tno1, With r; standing for the transposition (i,7 + 1), satisfying the
relations

T?:L forallje[n—1]>

TiTi1Ty = Vi1l 41 for all j € [n — 2], (2.13)
riTE =TTk for all j, k € [n — 1] with |j — k| > 2,

where ¢ is the identity element. It would seem to be more natural to write
the second equation as (r;7;41)® = ¢, which would be equivalent provided
each 7"]2 is . However, j holding on to just the second and third equations
generates another important class of groups, the braid groups B,,, where B,
is generated abstractly by elements rq,...,7,_1 subject to just the second
conditions in (2.13). Thus, there is a natural surjection B, — S, mapping
r; to (1,1 + 1) for each 7 € [n — 1].
If F is a subfield of a field F;, such that dimpF; < oo, then the set of
all automorphisms o of the field F; for which o(¢) = ¢ for all ¢ € F, is a
finite group under composition. This is the Galois group of F; over F; the
classical case is where Iy is defined by adjoining to F roots of polynomial
equations over F. Morally related to these ideas are fundamental groups of
surfaces; an instance of this, the fundamental group of a compact oriented
surface of genus g, is the group with 2¢g generators ay, by, ..., a4, b, satisfying
the constraint
arbiay byt aghga, by = e. (2.14)

Such equations, with a; and b; represented in more concrete groups, have
come up in two and three dimensional gauge theories. Far earlier, in his
first major work in developing character theory, Frobenius [28] studied the
number of solutions of equations of this and related types, with each a; and
b; represented in some finite group. In section 7.9 wse will study Frobenius’
formula for counting the number of solutions of the equation

S1...8m = L
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for sy, ..., s, running over specified conjugacy classes in a finite group G. In
the case G = 5, restricting the s; to run over transpositions, a result of
Hurwitz relates this number to counting n-sheeted Riemann surfaces with m
branch points (see Curtis [15] for related history).

Exercises

1. Work out the character table of Ds.

2. Consider the subgroup of Sy given by
Vi={1,(12)(34), (13)(24), (14)(23)}.

Being a union of conjugacy classes, V} is a normal subgroup of S;. Now
view S3 as a subgroup of Sy, consisting of the permutations fixing 4.
Thus, V4 NS3 = {¢}. Show that the mapping

Sz = Sy/Vi:o—dV,

is an isomorphism. Obtain an explicit form of a 2-dimensional irre-
ducible complex representation of Sy for which the character is yo as
given in Table 2.6.

3. In S5 there is the cyclic group C5 generated by (123), which is a normal
subgroup. The quotient S3/C3 ~ S5 is a two-element group. Work out
the one dimensional representation of S3 which arises from this by the
method of Problem 2.2 above.

4. Construct a two dimensional irreducible representation of S3, over any
field F in which 3 # 0, using matrices which have integer entries.

5. The alternating group A4 consists of all even permutations in Sy. It is
generated by the elements

c=(123), z=(12)(34), y=(13)(24), =z = (14)(23)

satisfying the relations
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1 3 4 4

L (12)(34) (123) (132)
wo | 1 1 1 1
Py | 1 1 w w?
Py | 1 1 w? w
X1 |7 ? ? ?

Table 2.9: Character Table for Ay

(i) Show that the conjugacy classes are

Y {x,y, 2}, {e e, ey, ez), {2 P, Py, Pz}

Y ) y? ) ) Y y? Y Y Y y?

Note that ¢ and ¢? are in different conjugacy classes in A4, even
though in S; they are conjugate.

(i) Show that the group A, generated by all commutators aba=b~"
is Vy = {¢,x,y, 2}, which is just the set of commutators in A,.

(iii) Check that there is an isomorphism given by

Cs— Ay/Vy:c— V.

(iv) Obtain three 1-dimensional representations of Ay.

v e group Ay C Sy acts by permutation of coordinates on C* an

Th Ay C Syactsb tation of coordinat C* and
preserves the 3-dimensional subspace Ey = {(21, ..., 24) : 1+ -+
x4 = 0}. Work out the character y3 of this representation of Ay.

(vi) Work out the full character table for A4, by filling in the last row
of Table 2.9.

6. Let V be a real vector space and T" : V' — V a linear mapping with
T™ = I, for some positive integer m. Choose a basis B of V', and let
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Ve be the complex vector space with basis B. Define the conjugation
map C': Ve — Vi @ v — ¥ to be given by

C (Z vbb> = Zv_bb
beB beB

where each v, € C, and on the right we just have the ordinary complex
conjugates v;,. Show that

z=3(v+Cv)and y = —%(v— Cv)

are in V for every v € V. If v € Vi is an eigenvector of T', show that
T maps the subspace of V' spanned by x and y into itself.

7. Work out an irreducible representation of the group
Q - {]-7 _]-7 7:7 _Z.7.j7 _j7 k7 _1}

of unit quaternions on C2, by associating suitable 2 x 2 matrices to the
elements of Q).
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Chapter 3
The Group Algebra

The simplest meaningful object we can construct out of a field F and a group
G is a vector space, over F, with basis the elements of G; thus, a typical
element of this vector space is a linear combination

a191 + -+ AnGn,

where ¢y, ..., g, are the elements of GG, and ay, ..., a,, are drawn from F. This
vector space, denoted F[G], is endowed with a natural representation pyee Of
the group G, specified by:

Preg(9)(a191 + -+ + angn) = a1991 + - + @G Yn.

Put another way, the elements of the group G form a basis of F[G], and the
action of GG simply permutes this basis by left-multiplication.

The representation p,ee on F[G] is the mother of all irreducible represen-
tations: under simple conditions on the field, the representation p,e, on F[G]
decomposes as a direct sum of irreducible representations of GG, and

every irreducible representation of G is equivalent to one of the
representations appearing in the decompostion of preg-

This result, and much more, will be proved in Chapter 4, where we will
examine the representation p,., in detail. For now, in this chapter, we will
introduce [F[G] officially, and establish some of its basic features.

Beyond being a vector space, F[G] is also an algebra: there is a perfectly
natural multiplication operation in F[G] arising from the multiplication of
the elements of the group G. We will explore this algebra structure in a

29
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specific example, with G being the permutation group S3, and draw some
valuable lessons and insights from this example. We will also prove a won-
derful structural property of F|G] called semisimplicity which is at the heart
of the decomposability of representations of GG into irreducible ones.

3.1 Definition of the Group Algebra

It is time to delve into the formal definition of the group algebra
F[G].
As a set, this consists of all formal linear combinations

a1g1 + -+ angn

where g1, ..., g, are elements of GG, and ay,...,a, € F. We add and multiply
these new objects in the only natural way that is sensible. For example,

(201 + 392) + (=491 + 5g93) = (—2)g1 + 392 + 593

and
(291 —492)(94 + 93) = 29194 + 29193 — 49291 — 4G293.

Officially, F[G] consists of all maps
a:G—=F:g—a,

such that a4 is 0 for all except finitely many g € G; thus, F[G] is the direct
sum copies of the field I, one copy for each element of G. In the case of
interest to us, G is finite and F[G] is simply the set of all F-valued functions
on G.

It turns out to be very convenient, indeed intuitively crucial, to write a
function a € F|G] in the form

a = E Qg.

geG

To avoid visual strain we will often write > when we mean »_ .
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Addition and multiplication, as well as multiplication by elements t € FF,
are defined in the obvious way:

Z agg + Z bgg = Z(ag +bg)g
Z ayg Z bph = Z (Z ahbhlg) g (3.1)

g heG

tZagg = Ztagg
g g

It is readily checked that F|G] is an algebra over F: it is a ring as well as an
F-module, and the multiplication

F[G] x F[G] — F[G] : (a,b) — ab

is F-bilinear, associative, and has a non-zero multiplicative identity element
le, where e is the identity in G.

Sometimes it is useful to think of G as a subset of F[G], by identifying
g € G with the element 1g € F[G]. But the multiplicative unit le in F[G]
will also be denoted 1, and in this way F may be viewed as a subset of F[G]:

F — F[G] : t — te.

Occasionally we will also work with R[G], where R is a commutative ring
such as Z. This is defined just as F[G] is, except that the field F is replaced
by the ring R, and R|G] is an algebra over the ring R.

3.2 Representations of G and F|G]
The algebra F[G] has a very useful feature: any representation
p: G — Endp(E)

defines, in a unique way, a representation of the algebra F[G] in terms of
operators on E. More specifically, we have, for each element

x:nggelF[G]
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an element

p(z) = > 2,0(g) € Ende(E) (3.2)

This induces a left F[G]-module structure on E:

(Z xgg> v="> aep(g)v (3.3)

It is very useful to look at representations in this way.
Put another way, we have an extension of p to an algebra-homomorphism

p: F|G] — Endr(FE) : Z agg — Zagp(g) (3.4)

Thus, a representation of G specifies a module over the ring F|G]. Conversely,
if F'is a F[G]-module, then we have a representation of G on E, by restricting
multiplication to the elements in F[G] which are in G.

In summary, representations of G correspond naturally to F[G]-modules.
Depending on the context, it is sometimes useful to think in terms of repre-
sentations of G and sometimes in terms of F|G]-modules.

A subrepresentation or invariant subspace corresponds to a submodule,
and the notion of direct sum of representations corresponds to direct sums
of modules. A morphism of representations corresponds to an F[G]-linear
map, and an isomorphism, or equivalence, of representations is simply an
isomorphism of F[G]-modules.

An irreducible representation corresponds to a simple module, which is a
non-zero module with no proper non-zero submodules.

3.3 Schur’s Lemma with F[G]

Here is Schur’s Lemma (Theorem 1.7.2) in module language, and with an

extension to cover the important special case of an algebraically closed ground
field:

Theorem 3.3.1 Let G be a finite group, and F a field. Suppose E and F
are simple left F[G]-modules, and T : E — F an F[G]-linear map. Then
either T is 0 or T is an isomorphism of F[G]-modules. If, moreover, F is
algebraically closed then any F[G]-linear map S : E — E is is of the form
S = M for some scalar A € F.
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Proof. The only thing new here over Theorem 1.7.2 is the part about the
case of an algebraically closed field. Let S : E — E be F|G]-linear. The
polynomial equation in A\ given by

det(S — A) =0

has a solution A € F. Then S — Al € Endp(FE) is not invertible. Note that
S — Al is, in fact, in Endgig)(E). So, by the first half of the result, S — Al is
0. Thus, S = AI, a scalar multiple of the identity.

We will repeat the argument used above in proving that S = AI a couple
times again later.

Since the conclusion of Schur’s Lemma for the algebraically closed case
is so powerful, it is meaningful to isolate it as a hypothesis, or concept, in
itself. A field F is called a splitting field for a finite group G' if Endgq(E)
consists of just the scalar multiples ¢l of the identity map [ : E — FE, with
c € F, for every simple F[G]-module E.

The following resut of Frobenius and Schur [35, Section 3] is an illustration
of the power of Schur’s Lemma. A bilinear mapping

S:VxW-—=F
where V' and W are vector spaces, is said to be non-degenerate if

S(v,w) =0 for all w implies that v = 0; )
S(v,w) =0 for all v implies that w = 0. '

Theorem 3.3.2 Let p be an irreducible representation of a group G on a
finite dimensional vector space V' over an algebraically closed field F. Then
there exists an element c, in F whose value is 0 or 1,

¢, € {0,1, -1},
such that the following holds: if

S:VxV—F
is bilinear and satisfies

S(p(g)v, p(g)w) = S(v,w) for allv,w €V, and g € G (3.6)
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then
S(v,w) = c,S(w,v) for allv,w e V. (3.7)

If p is not equivalent to the dual representation p' then c, = 0, and thus, in
this case, the only G-invariant bilinear form on the representation space of
p is 0. If p is equivalent to p' then c, # 0 and there is a non-degenerate
bilinear S, invariant under the G-action as in (3.6), and all nonzero bilinear
S satisfying (3.6) are non-degenerate and multiples of each other. Thus if
there is a nonzero bilinear form on V which is invariant under the action of
G then that form is nondegenerate and either symmetric or skew-symmetric.

When the group G is finite, every irreducible representation is finite di-
mensional and so this condition may be dropped from the hypothesis. The
assumption that the field F is algebraically closed may be replaced by the
requirement that it be a splitting field for G. The scalar ¢, is called the
Frobenius-Schur indicator of p. We will eventually obtain a simple formula
expressing ¢, in terms of the character of p; fast-forward to (7.109) for this.
Proof. Define S;, S, : V. — V' where V' is the dual vector space to V, by

Si(v) :w = S(v,w)

3.8
Sr(v) : w— S(w,v) (3:8)
for all v,w € V. The invariance condition (3.6) translates to
S S
10(9) = p'(9)S (3.9)
Sep(g) = p'(9)Sr,

for all ¢ € G, where p' is the dual representation on V' given by p'(g)¢ =
¢ o p(g)~'. Now recall from Theorem 1.7.1 that p’ is also irreducible, since
p is irreducible. Then by Schur’s Lemma, the intertwining condition (3.9)
implies that either 5 is 0 or it is an isomorphism.

If S; = 0 then S = 0, and so the claim (3.7) holds on taking ¢, = 0 for
the case where p is not equivalent to its dual.

Next, suppose p is equivalent to p’. Schur’s Lemma and the intertwining
conditions (3.9) imply that S; is either 0 or an isomorphism. The same holds
for S,.. Thus, if S # 0 then S; and S, are both isomorphisms and hence a
look back at (3.5) shows that S is nondegenerate. Moreover, Schur’s Lemma
also implies that S; is a scalar multiple of S,; thus there exists kg € F such
that

S; = ks, (3.10)
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Note that since S is not 0, the scalar kg is uniquely determined by S, but, at
least at this stage, could potentially depend on S. The equality (3.10) spells
out to:

S(v,w) = kgS(w,v) for all v,w €V,

and so, applying this twice, we have
S(v,w) = ksS(w,v) = k%S (v, w)

for all v,w € V. Since S is not 0, it follows then that k%4 = 1 and so
ks € {1, —1}. It remains just to show that kg is independent of the choice of
S. Suppose T': V x V — F is also a nonzero G-invariant bilinear map. Then
the argument used above for S; and S,, when applied to S; and 7; implies
that there is a scalar kg € IF such that

T = kgrS.

Then

T(v,w) = kgrS(v,w)
= kSTkSS(w,v) = kskSTS(’LU,’U) (3.11)
= ksT(w,v),

for all v,w € V, which shows that k7 = kg. Thus we can set ¢, to be kg for
any choice of nonzero G-invariant bilinear S : V x V — F.

To finish up, observe that p ~ p’ means that there is a linear isomorphism
T :V — V', which intertwines rho and p’. Take S(v,w) to be T'(v)(w), for
all v,w € V. Clearly, S is bilinear, G-invariant, and, since 7" is a bijection,
S is non-degenerate.

To explore further the implications of the behavior of S of the preceding
result, work through Exercise 3.10.

3.4 The Center

A natural first question about an algebra would be whether it has an inter-
esting center. By center of an algebra we mean the set of all elements in the
algebra which commute with every element of the algebra.

It is easy to determine the center

Z(F[G])
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of the algebra F[G]. An element

x:thh

heG

belongs to the center if and only if it commutes with every g € G:
grg~ ==,

which expands out to

Z zpghg™t = Z xph.

heG heG

Thus x lies in Z if and only if
Tg-1pg = Th for every g,h € G. (3.12)

This means that the function g — z, is constant on conjugacy classes in
G. Thus, z is in the center if and only if it can be expressed as a linear
combination of the elements

20 = Zg, C' a (finite) conjugacy class in G. (3.13)

geC

We are primarily interested in finite groups, and then the added qualifier of
finiteness of the conjugacy classes is not needed.

If C' and C" are distinct conjugacy classes then zo and z¢r are sums over
disjoint sets of elements of G, and so the collection of all such z¢ is linearly
independent. Thus, we have a simple but important result:

Theorem 3.4.1 Suppose G is a finite group, F a field, and let zo € F[G] be
the sum of all the elements of in a conjugacy class C in G. Then the center
of F[G] is a vector space with basis given by the elements zc, with C' running
over all conjugacy classes of G. In particular, the dimension of the center of
F[G] is equal to the number of conjugacy classes in G.

The center Z of F[G] is, of course, also an algebra in its own right. Since
we have a handy basis, consisting of the vectors z¢, of Z, we can get a full
grip on the algebra structure of Z by working out all the products between
the basis elements zs. There is one simple, yet remarkable fact here:
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Proposition 3.4.1 Suppose G is a finite group, and C4,...,Cy all the dis-
tinct conjugacy classes in G. For each j € [s], let z; € Z|G] be the sum of all
the elements of C;. Then for any l,n € [s], the product zz, is a linear com-
bination of the vectors z,, with coefficients which are non-negative integers.
Specifically,

22 = Z KlmnZm (3.14)

cec

where Kimn counts the number of solutions of the equation ¢ = ab, for any
fizxed c € C,, with a,b running over C; and C,,, respectively:

Kimn = |{(a,b0) € C; x Cy, | ¢ = ab}| (3.15)
for any fixed c € C,,.

The numbers &y, are sometimes called the structure constants of the

group G. As we shall see later in section 7.6 these constants can be used to
work out all the irreducible characters of the group.
Proof. Note first that ¢ = ab if and only if (gag=')(gbg) ™' = geg™! for every
g € G, and S0 Ky, is completely specified by the conjugacy class C,, in
which ¢ lies in the definition (3.15). In the product zz,, the coefficient of
c € Cp, is clearly Ky pn.

If you wish, you can leap ahead to section 3.6 and then proceed to the
next chapter.

3.5 Deconstructing F[S3]

To get a hands-on feel for the group algebra we will work out the structure
of the group algebra F[S5], where F is a field in which 6 # 0; thus, the
characteristic of the field is not 2 or 3. The reason for imposing this condition
will become clear as we proceed. We will work through this example slowly,
avoiding fast tricks/tracks, and it will serve us well later. The method we
use will introduce and highlight many key ideas and techniques which we will
use later to analyze the structure of F[G] for general finite groups, and also
for general algebras.

From what we have learnt in the preceding section, the center Z of F[Ss]
is a vector space with basis constructed from the conjugacy classes of Ss.

These classes are
{t},{e, 02}, {r,cr, czr},
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where r = (12) and ¢ = (123). The center Z has basis
,, C=c+c* R=r+cr+cr

Table 3.1 shows the multiplicative structure of Z. Notice that the structure
constants of S3 can be read off from this table.

1 C R

171 C R

c|C 2+C 2R

R|R 2R 343C

Table 3.1: Multiplication in the center of F[S3]

The structure of the algebra F|G], for any finite group G, can be probed
by means of idempotent elements. An element u € F[G] is an idempotent if

u =1u.

Idempotents u and v are called orthogonal if uv and vu are 0. In this case,
u 4+ v is also an idempotent:

(ut+v)Y? =v+uw+vu+vP=u+0+0+v.

Clearly, 0 and 1 are idempotent. But what is really useful is to find a
maximal set of idempotents uq, ..., u,, in the center Z which are not 0 or 1,
and satisfying the orthogonality property

ujug = 0 for j £k
and the spanning property
U+ -+ uy, = 1.

The spanning condition implies that any element a € F[G] can be decom-

posed as
a=al =auy + -+ au,,,
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and the orthogonality property, along with the centrality of the idempotents
uj, shows that
aujauy = aau;u, =0 for j # k.

In view of this, the map
I:F[Gluy x ... X F[Gluy, — F[G] : (a1, ..oy @) = a1+ -+ ap,

is an isomorphism of algebras, in the sense that it is a bijection, and preserves
multiplication and addition:

Iay + @}y o + )

I(ayay, ...;ama,,) = I(ay, ...,a,)I(ay, ..., a,,).

I(ay,...;am) + I(d},...,al)

coy Uy

(3.16)

All this is verified easily. The multiplicative property as well as the injectivity
of I follow from the orthogonality and centrality of the idempotents uy, ..., ty,.
Thus, the isomorphism I decomposes F[G] into a product of the smaller
algebras F[G|u;. Notice that within the algebra F|G]u; the element u; plays
the role of the multiplicative unit.
Now we are motivated to go searching for central idempotents in F[.Ss].
Using the basis of Z given by 1, R, we consider

u=zt+yC+zR

with z,y,2 € F. We are going to do this brute force; in a later chapter, in
Theorem 7.4.1, we will see how the character table of a group can be used
systematically to obtain the central idempotents in the group algebra. The
condition for idempotence, u? = u, leads to three (quadratic) equations in
the three unknowns x, y, z. The solutions lead to the following elements:

1 1 1
w=c(1+C+R), wm=:1+C-R), w=32-0)
1 1 1
u1+uQ:§(1+C), U2+U3:6<5_C—R), u3+u1:6(5—C+R)

(3.17)

The division by 6 is the reason for the condition that 6 # 0 in F. We check
readily that uy, us, uz are orthogonal; for instance,

(1+C+R(1+C—-R)=1+20+C*-R*=1+2C +2+C —3-3C =0.
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For now, as an aside, we can observe that there are idempotents in F[S3]
which are not central; for instance,

%(1 +7), %(1 —7)

are readily checked to be orthogonal idempotents, adding up to 1, but they
are not in the center Z.
Thus, we have a decomposition of F[S3] into a product of smaller algebras:

F[Sg] ~ ]F[Sg]ul X F[Sd]’LLQ X F[Sg]ﬂg (318)
Simple calculations show that
cup = uq, and ru; = Ui,

which imply that F[Ss]u; is simply the one-dimensional space generated by
Uq:
]F[Sg]ul == Ful.

In fact, what we see is that left-multiplication by elements of S3 on F[S3]u;
is a one-dimensional representation of S3, the trivial one.
Next,
Cly = Us, and Ty = —Usg,

which imply that F[S3]us is also one-dimensional:
F[Sg]ﬂg = FUQ.

Moreover, multiplication on the left by elements of S3 on F[S3Juy gives a
one-dimensional representation e of Sz, this time the one given by the parity:
on even permutations € is 1, and on odd permutations it is —1.

We know that the full space IF[S3] has a basis consisting of the six elements
of S3. Thus,

We can see this more definitively by working out the elements of F[Ss]us. For
this we should resist the thought of simply multiplying each element of F[S3]
by wus; this might not be a method which would give any general insights
which would be meaningful for groups other than S3. Instead, observe that

an element x € F[S;] lies in F[S5]us if and only if zus = x. (3.19)
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This follows readily from the idempotence of uz. Then, taking an element
T =a+ e+ + 0r + ger + Pcir € F[Ss]

we can work out what the condition zusz = x says about the coefficients
a,B,..4 € F:

a+pB+v=0

O+¢+1=0 (3.20)

This leaves four (linearly) independent elements among the six coefficients
«a, ..., 1, verifying again that F[S3|ug is four dimensional. Dropping « and 6
as coordinates, writes « € F[Ss]us as

r=08(c—1)+v(—1)+¢(c—1)r+(c* —1)r. (3.21)
With this choice, we see that

[F[Ss]us has as a basis the vectors ¢ — 1, (¢ — 1), (¢ — 1)r, (¢ — 1)r.
(3.22)
Another choice would be to ‘split the difference’ between the multipliers
1 and r, and bring in the two elements
1 1
= — 1 - = = 1 - .
re=g(4r),  ro=2(1-7)
The nice thing about these elements is that they are idempotents, and we
will use them again shortly. So we have another choice of basis for F[Ss|us:

bf =(c—Dry, b = (A —=Dry, by =(c—Dr_, by = (> —1)r_  (3.23)

How does the representation pyeg, restricted to F[Ss]us, look relative to this
basis? Simply eyeballing the vectors in the basis we can see that the first
two span a subspace invariant under left-multiplication by all elements of S3,
and so is the span of the last two vectors. For the subspace spanned by the
bj, the matrices for left-multiplication by ¢ and r are given by

-1 -1 01
cr—>[1 0}, THL 0}. (3.24)
This representation is irreducible: clearly, any vector fixed (or taken to its
negative) by the action of r would have to be a multiple of (1, 1), and the
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only such multiple fixed by the action of ¢ is the zero vector. Observe that
the character xs of this representation is specified on the conjugacy classes
by

xo(c) = =1, xa(r)=0.

For the subspace spanned by the vectors b, these matrices are given by

e |TE 7
1 0
At first it isn’t obvious how this relates to (3.24). However, we can use a new
basis given by

— {_01 _01] (3.25)

. R
Blzibl_b27 B2:b1_§b2

and with respect to this basis, the matrices for the left-multiplication action
of c and r are given again by exactly the same matrices as in (3.24):

cBy = —-B| + B, cBy, = —Bj.
Thus, we have a decomposition of F[S3]ug into subspaces
F[Ss)usz = (spanof b),by) @ (spanof By, By)

each of which carries the same representation of S, specified as in (3.24).
Observe that from the way we constructed the invariant subspaces,

spanof bf, by = F[S3Jugry  and  spanof By, By = F[S3]ugr_

Thus, we have a clean and complete decomposition of F[S3] into subspaces

where 1 1
h = 5(1 +r)us, Yo = 5(1 —T)us (3.27)

Each of these subspaces carries a representation of S5 given by multiplication
on the left; moreover, each of these is an irreducible representation.

Having done all this we still don’t have a complete analysis of the structure
of F[S3] as an algebra. What remains is to analyze the structure of the smaller
algebra

F[S5)us.
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Perhaps we should try our idempotent trick again? Clearly

v = %(1 +r)us, vy = %(1 —r)ug (3.28)
are orthogonal idempotents and add up to us.

In the absence of centrality, we cannot use our previous method of identi-
fying the algebra with products of certain subalgebras. However, we can do
something similar, using the fact that vy, vy are orthogonal idempotents in
F[S5]us whose sum is uz, which is the multiplicative identity in this algebra
F[Ss]us. For any = € F[S3]us, we can decompose x as:

= (1 +y2)z(y1 + v2) = ixyr + ixys + Yoxyr + Yayo. (3.29)

Let us write
Tk = YTk (3.30)

Observe next that for z, w € F[S3)ug, the product xy decomposes as

2 2
ry = (T11 + T12 + T2 + Too) (W11 + W2 + wo + Wwa2) = Z (Z ﬂUjmwmk) )

k=1 \m=1

where we used the orthogonality of the idempotents 1, vy, in the last step.

Thus,
2

(zw)jk = Z L jn Wink

m=1
Does this remind us of something? Sure, it is matrix multiplication! Thus,
the association

T [x“ x”} (3.31)

T21 T22
preserves multiplication. Clearly, it also preserves/respect addition, and mul-
tiplication by scalars (elements of F). Thus, we have identified F[S;]us as an
algebra of matrices.

However, there is something not clear yet: what kind of objects are the
entries of the matrix [z;;]7 Since we know that F[Ss]us is a 4-dimensional
vector space over I it seems that the entries of the matrix should essentially
be scalars drawn from F. To see if or in what way this is true, we need to
explore the nature of the quantities

Tk = Y; XYk with x € F[Ss]us.
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We have reached the ‘shut up and calculate’ point; for
z=p(c—1)+y( = 1)+ ¢(c—V)r +4(c* = 1)r,

as in (3.21), the matrix [x;;] works out to

Fu 20121 _ [ =3B+ + o+ ) (B=7=0+)3(1+7)(c—c)
To1 Ta2 (5—7—615—@5)}1(1—7“)(0—02) —%(5+7—¢—(¢)92)
3.32

Perhaps then we should associate the matrix

f%w+v+¢+w> B—v—0+¢)
B=v=0d—¢) —3B+7—0—1)

to x € F[S3]us? This would certainly identify F[S3]us, as a vector space, with
the vector space of 2 x 2 matrices with entries in F. But to also properly
encode multiplication in F[S3]us into matrix multiplication we observe, after
calculations, that

1 5 1 o 3
J04n)e= A1 -ne-) =~y

The factor of —3/4 can throw things off balance. So we use the mapping

L _35+7+¢+¢)—?5—7—¢+¢) (3.33)
2

B=v=¢—-¢) —3(B8+7—0-9)

This identifies the algebra F[S;]us with the algebra of all 2 x 2 matrices with
entries drawn from the field [F:

]F[Sg]Ug ~ Matrgxg(]F) (334)
Thus, we have completely worked out the structure of the algebra F[S3]:
F[Sg] ~FxFx Matrgxz(]F) (335)

where the first two terms arise from the one-dimensional algebras F[S3]u;
and F[Sg]ﬂg

What are the lessons of this long exercise? Here is a summary, writing A
for the algebra F[Ss]:
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e We found a basis of the center Z of A consisting of idempotents uy, us,
us. Then A is realized as isomorphic to a product of smaller algebras:

A~ Auy X Aug X Aus

e Au; and Au, are 1-dimensional, and hence carry 1-dimensional irre-
ducible representations of F[Ss] by left-multiplication.

e The subspace Auz was decomposed again by the method of idempo-
tents: we found orthogonal idempotents ¥, yo which add up to us, and
then

Auz = Ays & Ay,

with Ay; and Ay, being irreducible representations of S3 under left-
multiplication

e The set
{y;xyr | x € Aus}

is a 1-dimensional subspace of Ayy, for each j, k € {1,2}.

e There is then a convenient decompostion of each z € Aus as

T =2Y1 + NxTY2 + Yoxy1 + Y22Y2,

which suggests the association of a matrix to z:
T X

oy |1 T2

T21 T22

e Aug, as an algebra, is isomorphic to the algebra Matry,o(TF).

Remarkably, much of this goes through even when we take a general finite
group G in place of S3. Indeed, a lot of it works even for algebras which
can be decomposed into a sum of subspaces which are invariant under left-
multiplication by elements of the algebra. In Chapter 5 we will traverse this
territory. If you have worked through the example of F[S;] then the sights
and sounds in the terrain of more general algebras will produce a deja vu
feeling.

Let us not forget that all the way through we were dividing by 2 and 3,
and ideed even in forming the idempotents we needed to divide by 6. So
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for our analysis of the structure of F[S3] we needed to assume that 6 is not
0 in the field F. What is special about 67 It is no coincidence that 6 is
just the number of elements of S3. In the more general setting of F[G], we
will need to assume that |G|1p # 0 in F, to make progress in understanding
the structure of F[G]. In fact we will need to assume more about F to have
full understanding of F[G]; a catch-all strategy is to assume that the field is
algebraically closed, but often one gets by with much less.

There are also some other observations we can make, which are more
specific to S3. For instance, the representation on each irreducible subspace
is given by matrices with integer entries! This is not something we can expect
to hold for a general finite group. But it does raise a thought: perhaps some
groups have a kind of ‘rigidity’ which forces irreducible representations to be
realizable in suitable integer rings? (Leap ahead to Exercise 6.4 to dip your
foot in these waters.)

3.6 When F|G] is Semisimple

Closing out this chapter, we will prove a fundamental structural property
of the group algebra F[G] which will yield a large trove of results about
representations of G. This property is semisimplicity.

A module E over a ring is semisimple if for any submodule F' in E there
is a submodule F, in E, such that E is the direct sum of F' and F,.. A ring
is semisimple if it is semisimple as a left module over itself.

If E is the direct sum of submodules F' and F., then these submodules
are said to be complements of each other.

Our immediate objective is to prove Maschke’s theorem:

Theorem 3.6.1 Suppose G is a finite group, and F a field in which |G| # 0.
Then every module over the ring F[G] is semisimple. In particular, F[G] is
semisimple.

Note the condition that |G| is not divisible by the characteristic of F. We
have seen this condition arise in the study of the structure of F[S;]. In fact,
the converse of the above theorem also holds: if F|G] is semisimple then the
characteristic of F is a divisor of |G|; this is Exercise 2.3.
Proof. Let E be an F[G]-module, and F' a submodule. We have then the
F-linear inclusion

j:F—=FE
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and so, since I/ and F' are vector spaces over F, there is an F-linear map
P:E—F

satisfying
Pj=idp. (3.36)

(Choose a basis of F' and extend to a basis of E. Then let P be the map
which keeps each of the basis elements of F' fixed, but maps all the other
basis elements to zero.)

All we have to do is modify P to make it F[G]-linear. The action of G on
Homp(F, E) given by

(9,A) = gAg™" (3.37)
keeps the inclusion map j invariant. Consequently,
gPg'j = gPjg ! =idp for all g € G. (3.38)
So we have
Pyj = idp,

where F is the G-averaged version of P:

1
Py= =Y 9P
Gl =

here the division makes sense because |G| # 0 in F. Clearly, P, is G-invariant
and hence F|G|]-linear. Moreover, just as P, the G-averaged version P, is also
a ‘projection’ onto F' in the sense that Pov = v for all v in F. Therefore, F
splits as a direct sum of F[G]-submodules:

E=F&F,

where

Fc :kerPo

is also an F[G]-submodule of E. Specifically, we can decompose any = € E
as
= Py +x— FPox
—~  ——
€F €F.
Thus, every submodule of an F|G]-module has a complementary submod-
ule. In particular, this applies to F[G] itself, and so F[G] is semisimple.
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The version above is a long way, in evolution of formulation, from Maschke’s
original result [57] which was reformulated and reproved by Frobenius, Burn-
side, Schur, and Weyl (see [15, I11.4]).

The map
FIG] - F[G] : x> & =) x(g)g™" (3.39)
9eG
turns left into right: -
(zy) = §i.

This makes every right F[G]-module a left F[G]-module by defining the left

module structure through
1

g-v=vg -,
and then every sub-right-module is a sub-left-module. Thus, F[G], viewed as
a right module over itself, is also semisimple.

Despite the ethereal appearance of the proof of Theorem 3.6.1, the argu-
ment can be exploited to obtain a slow but sure algorithm for decomposing
a representation into irreducible components, at least over an algebraically
closed field. If a representation p on E is not irreducible, and has a proper
non-zero invariant subspace F' C E, then starting with an ordinary linear
projection map P : F — F we obtain a G-invariant one by averaging:

Zp )" Pp(g)

gEG

Having this F, essentially provides us with a decomposition
E =ker Py + ker(I — B)

into complementary, invariant subspaces F' and (I — Fy)(F) of lower dimen-
sion than F and so, repeating this procedure breaks down the original space
E into irreducible subspaces. But how do we find the starter projection P?
Since we have nothing to go on, we can try taking any linear map 7' : £ — F,

and average it to
Z p(9) "' Tplg
gEG

Then we can take a suitable polynomial in 7y which provides a projection
map; specifically, if \ is an eigenvalue of Ty (and that always exists if the field



Representing Finite Groups 12/05/2010 79

ia algebraically closed) then the projection onto the corresponding eigensub-
space is a polynomial in 7j and hence is also G-invariant. This provides us
with Fp, without needing to start with a projection P. There is, however,
still something that could throw a spanner in the works: what if Tj turns out
to be just a multiple of the identity I7 If this were the case for every choice
of T' then there would in fact be no proper non-zero G-invariant projection
map, and p would be irreducible and we could halt to program right there.
Still, it seems unpleasant to have to go searching through all endomorphisms
of E for some T which would yield a Ti which is not a multiple of I. Fortu-
nately, we can simply try out all the elements in any basis of Endg(E), for if
all such elements lead to multiples of the identity then of course p must be
irreducible.

So we can sketch a first draft of an algorithm for breaking down a given
representation into subrepresentations. For convenience, let us assume the
field of scalars is C. Let us choose an inner product on E which makes
each p(g) unitary. Instead of endomorphisms of the N-dimensional space F,
we work with N x N matrices. The usual basis of the space of all N x N
matrices consists of the matrices Ej;, where Ej; has 1 at the (j, k) position
and 0 elsewhere, for j,k € {1,...,N}. It will be more convenient to work
with a basis consisting of hermitian matrices. To this end, replace, for j # k,
the pair of matrices Ejj, Ey; by the pair of hermitian matrices

Ej+ By, i(Ej — Eiy).

This produces a basis By, ..., By2 of the space of N x N matrices, where each
Bj is hermitian. The sketch algorithm is:

e For each 1 < k < N2, work out

’—(1;| > p(9)Brp(g)™

geG

(which, you can check, is hermitian) and set Ty equal to the first such
matrix which is not a multiple of the identity matrix .

e Work out, using a suitable matrix-algebra ‘subroutine’, the projection
operator Py onto an eigensubspace of Tj.

Obviously, this needs more work to actually turn into code. For details and
more on computational representation theory see the papers of Blokker and
Flodmark [5] and Dixon [23, 24].



80 Ambar N. Sengupta

3.7 Afterthoughts: Invariants

Though we focus almost entirely on finite dimensional representations of a
group, there are infinite dimensional representations which are of natural
and classic interest. Let p be a representation of a finite group G on a finite
dimensional vector space V over some field F. Then each tensor power V&
carries the representation p®":

P (9) (11 ® ... @ v,) = p(g)v1 @ ... R p(g)v,. (3.40)

Hence the tensor algebra

V)= € v (3.41)

ne{0,1,2,...}

carries the corresponding direct sum representation of all the tensor powers
p®", with p®° being the trivial representation on V®° = [F. The group S, of
all permutations of [n] acts naturally on V®" by

0 (1 ®...QU) = V1) ® ... ® Up—1().

The subspace of all x € V®" which are fixed, with o -z =z for all o € S,
is the symmetric tensor power V®”; for n = 0 we take this to be simply F.
Clearly, p®" leaves V®" invariant, and so the tensor algebra representation
restricts to the symmetric tensor algebra

svy= @ ven (3.42)

nef0,1,2,..}

There is a more concrete and pleasant way of working with the symmetric
tensor algebra representation. For this it is convenient to work with the dual
space V'’ and the dual representation p’ on V’. Choosing a basis in V', we
denote the dual basis in V' by Xj,..., X,,, which we could also think of as
abstract indeterminates. An element of the tensor algebra S(V’) is then a
finite linear combination of monomials X;".. . X" with (wy,...,w,) € Z%,.
Thus, S(V') is identifiable with the polynomial algebra F[X;, ..., X,]. The
action by p’ is specified through

def _
9X; = p(9)X; =X 0p(g) "
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A fundamental task, the subject of invariant theory, is to determine the set
I, of all polynomials f € F[Xy,..., X,,] which are fixed by the action of G.
Clearly, I, is closed both under addition and multiplication, and also contains
all scalars in F. Thus, the invariants form a ring, or, more specifically, an
algebra over F. A deep and fundamental result of Noether shows that there
is a finite set of generators for this ring. The most familiar example of this is
for the symmetric group S,, acting on polynomials in X,..., X,, in the natural
way specified by 0 X; = X;-1(;). The ring of invariants is generated by the
elementary symmetric polynomials

Eu(X1,.. X)) =Y [

BeP, jeB

where Py is the set of all k-element subsets of [n], and k € {0,1,...,n}.
Another choice of generators is given by the power sums

Nk(Xb s JXTL) = ZXJIC
j=1

for k € {0,...,n}. The Jacobian

AN, AN, 1 1 o 1
S X, Xy ... X,
det | © ¢ | =nldet
9N, 9N, . . Ce .
a_)(l .. aXn X{L_]_ X;l_]_ o X;Z‘_l (343)
=nl J] X-X)),
1<j<k<n

where in the last step we have the formula for the Vandermonde determinant
which we will meet again in other contexts. The simple observation that the
determinant is not identically 0 already has a substantial consequence: the
polynomials Ny,..., N,, are algebraically independent, for if f is a polynomial
in n variables, of least total degree, for which f(Ny,..., N,), as a polynomial
in the X, is 0, then the row vector

[0 f (N, Ny, 0uf (N, -, )]

multiplied on the right by the Jacobian matrix in (3.43) is 0, and so, since the
determinant of this matrix is not 0, each 0;f(Ny,...,N,) is 0, from which,
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by minimality of the degree of f, it can be shown that f is constant and
hence 0. The factorization that takes place in the last step in (3.43) is no
coincidence; it is an instance of a deeper fact about reflection groups, of
which the symmetric group S, is an example.

The slim but carefully detailed volume of Dieudonneé and Carrell [22]
and the beautiful text of Neusel [60] are excellent introductions to this deep
subject.

Exercises

1. Let G be a finite group, FF a field, and G* the set of all non-zero multi-
plicative homomorphisms G — F. For f € G*, let

sp=> flg Mg

geG

Show that Fs; is an invariant subspace of F[G]. The representation of
G on Fs; given by left-multiplication is f, in the sense that gv = f(g)v
for all g € G and v € Fsy.

2. Show that if G is a finite group containing more than one element, and
[F any field, then F[G] contains nonzero elements a and b whose product
ab is 0.

3. Suppose F is a field of characteristic p > 0, and G a finite group with
|G| a multiple of p. Let s =3 ;g € F[G]. Show that the submodule
F[G]s contains no nonzero idempotent and conclude that F[G]s has no
complementary submodule in F[G]. (Exercise 4.14 pushes this much
further.) Thus F[G]is not semisimple if the characteristic of F is a
divisor of |G].

4. For any finite group G and commutative ring R, explain why the aug-
mentation map

€ RG] = R:> weg— Y x4 (3.44)

is a homomorphism of rings. Show that ker ¢, which is an ideal in R[G],
is free as an R-module, with basis {g — 1 : g € G, g # e}.
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10.

. Work out the multiplication table specifying the algebra structure of

the center Z(Ds) of the dihedral group Ds. Take the generators of the
group to be ¢ and r, satisfying ¢® = r?> = ¢ and rer~! = ¢!, Take as
basis for the center the conjugacy sums 1, C' = c+c*, D = 2+ ¢, and
R=(1+c+cE+cS+cM)r

Determine all the central idempotents in the algebra F[Dj;], where Ds is
the dihedral group of order 10, and I is a field of characteristic 0 which
contains a square-root of 5. Show that some of these form a basis of the
center Z of F[D5]. Then determine the structure of the algebra IF[ D5 as
a product of two 1-dimensional algebras and two 4-dimensional matrix
algebras.

Let G be a finite group, IF an algebraically closed field in which |G|1F # 0.
Suppose F is a simple F|[G]-module. Fix an F-linear map P : F — FE
which is a projection onto a one-dimensional subspace V' of F, and let
Py = ﬁ deG gPg~!. Show by computing the trace of Py and then
again by using Schur’s Lemma (specifically, the second part of Theorem
3.3.1) that dimg £ is not divisible by the characteristic of F.

For g € G, let R, : F|G] — F[G] : a — ga. Show that

G| ifg=e

0 gz (3.45)

Tr(R,) = {

For g,h € G, let Tiyp) : F|G] — F[G] : a — gah™!'. Show that

0 if g and h are not conjugate;
Tr(Tign) = {@

B if g and h belong to the same conjugacy class C'.

(3.46)

Let G be a group and p an irreducible representation of G on a finite
dimensional complex vector space V. Assume that there is a hermitian
inner product (-,-) on V' which is invariant under G, thus making p
a unitary representation. Assume, moreover, that there is a nonzero
symmetric bilinear mapping

S:VxV —=C,
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which is G-invariant:

S(p(g)v, plg)w) = S(v,w) forall v,w € V and g € G.

For v € V' let S,(v) be the unique element of V' for which

(i)

(w, Si(v)) = S(w,v) forallwe V. (3.47)
Check that S, : V — V is conjugate linear, in the sense that
Si(av + w) = aS,(v) + Si(w)

for all v,w € V and a € C. Consequently, S? is linear. Check
that

S«(p(g)v) = p(g)(Siv)
and
S2p(g) = plg)S?
forall g e Gandv e V.

Show from the symmetry of S that S? is a hermitian operator:
(S%w,v) = (S,v, S,w) = (w, S2v)

for all v,w € V.

Since S? is hermitian, there is an orthonormal basis B of V rela-
tive to which S? has all off-diagonal entries 0. Show that all the
diagonal entries are positive.

Let Sy be the unique linear operator V' — V which, relative to
the basis B in (iii), has matrix which has all off diagonal entries 0
and the diagonal entries are the positive square roots of the cor-
responding entries for the matrix of S2. Thus, Sy = (52)'/2 in the
sense that S3 = S? and Sy is hermitian and positive: (Syv,v) >0
with equality if and only if v = 0. Show that

Sop(g) = p(g)So for all g € G,

and also that Sy commutes with S,.
Let
C=5,85" (3.48)

Check that C' : V — V is conjugate linear, C? = I, the identity
map on V', and Cp(g) = p(g)C for all g € V.
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(vi)

(vii)

(viii)

(ix)

By writing any v € V' as
S0+ C0) i (v — O)
v=—(v v)+i—(v—Cuv
2 2i ’

show that
V =Vk ®iVg,

where Vg is the real vector space consisting of all v € V' for which
Cv =w.

Show that p(g)Vg C Vi for all g € G. Let pg be the representation
of GG on the real vector space Vi give by the restriction of p. Show
that p is the complexification of pg. In particular, there is a basis
of V relative to which all matrices p(g) have all entries real.

Conversely, show that if there is a basis of V' for which all entries
of all the matrices p(g) are real then there is a nonzero symmetric
G-invariant bilinear form on V.

Prove that for an irreducible complex character x of a finite group,
the Frobenius-Schur indicator has value 0 if the character is not
real-valued, has value 1 if the character arises from the complexi-
fication of a real representation, and has value —1 if the character
is real-valued but does not arise from the complexification of a
real representation.

11. Prove the Vandermonde determinant formulas:

det | . S T = I xe-x). (3.49)

1<j<k<n
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Chapter 4

More Group Algebra

We are ready now to plunge into a fuller exploration of the group algebra
F[G]. The group G is, for us, always finite, and the field F will often be
required to satisfy some standard conditions: its characteristic should not be
a divisor of the order of the group, and, for some results, we need the field
to be algebraically closed.

Recall that F[G] is the vector space, over the field F, with the elements
of G as basis. Thus, its dimension is |G|, the number of elements in G. The
typical element of F[G] is of the form

T = ngg,

geG
with each z, in F. The multiplication map
F[G] x F[G] = F[G] : (w,y) = ay = ) (Z xgh—lyh> g
geG \hed

is bilinear, associative, and has 1 = le, where e is the identity element of G,
has multiplicative identity. Thus, F[G] is an algebra over the field F.
The regular representation p,eg of G associates to each g € G' the map

preg(g) : FIG] = FIG] : z — gz = thgh (4.1)

for all elements x = >, _~x,h in F[G]. It is very useful to view a rep-
resentation p of G on a vector space E as specifying, and specified by, an

87
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F[G]-module structure on E:

(z ) 0= 3 aplae

geG geG

for all v € E and all a(g) € F, with g running over the finite group G. With
this notation, we can stop writing p and write gv instead of p(g)v. The trade-
off between notational ambiguity and clarity is worth it. A subrepresentation
then is just a submodule. An irreducible representation F corresponds to a
simple module, in the sense that £ # 0 and E has no submodules other than 0
and F itself. We will use the terms ‘irreducible’ and ‘simple’ interchangeably
in the context of modules.

Inside the algebra F[G], viewed as a left module over itself, a submodule
is a left ideal, which means a subset closed under addition and also under
multiplication on the left by elements of F[G]. A simple submodule of F|G]|
is thus a simple left ideal, in the sense that it is a nonzero left ideal which
contains, as subset, no proper nonzero left ideal.

In the previous chapter we saw how the group algebra F[S3] decomposes
as a product of smaller algebras, each of the form F[Ss]u for some idempotent
element u in the center of F[S3], and then we decomposed each F[S3]u as a
direct sum of simple submodules which are also of the form F[S;]y with y
idempotent but not necessarily central. In this chapter we will develop this
procedure for the group algebra of a general finite group.

4.1 Looking Ahead

Let us take a quick look at the terrain ahead. We work with a finite group G
and a field F in which |G|1r # 0. The significance and endlessly useful con-
sequence of this assumption about |G| is that the algebra F[G] is semisimple.

Semisimplicity says that any submodule of F[G] has a complementary
submodule, so that their direct sum is all of F[G]. Thus it is no surprise, as
we shall prove in Proposition 4.3.1, that F[G] splits up into a direct sum of
simple left ideals M;:

FIGl=M & --- & M,y,.

By Schur’s Lemma (Theorem 3.3.1) it follows that for any pair j, k, either
M; and M, are isomorphic as F[G]-modules, or there is no non-zero module
morphism M; — M. Clearly it makes sense then to pick out a maximal set
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of non-isomorphic simple left ideals L4, ..., L, and group the M;’s together
according to which L; they are isomorphic to. This produces the decompo-
sition

FlG]=Liu+-4 L, + -+ La+-+ L,

-~

Al As

which is a direct sum, with the first d; left ideals being isomorphic to L, the
next dy to Lo, and so on, with the last d; ones isomorphic to L,. Thus,

FG]~ L' & @ L. (4.2)

We will show that each A; is a two sided ideal, closed under multiplication
both on the left and on the right by elements of F[G]. It also contains an
idempotent u; which serves as a multiplicative unit inside A;. Thus, each A;
is an algebra in itself. Moreover, it is a minimal algebra, in the sense that
the only two sided ideals inside it are 0 and A;. Furthermore, using Schur’s
Lemma again, we will show that

AA,=0  ifj#k

All this leads to an identification of F[G] with the product of the algebras
Ail

i=1
by identifying (as, ..., as) with the sum ay + - - - + as.

A central result is the realization of F|G| as an algebra of matrices. The
way this works is that for each b € F|G] we have the map

ry : F[G] — F[G] : © — 2b

and the key point here is that r;, is F[G]-linear, on viewing F[G] as a left
module over itself. The decomposition of F[G] as a direct sum in (4.2):

FG~L{ @ & L

provides a matrix for r, whose entries are F[G|-linear maps L; — Ly; by
Schur’s Lemma, these are all 0 except, potentially, when j = k. As we will
prove later, Endgi)(Ly) is a division algebra. This realizes F[G] as an algebra
of block-diagonal matrices, with each block being a matrix with entries in a
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division algebra (these algebras being different in the different blocks). In
the special case where [ is algebraically closed, the division algebras collpase
down to I itself, and F[G] is realized as an algebra of block-diagonal matrices
with entries in F. Thus r, has a block diagonal form and we have

] 0 0 - 0
0 [b] 0 --- 0

b & = : R : (4.3)
0 0 0 - [b]

Decomposing F[G] into simple left ideals provides a decomposition of the
regular representation into irreducible components. The interplay between
the regular representation, as given by multiplications on the left, and the
representation on F[G] by multiplications on the right is part of a powerful
larger story which we will see recurring later in Schur-Weyl duality.

If you are eager to hike ahead on your own you can explore along the
path laid out in Exercise 4.5, in which, to add to the adventure, you are not
allowed to semisimplify!

4.2 Submodules and Idempotents

Let us begin with a closer look at why idempotents arise in constructing
submodules of F[G]. Idempotents were introduced and used with great ef-
fectiveness by Frobenius in unravelling the structure of F[G].

Recall that an idempotent in the algebra F[G] is an element v whose
square is itself:

’1}2:1).

Idempotents u and v are said to be orthogonal if
uv = vu = 0.

The sum of two orthogonal idempotents is clearly again an idempotent. An
idempotent is said to be primitive or if it is not zero and cannot be expressed
as a sum of two nonzero orthogonal idempotents.

An element v in a left ideal L is called a generator if L = F[G]v. Here is
a very useful little fact:

for idempotent y, an element x lies in F|G]y if and only if xy = z. (4.4)
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(You can verify this as a moment’s-thought exercise.)
With semisimplicity, every left ideal has an idempotent generator:

Proposition 4.2.1 Let G be any finite group and F a field in which |G|1r # 0.
If L is a left ideal in the algebra F[G] then there is an idempotent element
y € F[G] such that

L =TF|[Gly.

Proof. By semisimplicity, L has a complementary left ideal L. such that F[G]
is the direct sum of L and L.. Decompose 1 € F[G] as

l=v+4+w,
where v € L and w € L.. Then for any = € F[G],

r=_xv + TWw
~N =~
€L €L.

and so z lies in L if and only if x is, in fact, equal to xy. Hence, L = F[G]y,
and also y equals yy, which means that y is an idempotent.

Even without semisimplicity, indecomposability of idempotents translates
to indecomposability of the generated left ideals:

Proposition 4.2.2 Let G be any finite group and F a field. An element
y € F[G] is an indecomposable idempotent if and only if F[Gly cannot be
decomposed as a direct sum of two distinct non-zero left ideals in F[G].

Proof. Suppose y is an indecomposable idempotent, and F[G]y is the direct
sum of left ideals L; and M;. Then

Y=y +u (4.5)

for unique y; € Ly and vy € M;. Since y; € Ly C F[Gly, we can write y; = ay
for some a € F[G] and then, since y is an idempotent, we have y;y = y; .
Left-multiplying (4.5) by y; produces

V1Y = Y1iy1 + Y101
~ N <
=y1 cly eMy

and so, again by unique decomposition,

yi=vy; and yv; =0.
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Similarly, vy is also an idempotent and v1y; is 0. Since y is indecomposable,
at least one of y; and vy is 0. Say v; = 0. But then y = y;, and so F[G|y C Ly,
which implies M; = 0.

For the converse, suppose y = y; + v;, where y; and v; are nonzero
orthogonal idempotents. For any = € F[G]y, we have x = ay for some
a € F[G], and then

SRS
€F[Glyr  €F[Glu

So F[G]y is the sum of the left ideals F[G]y,; and F[G]v;. This sum is direct
because if
ayr + bUl =0

then, on right-multiplying by the idempotent y; which is orthogonal to vy,
we have ay; = 0, and then bvy is also 0. Finally, note that F[G]y, contains

y1 and so is not {0}, and similarly also F[G]v; # {0}.

4.3 Deconstructing F|G|, the Module

Semisimplicity decomposes F[G] into simple left ideals:

Proposition 4.3.1 For any finite group G and field F in which |G|1p # 0,
the algebra F|G], viewed as a left module over itself, decomposes as a direct

sum of simple submodules. There are indecomposable orthogonal idempotents
€1, ..., em € F[G] such that

1:€1+"'+6m7

and the simple left ideals F[Gley,..., F|Gle,, provide a decomposition of F|G]|
as a direct sum:

FIG] = F[Gle, @ - - - @ F[Glenm.

In the language of representations, this decomposes the regular represen-
tation into a direct sum of irreducible representations.
Proof. Choose a submodule M; in F[G]| which has the smallest non-zero
dimension as a vector space over F. Then, of course, M; has to be a simple
submodule.

Take now the largest integer m such that there exist simple submodules
My, ..., M,,, such that the sum M = M; +---+ M, is a direct sum; such an
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m exists because F[G] is finite dimensional as a vector space over F. If M is
not all of F[G] then there is, by semisimplicity, a complementary submodule
N which is not zero. Inside N choose a submodule M,, 1 of smallest positive
dimension as vector space over F. But then M,,,; is a simple submodule
and the sum M; + --- + M, is direct, which contradicts the definition of
m. Hence, M is all of F[G]:

FIGl=M; & --- & M,.
Splitting the element 1 € F[G] as a sum of components e; € M;, we have
1:€1+"'+€m.
Then for any = € F[G],
Tr= zey + -+ Te,,
~— <~
€My eMpm,

and so z lies in M; if and only if x = xze; and ze, = 0 for all £ # j. This
means, in particular, that

e?:ej, and eje, =0 if j#k,

and
M; = F[Gley,

for all j,k € {1,...,m}.
We can make another observation here, for which we use the versatile
power of Schur’s Lemma (Theorem 3.3.1).

Proposition 4.3.2 Let G be a finite group and F a field in which |G|1g # 0.
View F[G] as a left module over itself, and let My, ..., M,, be simple submod-
ules whose direct sum is F[G]. If L is any simple submodule in F[G] then L
is isomorphic to some Mj;, and is a subset of the sum of those M; which are
1somorphic to L.

Proof. Since F[G] is the direct sum of the submodules M;, every element
z € F[G] decomposes uniquely as a sum

T= T1 t-+ Ty,
~~~ ~~~
€My eEMm
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with z; € M; for each j € {1,...,m}. Thus there are the projection maps
WjIF[G]%MjIJJHLC]’.

The uniqueness of the decomposition, along with the fact that ax; € M; for
every a € F[G], implies that 7; is linear as a map between F[G]-modules:

mi(ax +y) = am;(z) + 7;(y)

for all a,z,y € F[G]. Consider now a simple submodule L C F[G]. The
restriction 7;|L is an F[G]-linear map L — M;. Then by Schur’s Lemma
(Theorem 3.3.1), this must be either 0 or an isomorphism. Looking at any
x € L, as a sum of the components z; = m;(z), the components which lie
in the M} not isomorphic to L are all zero, and so at least one of the other
components must be non-zero when x # 0. This implies that L is isomorphic
to some M, and lies inside the sum of those M; to which it is isomorphic.
QED

4.4 Deconstructing F|G|, the Algebra

We turn to the task of decomposing F[G], viewed now as an algebra, as a
product of smaller, simpler algebras. Recall that an algebra, over a field
IF, is a vector space over F equipped with a bilinear multiplication map
Ax A— A: (a,b) — ab, which is associative and has an identity element
1#0.

If S and T are subsets of F[G], then by ST we mean the set of all elements
which are finite sums of products st with s € S and t € T"

ST = {Sltl + -t ospty s k€ {1,2, }, 515y Sk € Sy t1, .yl € T}

A subset J C A for which J + J C J, is a left ideal if AJ C J; it is a right
ideal if JA C J, and is a two sided ideal if it is both a left ideal and a right
ideal.

Let us make a few starter observations about left ideals.

Proposition 4.4.1 Let G be a finite group, F a field, and L a simple left
ideal in the algebra A = F[G]. Then :

(i) L =F[Glu for any non-zero u € L;
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(ii) if v € F[G] then either Lv is 0 or it is isomorphic to L, as left F|G]-
modules;

(iil) of M is a simple left ideal and LM # 0 then M = Lv for some v € F[G];

(iv) LA, which is the sum of all the right-translates Lv, is a two sided ideal
in F[G];

(v) if L and M are simple left ideals, and M is not isomorphic to L, then
(LA)(MA) = 0.

Notice, as a curiosity at least, that for once we do not need the semisimplicity
condition that |G| not be divisible by the characteristic of F.
Proof. If L is a simple left ideal and u € L is not zero then F[G]u is a
non-zero left ideal contained inside L and hence must be equal to L.

For any v € F[G], Lv is clearly a left ideal in F|G]. The map

f:L—>Lv:a— av

is F[G]-linear, and so ker f is a left ideal in F[G] contained inside L. Since L
is simple, Schur’s Lemma implies that either f = 0, which means Lv = 0, or
f is an isomorphism of L onto Lwv. Thus, either Lv is 0 or it is isomorphic,
as a left F|G|-module, to L.

Next suppose M is also a simple left ideal, and LM # 0. Choose u € L
and v € M with uv # 0. Then M = F[G]v and so Lv C M. Since M is
simple and Lwv, which contains uwv, is not 0, we have M = Lu.

It is clear that LA is both a left ideal and a right ideal.

Now suppose L and M are both simple left ideals, and (LA)(MA) # 0.
Then (Lz)(My) # 0 for some z,y € F|G|. Then Lz # 0 and My # 0, and
so Lx ~ L and My ~ M, by (ii). In particular, Lz and My are also simple
left ideals. Since LxMy # 0 it follows by (iii) that My is a right translate
of Lz, which then, by (ii), implies that Lz ~ My. But, as we have already
noted, Lx ~ L and My ~ M. Hence L ~ M.

Semisimplicity gives us a bit more: if F[G] is semisimple and L and M
are simple left ideals which are isomorphic as F[G]-modules then M is a
right translate of L. This is because semisimplicity implies L = F[G]y for an
idempotent y and so if f: L — M is an isomorphism of modules then

M = f(L) = f(Ly) = Lf(y),
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showing that M is a right translate of L. If we add up all simple left ideals
which are isomorphic to a given simple left ideal L, we get

> Lx = LF[G]

z€F[G]

and this is a two sided ideal, clearly the smallest two sided ideal containing

L. Such two sided ideals form the key structural pieces in the decomposition
of the algebra F[G].

Theorem 4.4.1 Let G be a finite group and F a field in which |G|1p # 0.
Then there are subspaces A, ..., As C F[G] such that each A; is an algebra
under the multiplication operation inherited from F[G], and the map

IHAJ %IF[G] : (al,...,as) = ap -+ ag
j=1

s an isomorphism of algebras. Moreover,
(i) every simple left ideal is contained inside exactly one of Ay, ..., As,

(i) A;jA,=0ifj#k

(iii) each A; is a two sided ideal in F|G]|
)

(iv) each A;j is of the form F[Glu;, with us, ..., us being orthogonal idempo-

tents, all lying in the center of the algebra F|G|, and with

U+ Fus=1

(v) every two sided ideal in F|G] is a sum of some of the Ay, ..., As,

(vi) each algebra A; is simple in the sense that the only two sided ideals of
Aj are 0 and A; itself,

(vil) no u; can be decomposed as a sum of two non-zero central idempotents.

This is a lot and the proof is lengthy, but not hard. Parts (i)-(iv), and also
(vii), hold even when F[G] is not semisimple; for this, following an alternate
route, you can work through Exercise 4.5.
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Proof. First view F[G] as a left module over itself. We saw in Proposition
4.3.1 that F[G] is a direct sum of a finite set of simple submodules My, ..., M,,.
Moreover, by Proposition 4.3.2, every simple submodule is isomorphic to one
of these submodules and also lies inside the sum of those M; to which it is
isomorphic. Thus, it would be good to group together all the M; which are
mutually isomorphic and form their sums.

Let Ly, ..., Ly be a maximal set of simple submodules among the M; such
that no two are isomorphic with each other. Now, for each j, set A; to be
the sum of all those M; which are isomorphic to L;. Then F[G] is the direct
sum of the submodules A;:

FGl=A & - & A, (4.6)

Let us keep in mind, from Proposition 4.3.2, that any simple submodule
which is isomorphic to L; actually lies inside A;. Thus, A, is the sum of all
the simple submodules which are isomorphic to L;. Since all such submodules
are right-translates L;y of L;, and conversely every right-translate L;y is
either 0 or isomorphic to L;, we have

From this it is clear that A; is also a right ideal.
By Proposition 4.4.1(v) it follows that

AjAL,=0 if j # k.
Thus, if z,y € F[G] decompose as
T=ai+ A+ T, Y=yt s
with z;,y; € A;, for each j, then
TY = T1Y1 + 0 T TsYs.
Let us now express 1 as a sum of components u; € A;:
l=u 4+ -+ us.
Since AjAy is 0 for j # k, it follows on working out the product u;1 that

uj; = u? and  ujur =0 for all j,k € {1,..., s} with j # k.
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Thus, the u; are orthogonal idempotents which add up to 1.
For z € F|G] we have

r=zl =2xu; + - zU,,

which gives the decomposition of  into the component pieces in the A;, and
also shows that z lies inside A; if and only if zu; is  itself; hence,

A; =F[Glu, for all j € {1, ..., s}.

Clearly, u; is the multiplicative identity element in A;, which is thus an
algebra in itself. Note that if u; were 0 then A; would be 0 and this is
impossible because A; is a sum of simple, hence non-zero, modules.

It is now clear that the mapping

HAj %F[G] : (ala'--aas) = a;+ -+ a
Jj=1

is an isomorphism of algebras.
Let us check that each u; is in the center of F[G]. For any = € F[G] we
have

€A EAs

Comparing with the decomposition ‘on the left’

r=x1=xu; +---+ U,
~—~ ~—~

€Ay €A

and using the uniqueness of decomposition of F|G] as a direct sum of the A;,
we see that x commutes with each u;. Hence, u, ..., u, are all in the center
of F[G].

Now consider a two sided ideal B # 0 in F[G]. Let j € [s]. The set BA;,
consisting of all sums of elements ba; with b drawn from B and a; from A;,
is a two sided ideal and is clearly contained inside BN A;. If BA; contains
a non-zero element = then, working with a minimal left ideal L contained in
F[G]x C BA;, it follows that BA; contains all right translates of L; thus,
if BA; # 0 then BA; D Aj, and hence BA; = A;. Thus, looking at the
decomposition

B =BA=BA;+---+ BA,,
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we see that B is the sum of those A; for which BA; # 0.

Now we show that the algebra A; is minimal in the sense that any two
sided ideal in it is either 0 or A;. Suppose J is a two sided ideal in the algebra
A;. For any = € F[G], and y € A;, we know that zy equals z;y, where z;
is the component of x in A; in the decomposition of A as the direct sum
of Ay,...,As. Consequently, any left ideal within A; is a left ideal in the full
algebra F|G]. Similarly, any right ideal in A; is a right ideal in F[G]. Hence a
two sided ideal J inside the algebra A; is a two sided ideal in F[G] and hence
is a sum of certain of the ideals A;. But these ideals are complementary and
J lies inside A;; hence, J is equal to A;.

Finally, let us show that the central idempotent generators u; are inde-
composable within the class of central idempotents. Suppose

Uj = U+ v,

where u and v are orthogonal idempotents which are in the center of F|G].
Then
U =uu+uv =u?+0=u,

and so

Furthermore, since u is central, the left ideal F[G]u is also a right ideal. Being
a two sided ideal lying inside A; it must then be either 0 or A; itself. If F[G]u
is 0 then u = 1u is 0. If u # 0 then F[G]u = A; and so u; = zu for some
r € F[G], and then v = u;v = zuv is 0. Thus, in the decomposition of u;
into a sum of two central orthogonal idempotents one of them must be 0.
QED

A finite dimensional algebra B, containing 1 # 0, is said to be simple if
the only two sided ideals it contains are 0 and B.

Thus, we have decomposed the algebra F[G] into a product of simple
algebras. Naturally, the next task is to determine the structure of simple
algebras. But before turning to that we note the following uniqueness of the
decompositon:

Theorem 4.4.2 Let G be a finite group and F a field in which |G|l # 0.
Suppose By, ..., B, C F|G], where each B; is non-zero, closed under addition
and multiplication, and contains no non-zero proper two sided ideals, and
such that

[:BlXH'XBT_)F[G]:(b1>"-7br)'_>bl+"'br
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preserves addition and multiplication. Then r = s and
{By,....,B.} ={A, ..., A},

where Ay, ..., As are the two sided ideals in F|G| described in Theorem 4.4.1.

Proof. The fact that I preserves multiplication implies that
B;B, =0 if 7 #£ k.
Each B, is a two sided ideal in F[G], because
BB; Cc BiBj+---B,B; =0+ B,;B; + 0 C B,

and, similarly, B;B C B;.

Then, by Theorem 4.4.1, each B; is the sum of some of the two sided
ideals A;. The condition that B; contains no proper nonzero two sided ideal
then simples that B; is equal to some A;. Hence, I maps

{(0,0,, bj ,O,,O) bj GB]}
j—th position

onto A;. Now the sets Ay, ..., A, are all distinct. Since the map [ is a bijection
it follows that By, ..., B, are all distinct. Hence r = s and { By, ..., B, } is the

same as {4, ..., As}.

4.5 As Simple as Matrix Algebras

We turn now to the determination of the structure of finite dimensional sim-
ple algebras. Recall that, by definition, such an algebra is # 0 and contains
no nonzero proper two sided ideal. We will revisit this topic in a more general
setting later. Wedderburn’s theorem identifies such an algebra as a matrix
algebra. For this we need to recall the notion of a division ring: this is a field
except that the requirement of commutativity of multiplication is dropped.

Suppose B is a simple, finite dimensional, algebra over the field F, and L
a left ideal in B of minimum positive dimension. Then L is simple. Let

D = Endg(L),
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which is the set of all B-linear maps f : L — L. By Schur’s Lemma, any
such f is either 0 or an isomorphism. Thus, D is a division ring: it is a
ring, with mutliplicative identity (# 0), in which every non-zero element has
a multiplicative inverse. Note that here D contains ' and is also a vector
space over [F, necessarily finite dimensional because it is contained inside the
finite dimensional space Endg(L).

Theorem 4.5.1 Let B be a finite dimensional simple algebra over a field F.
Then B is isomorphic to the algebra of n X n matrices over a division ring
D, for some positive integer n. The division ring is D = Endg(L), where L
is any simple left ideal in B, with multiplication given by composition in the
opposite order: fo., g=go f for f,g € Endg(L).

This fundamental result, evolved in formulation, grew out of the disser-
tations of Molien [58] and Wedderburn [73].

To indicate that the multiplication is in the opposite order to the standard
multiplication in Endg (L), we write

D = Endp(L).

The appearance of a division ring, as opposed to a field, might seem dis-
appointing. But much of the algebra here is a sharper shadow of synthetic
geometry, a subject nearly lost to mathematical history, where, logically if
not historically, division rings appear more naturally (that is, from fewer
geometric axioms) than fields.

Proof. There are two main steps in realizing B as an algebra of matrices.
First, we will show that B is naturally isomorphic to the algebra Endg(B)
of all B-linear maps B — B, with a little twist applied. Next we will show
by breaking B up into a direct sum of translates of any simple left ideal that
any element of Endp(B) can be viewed as a matrix with entries in D.

Any element b € B specifies a B-linear map

ry: B— B :xw— xb,
and b is recovered from r, by applying r;, to 1:
b=ry(1).
Conversely, if f € Endg(B) then

f(x) = f(zl) =z f(1) = ryqy(x) for all z € B.
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Thus b — 13 is a bijection B — Endg(B), and is clearly linear over the field
F. Let us look now at how r interacts with mutliplication:

Tarb(m) = ra<xb) = x(ba) = Tba(x)

Thus, the map b — 1, reverses multiplication. Then we have an isomorphism
of algebras
B — Endg(B)°PP,

where the superscript indicates that multiplication of endomorphisms should
be done in the order opposite to the usual.

Now let L be a left ideal in B of minimum positive dimension, as a vector
space over F. Then L is a simple left ideal. Now LB is a two sided ideal
in B, and so is equal to B. But LB is the sum of all right translates Lb
with b running over B. Let n be the largest integer for which there exist
bi,...,b, € B such that the sum Lb; + --- + Lb, is a direct sum. Note
that n > 1 and also that n < dimy B, which is finite by hypothesis. If
Lby + --- + Lb,, is not all of LB then there is some Lb not contained in
S = Lby + -+ Lb,, but then Lb NS = {0} by simplicity of Lb and this
would contradict the definition of n. Thus,

B=LB=Lby®---&®Lb,

Fixing, for each j € {1,...,n}, an isomorphism ¢; : L — Lb;, we have then
an isomorphism of left B-modules

O:L" — B:(ay,...,an) — ¢1(a1) + -+ + dnlay)
Then any b € B corresponds to a B-linear map
r=®" orod: " — L"

which gives rise to a matrix
[bjk]1<jhen;

where
bjr =prory,oi;j: L — L,

with pi : L™ — L being the projection onto the k-th component and

ij:L—=L":2—(0,..., _z_,..0).



Representing Finite Groups 12/05/2010 103

Note that
> iipy = idpn.
j=1

Now we have a key observation: each component b;y, is in Endg(L), and
1s thus an element of the division ring D. Thus, we have associated to each
b € B a matrix [b;;] with entries in D.

If a,b € B then

(ab)jk = pk(I)_lTabCI)ij

= kaD’lrbraq)ij

= Z pkq)ilrbq)’l’lplq)ilﬂlq)ij
=1

n
= E blkajl
=1
n
= E Q1 Oop bi-
I=1

(4.7)

Thus,
[(ab)i] = [aji][bu]

as a product of matrices with entries in the ring D which is Endg(L)°PP. It
is clear that there is no twist in addition:

[(a+b)jx] = [aj] + [bji]
Thus, the mapping
a v [ajx]

preserves addition and multiplication. Clearly it preserves multiplication by
scalars from F, and also carries the multiplicative identity 1 in B to the
identity matrix.

If [¢jk] is any n x n matrix with entries in D then it corresponds to the
B-linear mapping

n n
L™ — L": (I’l, ,[L’n) — (Z Cj1Zj, ..y chnxj>
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which, by the identification L™ ~ B, corresponds to an element f € Endg(B),
which in turn corresponds to the element ¢ = f(1) in B. This recovers ¢ from
the matrix [c;i].

In applying this to the simple algebras A; contained inside F[G] as two
sided ideals, we note that a simple left ideal L in A; is also a simple left
ideal when viewed as a subset of F|[G], because if € F[G] is decomposed as
Ty + -+ + x5, with ; € A; for each j, then

eL=(x14+ - +2,)L=0+2,L+0C L,

with the last inclusion holding because x; € A; and L is a left ideal in A;. In
fact, essentially the same argument shows that if f : L — L is linear over A;
then it is linear over the big algebra F[G]. Thus,

EndAi (L) = EndF[G] (L),

for any minimal two sided ideal A; in F[G] and simple left ideal L C A;.

To finish up, we focus on a case of great interest: when [ is algebraically
closed. In this case, the division ring D is simply F itself, identified with
F1p, with 1p being the multiplicative identity in D.

Theorem 4.5.2 If D is a finite dimensional division algebra over an alge-
braically closed field F then D =TF.

Proof. Identify F with the subset F1 in D, where 1 is the multiplicative
identity element in D. Suppose there is some x € D which is not in F. Note
that x commutes with all elements of F:

cx = c(xl) = x(cl) = xc,

for every ¢ € F. Since D is a finite dimensional vector space over I, there
is a smallest natural number n € {1,2,...} such that 1,z,...,2" are linearly
dependent over F. Thus,

"+ a" a1 v +a, =0

for some aq,...,a, € F. Since F is algebraically closed, there is a A € F such
that the polynomial X" + a; X" ! 4+ --. 4+ a, has a factor X — A. Then

(x —A)g(z) =0
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for some polynomial ¢(X) of degree n — 1. By definition of n, we know that
q(x) # 0, and so ¢(z) is invertible in D. Multiplying by ¢(z)~* on the right
we obtain x = A € F. Thus, every element of D is in F, and so D = F.

The result above is due to Wedderburn. There is another case where
something good happens, as proved also by Wedderburn [73]: if F is a finite
field then every finite dimensional division algebra over [F is also a field.

We have introduced the notion of splitting field for a group algebra. More
generally, a field [ is a splitting field for a finite dimensional F-algebra A if
for every simple A-module F, the only A-linear mappings E — E are of the
form cI, where I is the identity mapping on E and ¢ € F; more compactly,
the condition is that Ends(F) = FI.

4.6 Putting |G| back together

It is time to look back and see how all the pieces fit together to form the
algebra F[G]. We assume that G is a finite group and F is a field in which
|G|1F # 0. Then:

e [F[G] is a direct sum of simple left ideals.

e Choose a maximal collection of simple left ideals L, ..., Ly such that
no two are isomorphic to each other as F[G]-modules; let

A; = sum of all simple left ideals isomorphic to L;.

Then ach A; is a minimal two sided ideal in F[G], it is an algebra in
itself under the operations inherited from F[G], and in the algebra A;
the only two sided ideals are 0 and A;.

e The map
HAj — F[G] : (a1,...,a5) — a1 + -+ - + as
j=1

is an algebra-isomorphism of the product algebra szl A, onto the
group algebra F|G]; in particular,
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e There are orthogonal central idempotents uy, ..., us € F[G] such that

and
Uy + -+ us = 1.

No u; can be decomposed as a sum of two non-zero orthogonal central
idempotents.

Each A; is a direct sum of simple left ideals, and they can be chosen in
the following way:

A; =F[Glya @ - - - & F|Glyiq,
L.

where y;1,...,y;q, are orthogonal indecomposable idempotents which
add up to u,.

Fix an isomorphism L; — F[Gly;;, for each ¢ € [s] and j € [d;], and
using this, identify A; with

Li=La oL,
—_————

d;

as left modules over F[G]. Associating to each b € F[G] the right
multiplication

ry . FIG] — F[G] : . — xb
identifies F[G] with the algebra of F|[G]-linear maps F|G| — F[G]. Us-
ing the identification of F[G] with @3_,L%, the right multiplication
operator ry is specified by a matrix consisting of blocks By, ..., By going
down the main diagonal:

By 0 o --- 0
0 By, 0 --- 0
S

0 0 0 - B,

where each B; is a d; x d;-matrix with entries in the division algebra
D; = Endgg)(L;), and all other entries are 0.
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o [f the field F is algebraically closed then each division algebra D; co-
incides with IF, and so the entire group algebra F[G] is realized as an
algebra of matrices consisting of block-diagonal matrices.

Here is a central result of Frobenius that drops out from this analysis:

Theorem 4.6.1 If G is a finite group, and F an algebraically closed field in
which |G|1g # 0 in F, then

al=3 &, (48)
=1

where d; = dimyg L;, and L, ..., Ly is a maximal collection of simple left ideals
in F[G] such that no two are isomorphic as F[G]-modules.

Proof. We simply have to count the dimension, over F, of the algebra of
block matrices as described above, and equate it to dimp F[G] = |G].

Later we will prove that each d; is a divisor of |G|, and no d; is divisible
by the characteristic of FF.

4.7 The Mother of All Representations

Let p be an irreducible representation of a finite group GG on a vector space
V over a field F. Assume that |G|1ly # 0 in F. Then F[G] is semisimple, and
so F|G] is a direct sum of subspaces each of which is irreducible under pyeg.
In particular,

1:y1+.'.+yN7

for some ¥, ...,yny lying in the distinct irreducible subspaces. For any non-
zero v € V we then have

V=YV + -+ Ynv,

and so at least one of the terms on the right, say y;v, is non-zero, where y;
lies in a simple submodule L C F[G]. Then the map

L—V: iz~ plx)hv

is not zero, and is clearly a morphism from pye|L to p and so by Schur’s
Lemma (Theorem 1.7.2), it is an isomorphism. Thus, we have a remarkable
conclusion:
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Theorem 4.7.1 Suppose G is a finite group, and I a field in which |G|1g # 0.
Then every irreducible representation of G is equivalent to a subrepresenta-
tion of the regular representation preg of G on the group algebra F[G]. In
particular, every irreducible representation of a finite group is finite dimen-
stonal.

For an alternative proof see Exercise 4.1.

Thus, the regular representation is no ordinary representation: it contains
the pieces which make up all representations. If you think of what F[G] is,
the vector space with the elements of G as basis and on which G acts by
permutations through multiplication on the left, it is not so surprising that
it contains just about all there is to know about the representations of G.

When examining the structure of F[G] we observed that there is a finite
number s, indeed s < dimp F[G] = |G/, such that there are simple left ideals
Ly, ..., Ls in F[G], such that any simple left ideal is isomorphic as an F[G]-
module to exactly one of the L;.

Theorem 4.7.2 Suppose G is a finite group, andF a field in which |G|1g # 0.
Then there is a finite number s, and simple left ideals Ly, ..., Ly in F[G]
such that every irreducible representation of G is equivalent to the restriction
preg|Li for exactly one i € {1,...,s}. Moreover, if F is algebraically closed

then
Gl =) d;
i=1

where d; = dimy L;.

A remark about computing representations is in order. Recall the proce-
dure we sketched in section 3.6 for decomposing a representation into irre-
ducible components. If that procedure is applied to the regular representa-
tion, where each element of GG is represented by a nice permutation matrix,
then the algorithm leads to a determination of all irreducible (complex) rep-
resentations of G.

Theorem 4.7.3 Suppose G is a finite group and F a field in which |G|1g # 0.
Then any F[G]-module E is a direct sum of simple submodules. In other
words, every representation of G, on a vector space over the field F, is a
direct sum of irreducible representations.
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Proof. We will prove this here under the assumption that E has finite di-
mension as a vector space over [F, which makes it possible to use an inductive
argument. (The general case is proved later in Theorem 5.2.1 using a more
sophisticated induction procedure, namely Zorn’s Lemma.) If £ = 0 there is
nothing to prove, so suppose dimyp E' is positive but finite. Any submodule
of E of minimal positive dimension as vector space over F is a simple sub-
module. So there is a largest positive integer m such that there exist simple
submodules Fj, ..., E,, whose sum F = E; + --- 4+ E,, is a direct sum. If
F # F then there is a nonzero complementary submodule F, in E; in other
words, a submodule F, for which £ is the direct sum of F' and F,. Inside
F, choose a submodule E,,; of minimal positive dimension (notice that this
works because we are working with finite dimensional vector spaces!). But
then the sum E; + -+ E,, ;1 is a direct sum, contradicting the defintion of
m. Thus, ' = FE, and so E is a direct sum of irreducible subspaces.

4.8 The Center

Let G be a finite group and F a field.
We know from Proposition 3.4.1 that the center Z of F[G| has a basis
consisting of the conjugacy class sums

Zc = § g,
geC

where C runs over all conjugacy classes of G. We will compare this now with
what the matrix realization of F[G] says about Z and draw some interesting
conclusions.

Let Aj,...,As be a collection of non-zero two sided ideals in F[G] whose
direct sum is F[G] (we will eventually specialize to the case where s is the
largest integer for which there is such a finite collection). Then

AjA, C AN A ={0} ifj#k.
Decomposing 1 uniquely as a sum of elements in the A; we have
I=wuy +- +us,
with u; € A; for each i. Left/right-multiplying by u; we have
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which shows that each w; is an idempotent. Then, multiplying 1 by any

z € F[G], we have
TU; = T = u;x
2= w =) U

=1 ey =1 ca;

which shows that (i) each u; is in the center Z of F|G], (ii) yu; =y if y € A;
(and, in particular, u; # 0), and (iii) w;x = 0 if € A; with j # i. The
idempotents u; are linearly independent, for if Y °_, c;u; = 0, with coefficients
¢; all in IF, then multiplying by wu; shows that cju; = 0 and hence ¢; = 0. As
seen before,

[[4—=A:(a,..a0) = ar+-- +a, (4.9)
i=1
is an isomorphism of algebras.

Thus, with no assumptions on the field I, we have found a natural set of
orthogonal central idempotents uy, ..., us which are linearly independent over
F and all lie in the center Z. Moreover, from the isomorphism (4.9) it follows
that

Z =Z(A)+ -+ Z(Ay),

where Z(A4;) is the center of A;.

Now assume that |G|1g # 0 in F. Then we have seen that Ay, ..., As exist
such that A; is isomorphic to the algebra of d; x d; matrices over a division ring
D;, where d; is the number of copies of a simple module L; whose direct sum
is isomorphic to A;. If we now, further, assume that F is algebraically closed
then the division rings D; are all equal to F. Now the center of the algebra
of all d; x d; consists just of the scalar matrices (multiples of the identity
matrix). From this we see that if IF is algebraically closed and |G|1p # 0 in
F then

We have thus proved:

Proposition 4.8.1 Let G be a finite group, F any field, and Z the center of
the group algebra F|G|. Let uy, ..., us be a maximal string of nonzero central
idempotents adding up to 1 in F[G]. Then

s < dimy Z. (4.10)
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If, moreover, F is algebraically closed and |G|l # 0, then uy, ..., us form a
basis for Z, and so

s =dimg Z if F is algebraically closed and |G|1g # 0. (4.11)

We saw in Theorem 3.4.1 that the dimension of the center Z, as a vec-
tor space over [F, is just the number of conjugacy classes in G. Putting
this together with the observations we have made in this section, we have a
remarkable conclusion:

Theorem 4.8.1 Suppose G is a finite group, F a field, and Z the center of
the group algebra F|G|. Let s be the number of distinct isomorphism classes
of irreducible representations of G, over the field F. Then

s < number of conjugacy classes in G. (4.12)

If the field F is also algebraically closed, and |G|1p # 0, then s equals the
number of conjugacy classes in G.

As usual, the condition that F is algebraically closed can be replaced
by the requirement that it be a splitting field for G, since that is what is
actually used in the argument. If the characteristic p of the field F is a
divisor of |G| (which is outside our semisimple comfort zone) then, with F
still being a splitting field for G, the number of distinct isomorphism classes
of irreducible representations of GG is equal to the number of conjugacy classes
of elements whose orders are coprime to p; for a proof see [63, Theorem 1.5].

4.9 Representing Abelian Groups

Let G be a finite group and F an algebraically closed field in which |G|1r # 0.
Let Lq,.., Ls be a maximal set of irreducible, inequivalent representations of
G over F. Then the formula

Gl =) [dims (L),
i=1
shows that each L; is 1-dimensional if and only if the number s is equal to
|G|. Thus, each irreducible representation of G is 1-dimensional if and only
if the number of conjugacy classes in G equals |G|, in other words if each
conjugacy class contains just one element. But this means that G is abelian.
We state this formally:
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Theorem 4.9.1 Assume the ground field F is algebraically closed and G is
a finite group with |G|1g # 0 in F. All irreducible representations of G are
1-dimensional if and only if G is abelian.

If F is not algebraically closed then the above result is not true. For
example, the representation of the cyclic group Z, on R? given by rotations,
with 1 € Z4 going to rotation by 90°, is irreducible. In a different twist, if the
characteristic of F is a divisor of |G|, so that we are off our semsimiple comfort
zone, one can end up with a situation where every irreducible representation
of GG is one dimensional even if GG is not abelian; Exercise 4. 13 develops an
example.

4.10 Indecomposable Idempotents

Before closing off our study of F[G] let us return briefly to one corner which
we left unexplored but which will prove useful later. How do we decide if a
given idempotent is indecomposable?

In understanding the discussion in this section it will be useful to think of
F[G] realized as a matrix algebra. In idempotent is then a projection matrix.

Proposition 4.10.1 Let A be a finite dimensional algebra over a field F;
for instance, A = F[G], where G is a a finite group. If a nonzero idempotent
u € A satisfies the condition

uAu = Fu (4.13)
then u is indecomposable.
Proof. Assume that the idempotent u satisfies (4.13): for every x € A,
UTU = A U
for some A\, € F. Now suppose u decomposes as
U =10+ w,
where v and w are orthogonal idempotents:

vi=wv, w =w, vw=wv=0~0.
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Now
wu = (v+wh(v+w) =v+0=u,

and so, by (4.13), it follows that v is a multiple of u:
v = Au for some \ € F.
Since both u and v are idempotents, it follows that
A=)\

and so A is 0 or 1. Hence, u is indecomposable. | QED
We can take the first step to understanding how inequivalence of simple
left ideals reflects on the generators of such ideals:

Theorem 4.10.1 Suppose G is a finite group and F a field. If y; and yo are
nonzero idempotents in F|G| for which

Y2 F[Glyr = 0 (4.14)
then the left ideals F[G)y, and F[Glys are not isomorphic as F[G]-modules.

Proof. Let f : F[G]y1 — F[Glyz be F[G]-linear, where y;, y» are idempotents
in F[G]. Then the image f(y1) is of the form zy, for some = € F[G], and so

flayr) = flayyr) = ayi f(y1) = ayrxys,

for all a € F[G], and so f = 0 if condition (4.14) holds. In particular, F|G]y;
and F[GJys are not isomorphic as F[G]-modules, unless they are both zero.
With semisimplicity thrown in, we have in the converse direction:

Theorem 4.10.2 Suppose G is a finite group and F a field in which |G|l # 0.
If y1 and ys are indecomposable idempotents such that the left ideals F|G]y,
and F[Glys are not isomorphic as F[G]-modules then

yoF[Gly: = 0. (4.15)

Proof. By Proposition 4.2.2, F[G]y, and F|[G]y; are simple modules. Fix any
z € F[G], and consider the map

[ F[Glys = F[Glys : y = yay,



114 Ambar N. Sengupta

which is clearly F[G]-linear. By Schur’s Lemma (Theorem 3.3.1), f is either
0 or an isomorphism. By the hypothesis, f is not an isomorphism, and hence
it is 0. In particular, f(ys) is 0. Thus, yozy; is 0.

In our warm up exercise (look back to equation (3.30)) decomposing F[Ss]
we found it useful to associate to each z € F[S3;] a matrix with entries
y;xyy, where the y; are indecomposable idempotents. We also saw there
that {y;xzy, : © € F[F]} is one-dimensional over F. We can now prove this
for F[G], with some assumptions on the field and the group. One way to
visualize the following is by thinking of the full algebra F[G] as a matrix
algebra in which the idempotent g, is the matrix for a projection operator
onto a one-dimensional subspace; then {y,zy; : © € F[G]} consists of all
scalar multiples of ys.

Theorem 4.10.3 Suppose G is a finite group and F an algebraically closed
field in which |G|1g # 0. If y1 and yo are indecomposable idempotents which
generate left ideals which are isomorphic as left F|G]-module, that is F|G|y; ~
F[Glya, then {yoxyy : © € F[G]} is a one dimensional vector space over F.

See Exercise 5. 10 for a more general formulation.
Proof. Let A denote the algebra F[G]. By Schur’s Lemma (Theorem 3.3.1),
Homy (Ays, Ayp) is a one-dimensional vector space over F. Fix a non-zero
fo € Hom(Ays, Ayy) then fo(ys2) is of the form zgy; for some zg € A, and
SO

Jo(y) = folyyay2) = yy2f(y2) = yyezoys,

for all y € Ay,. Now take any z € A; then the map Ay, — Ay 1y — yyazys
is A-linear, and so is an F-multiple of fy; in particular, f(y2) is an F-multiple

of fo(y2), which just says that yozy; is an F-multiple of yozqy;.

4.11 Beyond Our Borders

Our study of the group algebra F[G] is entirely focused on the case where the
group G is finite. Semisimplicity can play a powerful role even beyond, for
infinite groups (despite the observation in Exercise 4.12). If our focus does
not seem to do full justice to the enduring power of semisimplicity see Chalabi
[12] on group algebras for infinite groups. A comprehensive development of
the theory is given in the book of Passman [62]
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Our exploration of F[G] stays almost always within semisimple territory.
Modular representation theory, which stays with finite groups but goes deep
into fields of finite characteristic, is much harder. To make matters worse
for an initiation, books in this subject follow a shock-and-awe style of ex-
position which leaves the beginner with the wrong impression that this is a
subject where ‘stuff happens’, making it hard to discern a coherent struc-
ture or philosophy. The works of Puttaswamiah and Dixon [63] and Feit
[27] are substantial accounts, but Curtis and Reiner [16], despite its encyclo-
pedic scope, is more readable, as is the concise introduction in the book of
Weintraub [74].

There is an entirely different territory to explore when one veers of F[G]
into a ‘deformation’ of its algebraic structure. For instance, consider a finite
group W generated by a family of reflections rq,..., 7, across hyperplanes in
some Euclidean space RY. In the group algebra F[W], the relations 7“]2- =1
hold. Now consider an algebra F[W],, with ¢ being a, possibly formal, pa-
rameter, generated by elements rq,...,r,, satisfying the relations that the
reflections r; satisfy except that each relation TJZ» = 1 is replaced by a ‘defor-
mation’:

7‘]2 =ql — (1 —q)r;.

When ¢ = 0 this reduces to the group algebra F[W]. This leads to the study
of Hecke algebras and the general idea of deformation of algebras. This notion
of deformation sees an instance in the relationship between certain algebras of
functions, or observables, for a classical physical system and algebras for the
corresponding observables for the quantum theory of the physical systems.

Exercises

1. Let G be a group and F a field such that the algebra F[G] is semisimple.
Let L be a simple F[G]-module and consider the map I : F[G] — L :
x — zxv, for any fixed nonzero v € L. Using I, and just the fact that
every submodule of F[G] has a complement, produce a submodule of
F[G] which is isomorphic to L.

2. Let G be a finite group and F a field, and for each g € G let R(g) :
F|G] — F[G] : © — gx provide the regular representation. Using the
elements of G as basis of F[G] check that the (a,b)-th entry of the
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matrix for R(g) is

of |1 ifg=ab™l;
R(g)a = e (4.16)
0 ifg#ab.
Now introduce a variable X, for each g € G, and verify that the matrix
Ds =Y R9)X, (117
geG

has (a, b)-th entry X ;-1. The determinant of the matrix Dg was intro-
duced by Dedekind [19] and named the group determinant; its factor-
ization, now among the many memes lost to mutations in mathematical
evolution, gave rise to the notion of characters of groups. We will re-
turn to this in section 7.7. For now show that the group determinant
for a cyclic group of order n factors as a product of linear terms:

Xo Xpo1 X o0 Xy
Xy Xo Xpo1 oo Xy
Xn—l Xn—2 Xn—3 ce XO

n

=1 o+ Xa 4 " 9X,0)
i=1
(4.18)
where 7 is any primitive n-th root of unity. The type of determinant
on the left in (4.18) is (or, more accurately, was) called a circulant.

. Let G be a finite group, and for each g € G consider indeterminates

X, and Y. Explain the the matrix commutation identity:

[Xabfl]a,bEG [le-fla]mbEG = [Ylfla]a,bEG [Xabfl]a,beG' (4 19)

. Let C1, ..., C, be the distinct conjugacy classes in G. For each i € [r] =

{1,...,7} we have the central element z; € F|G] which is the sum of all
the elements of C;. Recall from (3.14) the structure constants s, of
G, specified by requiring that

T
Zikk = E Ri jkZj-
j=1
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Thus k; ;i is the number of solutions (a,c) € C; x Cy, of the equation
a = bc!, for fixed b € C;. Next let

M; = [Kijk)j ke

be the r x r matrix of the restriction of R(z;) to the center Z of F[G],
relative to the basis {z; : j € [r]}. Since everything is in the center, the
matrices My, ..., M, commute with each other. Now attach a variable
Y, to each g but with the condition that Y, = Y}, if g and h are in
the same conjugacy class; also denote this common variable for the
conjugacy class C; as Y;. Consider the r x r matrix

Fye = det [Z MY;| . (4.20)

=1

Explain why F is a product of linear factors of the type A\ Y; +-- -+
A Y.

5. In the following, G is a finite group, F a field, and A = F[G]. No
assumption is made about the characteristic of F. An A-module is said
to be indecomposable if it is not 0 and is not the direct sum of two
non-zero submodules.

(a) Show that if e and f; are idempotents in A with fie = f; then

def def . .
e1 = efie and eg = e — e; are orthogonal idempotents, with

e = e1 + ey, with eje = e; and eqse = es.

(b) Show that if y is an indecomposable idempotent in A then the
left ideal Ay cannot be written as a direct sum of two distinct
non-zero left ideals.

(c¢) Suppose L is a left ideal in A which has a complementary ideal
L., such that A is the direct sum of L and L.. Show that there is
an idempotent y € L such that L = Ay.

(d) Prove that there is a largest positive integer n such that there
exist non-zero orthogonal idempotents y1,...,7, in A whose sum
is 1. Show that each y; is indecomposable.

(e) Prove that there is a largest positive integer s such that there
exist non-zero idempotents uq, ..., u; which are all in the center of
A and for which u; + -+ +u, = 1.
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Show that, with notation as in (5e), u;u, = 0 if j # k and j, k €
{1,...;s}.
Prove that any central idempotent u is a sum of some of the u; of

(5e). Then show that the set {u1,...,us} is uniquely specified as
the largest set of nonzero central idempotents adding up to 1.

With uq, ..., us as above, show that each u; is a sum of some of the
idempotents ey, ..., e, in (5d). If e; appears in the sum for u, then
e;u, = e; and e;uy = 0 for t # 7.

Show that Awu; is indecomposable in the sense that it is not the
direct sum of two non-zero left ideals, and that the map

HAUZ'_>AZ(Cbl,...,as)r—>a1+...+as
=1

is an isomorphism of algebras.

Show that A is the direct sum of indecomposable submodules

Vi, Vi

Let E be a finite dimensional indecomposable A-module. Prove
that there is a submodule Ey C E which is maximal in the sense
that E is the only submodule of E' which contains Ej as a proper
subset. Then show that E/FEjy is a simple A-module.

Let ¢ : F — T be an automorphism of the field F (for example, ¢
could be simply the identity or, in the case of the complex field,
¢ could be conjugation). Suppose ® : A — A is a bijection which
is additive, ¢-linear:

O(kx) = ¢p(k)P(x) for all k € F and z € F[G]

and for which either ®(ab) = ®(a)®(b) for all a,b € A or ®(ab) =
O(b)P(a) for all a,b € A. Show that

{P(u1), ..o, P(us) } = {ur, .oy us}e

Thus, for each ¢ there is a unique ®(4) such that ®(u;) = ua().

Let
Tr. :FIG] = F: 2 z..
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Show that
Tr.(zy) = Tre(yz).

Assuming that ® maps G into itself show that
Tr. () = ¢(Tr. z).
(n) Consider the pairing
(o AXA—=TF: (z,y) — Tr.(zP(y))

which is linear in # and ¢-linear in y. Prove that this pairing is
nondegenerate in the sense that: (a) if (z,y)e = 0 for all y € A
then z is 0, and (b) if (z,y)e = 0 for all z € A then y is 0. Check
that this means that the map y — v’ of A to its dual vector space
A’ specified by
Y (@) = (z,9)e

is an isomorphism of vector spaces over F, where for the vector
space structure on A’ multiplication by scalars is specified by

(cf)(z) = ¢(c) f(z)

forall c e F, f € A, and all z € A. Assuming that ® maps G
into itself, show that

(@(2),2(y))g = ¢ ((2,9)e)
(0) Show that for each i € {1,..., s} the pairing
Au; x Auj — A (z,y) = (2,9)e

is non-degenerate if j = ®1(7), and is 0 otherwise.

(p) Take the special case ¥ for ¢ given by

V) =i=) (g)g”"

geG

Show that the pairing (-, )y is G-invariant in the sense that

(97, 9Y)w = (z,9)w
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for all z,y € F|G] and g € G. Then show that the induced
map A — A’ : y — ¢ is an isomorphism of left F[G]-modules,
where the dual space A’ is a left F[G]-module through the dual
representation of G on A’ given by

P @) F E F0preglg)™

Let Ly = Ay, where g, is one of the idempotents in a string
of orthogonal indecomposable idempotents y1, ..., ¥, adding up to
1. Prove that the dual vector space L}, with the left F[G]-module
structure given by the dual representation (pyeg| L)', is isomorphic
to L; for some j € [n]. (We have seen a version of this back in
Theorem 1.7.1.) Moreover, Ly, ~ L.

Let E be an indecomposable left A-module, and let yq, ..., v, be a
string of indecomposable orthogonal idempotents in A adding up
to 1. Show that y; E # 0 for some j € [n].

Let F' be a simple left A-module, and suppose y;F’ # 0, as above.
Let W = {z € Ay; : «F = 0}, which is a left ideal of A contained
inside Ay;. Show that Ay;/W =~ F, isomorphic as A-modules,
and conclude that W is a maximal proper submodule of Ay;.

Let E be a simple left A-module, and, apply the previous step
with F' = E’, where E’ is the dual vector space with the usual
dual representation/A-module structure, to obtain j € [n] with
y;E" # 0 and a maximal proper submodule W in Ay;. Continuing
notation from above, Ay; ~ (Ay)" (we use ~ to denote isomor-
phism of A-modules) for some k € [n]. Let W the image of W in
(Ayg)" ~ Ay;. Then

(Ay;)/W = (Ay)' /W =~ W, (4.21)

where we used Lemma 1.6.1 with W, being the annihilator

def

Wo = {z € Ay, - f(x) =0 forall f € W}, (4.22)

as A-modules. Using Lemma 1.6.1 show that W, is a simple sub-
module of Ay,. Conclude (by Exercise 1. 11) that

E ~ W, (4.23)
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10.

11.

12.

and then F ~ W, as A-modules (see Exercise 1. 11). Thus,
every simple A-module is isomorphic to a submodule of one of the
indecomposable A-modules Ayy.

Work out all idempotents in the algebra Zs[Ss).

Let G be a finite group and F an algebraically closed field in which
|G|1F is not 0. Show that the number of inequivalent 1-dimensional
representations of G over F is |G/G’|, where G’ is the commutator
subgroup of G (the subgroup generated by aba~'b~! with a,b running
over G).

Let G be a cyclic group, and F algebraically closed in which |G|1f is not
0. Decompose F[G] as a direct sum of 1-dimensional representations of

G.

Let y = > caYyg € Z[G], and suppose that y? is a rational multiple
of y and y. = 1.

(i) Show that there is a positive integer v which is a divisor of |G,
and for which v~y is an idempotent.
(ii) Show that the dimension of the representation space for the idem-

potent v~ 'y is a divisor of |G].

Let 7 : G — F* be a homomorphism of the finite group G into the group
of invertible elements of the field F, and assume that the characteristic
of F is not a divisor of |G|. Let

1 _
Ur = @ Z T(g 1).9
geG

Show that w, is an indecomposable idempotent.

Let R be a commutative ring, G a finite group, and y an element of
R|G] for which gy = y for all ¢ € G. Show that y = y.s, where

$=3,9

Show that, for any field I, the ring F|[G] is not semisimple if G is an
infinite group.



122

13.

14.

Ambar N. Sengupta

Let R be a commutative ring of prime characteristic p > 0, G a group
with |G| = p" for some positive integer n, and E an R[G]-module.
Choose a nonzero v € F and let Ey be the Z-linear span of Gv = {gv :
g € G} in E. Then Ej is a finite dimensional vector space over the field
Z,, and so |Ey| = p®, where d = dimg,, Ey > 1. By partitioning the set
Ey into the union of disjoint orbits under the action of GG, show that
there exists a nonzero w € Fy for which gw = w for all ¢ € G. Now
show that if the R[G]-module E is simple then £ = Rw and gv = v for
allv e E.

Let F is a field of characteristic p > 0, and G a group with |G| = p™ for
some positive integer n. Prove that F[G] is indecomposable, and Fs,
where s =} g, is the unique simple left ideal in F[G]. Show also that
ker € is the unique maximal ideal in F[G], where € : F[G] = F : >z, —
> 4 Lg- In the converse direction, prove that if F has characteristic p > 0
and G is a finite group such that F|G] is indecomposable then |G| = p™
for some positive integer n.



Chapter 5
Simply Semisimple

We have seen that the group algebra F[G] is especially rich and easy to
explore when |G|, the number of elements in the group G, is not divisible by
the characteristic of the field F. What makes everything flow so well in this
case is that the algebra F[G] is semisimple. In this chapter we are going to
fly over largely the same terrain as we have already, but this time replacing
F[G] by a more general ring, and looking at everything directly through
semisimplicity. This chapter can be read idependently of the previous ones,
although occasional look backs would be pleasant.

We will be working with modules over a ring A with unit 1 # 0. So,
all through this chapter A denotes such a ring. Note that A need not be
commutative. Occasionally, we will comment on the case where the ring A
is an algebra over some field F.

By definition, a module E over the ring A is semisimple if for any sub-
module F' in E there is a submodule Fj in E, such that E is the direct sum
of F' and F,.

A ring is said to be semisimple if it is semisimple as a left module over
itself.

A module is said to be simple if it is not 0 and contains no submodule
other than 0 and itself.

A (termino)logical pitfall to note: the zero module 0 is semisimple but
not simple.

Aside from the group ring F[G], the algebra EndgV of all endomorphisms
of a finite dimensional vector space V over a field [ is a semisimple algebra
(a matrix formalism verification is traced out in Exercise 5.4).

123



124 Ambar N. Sengupta

5.1 Schur’s Lemma

Suppose
f:E—F
is linear, where E' is a simple A-module and F' an A-module. The kernel
ker f = f71(0)

is a submodule of E and hence is either {0} or E itself. If, moreover, F' is
also simple then f(FE), being a submodule of F', is either {0} or F. This is
Schur’s Lemma:

Theorem 5.1.1 If E and F are simple modules over a ring A, then every
non-zero element in
HOIIIA(E, F)

is an isomorphism of E onto F.

For a simple A-module E # 0, this implies that every non-zero element
in the ring
End,(F)

has a multiplicative inverse. Such a ring is called a division ring, which falls
short of being a field only in that multiplication (which is composition in this
case) is not necessarily commutative.

We can now specialize to a case of interest, where A is a finite dimensional
algebra over an algebraically closed field F. We can view [ as a subring of
End A(E)Z

F~F1 C Enda(F),

where 1 is the identity element in End4(F). The assumption that F is alge-
braically closed implies that [F has no proper finite extension, and this leads
to the following consequence:

Theorem 5.1.2 Suppose A is a finite dimensional algebra over an alge-
braically closed field F. Then for any simple A-module E, which is finite
dimensional as a vector space over IF,

Enda(E) =T,

upon identifying F with F1 C Enda(FE). Moreover, if E and F are simple
A-modules, then Homu (E, F) is either {0} or a 1-dimensional vector space
over .
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Proof. Let x € End4(FE). Suppose z ¢ F1. Note that x commutes with
all elements of F1. Since End4(F) C Endr(FE) is a finite-dimensional vector
space over I, there is a smallest natural number n € {1,2,...} such that

1,x,...,2" are linearly dependent over [F; put another way, there is a polyno-
mial p(X) € F[X], of lowest degree, with degp(X) =n > 1, such that

p(z) = 0.
Since F is algebraically closed, p(X) factorizes over [ as
p(X) = (X = A)g(X)

for some A € F. Consequently, z — Al is not invertible, for otherwise ¢(z),
of lower degree, would be 0. Thus, by Schur’s Lemma (Theorem 5.1.1),
xr= A eFlL

Now suppose E and F' are simple A-modules, and suppose there is a non-
zero element f € Homy(F, F'). By Theorem 5.1.1, f is an isomorphism. If g
is also an element of Hom(FE, F'), then f~!gisin End4(F, E), and so, by the
first part, is an F-multiple of the identity element in End4(£). Consequently,

g is an F-multiple of f

5.2 Semisimple Modules

We will work with modules over a ring A unit element 1 # 0.

Proposition 5.2.1 Submodules and quotient modules of semisimple modules
are semisimple.

Proof. Let F' be a submodule of a semisimple module E. We will show that
F is also semisimple. To this end, let L be a submodule of F. Then, by
semisimplicity of E, the submodule L has a complement L. in E:

E=L®L,..
If f € F we can decompose it uniquely as

=_a Qa
NCRANCY
eL €L,
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Then
a.=f—aeklF

and so, in the decomposition of f € F as a + a., both a and a. are in F.
Hence

F=Le&(L.NF).

Having found a complement of any submodule inside F', we have semisim-
plicity of F.

If F, is the complementary submodule to F' in E, then we have the iso-
morphism of modules:

F,—EJ/F:xvsx+F

So E/F, being isomorphic to the submodule F,, is semisimple.
For another perspective on the preceding result see Exercise 18.
Complements are not unique but something can be said about different
choices of complements:

Proposition 5.2.2 Let L be a submodule of a module E over a ring. Then
E s the direct sum of L and a submodule L. of E if and only if the quotient
map E — E/L restricts to an isomorphism of L. onto E/L.

Proof. Let g : E— E/L be the quotient map. If £ = L + L, as a sum then
q(L.) = q(E) = E/L. Next, ker(q|L.) = L.N L and so ¢g|L. is injective if and
only if the sum L + L, is direct.

Our goal is to decompose a module over a semisimple ring into direct sum
of simple submodules. The first obstacle in reaching this goal is a strange
one: how do we even know there is a simple submodule? If the module
happens to come automatically equipped with a vector space structure then
we can use dimension as the steps of a ladder to climb down all the way to a
minimal dimensional submodule. Without a vector space structure, it seems
we are looking down an endless abyss of uncountable descent. Fortunately,
this transfinite abyss can be plumbed using Zorn’s Lemma.

Proposition 5.2.3 Let E be a nonzero semisimple module over a ring A.
Then E contains a simple submodule.

Proof. Pick a nonzero v € F, and consider Av. A convenient feature of Av is
that a submodule of Av is proper if and only if it does not contain v. We will
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produce a simple submodule inside Av, as complement of a maximal proper
submodule. A maximal proper submodule is produced using Zorn’s Lemma.
Let F be the set of all proper submodules of Av. If G is a nonempty subset of
JF which is a chain in the sense that if H, K € G then H C K or K C H, then
UG is a submodule of Av which does not contain v. Hence, Zorn’s Lemma is
applicable to F and implies that there is a maximal element M in F. This
means that a submodule of Av which contains M is Av or M itself. Now
we use semisimplicity of £ which implies that Av is also semisimple. Then
there is a submodule M. C Av such that Awv is the direct sum of M and M..
We claim the M, is simple. First, M, # 0 because otherwise M would be all
of Av which it isn’t since it is missing v. Next, if L is a nonzero submodule
of M. then M + L is a submodule of Av properly containing M and hence is
all of Av, and this implies L = M,. Thus, M, is a simple module.

Now we will prove some convenient equivalent forms of semisimplicity.
The idea of producing a minimal module as complement of a maximal one
will come in useful. The argument, at one point, will also use the reasoning
that leads to a basic fact about vector spaces: if T is a linearly independent
subset of a vector space, and S a subset which spans the whole space, then
a basis of the vector space is formed by adjoining to 7" a maximal subset of
S which respects linear independence.

Theorem 5.2.1 The following conditions are equivalent for an A-module E :
(i) E is semisimple;
(ii) E is a sum of simple submodules;

(i) E is a direct sum of simple submodules.

If E = {0} then the sums in (ii) and (iii) are empty sums. The proof also

shows that if E is the sum of a set of simple submodules then FE is a direct
sum of a subset of this collection of submodules.
Proof. Assume that (i) holds. Let F' be the sum of a maximal collection of
simple submodules of F; such a collection exists, by Zorn’s Lemma. Then
E = F @ F,, for a submodule F,. of E. We will show that F. = 0. Suppose
F. # 0. Then, by Proposition 5.2.3, F,. has a simple submodule, and this
contradicts the maximality of F'. Thus, F is a sum of simple submodules.
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Now let £ be any A-module, and F' a submodule which is contained in
the sum of a family {E};},c; of simple submodules of E:

FCY E;.

jeJ

Zorn’s lemma extracts a maximal subset K (possibly empty) of J such that
the sum
H=F+) E
kK
is a direct sum of the family {F} U{E; : k € K}. For any j € J, the
intersection £; N H is a submodule of E; and so is either 0 or F;. It cannot
be 0 by maximality of K. Thus, £; C H forall j € J,andso > ., E; C H.

™ jeJ i
us,
Y EBj=F+) Ey

jeJ keK

which is a direct sum of the family {F} U{E} : k € K}.

Applying the conclusion above to the case where {E;};c; span all of E,
and taking F' = 0, we see that F is a direct sum of some of the simple
submodules Ej. This proves that (ii) implies (iii).

Next, applying our observation to a family {E};},c; which gives a direct
sum decomposition of F, and taking F' to be any submodule of F, it follows
that

E=FoF,

where F, is a direct sum of some of the simple submodules Ej. Thus, (iii)

implies (i).

5.3 Deconstructing Semisimple Modules

In Theorem 5.2.1 we saw that a semisimple module is a sum of simple sub-
modules. In this section we will use this to reach a full structure theorem for
semisimple modules.

We begin with an observation about simple modules, which is analogous
to the situation for vector spaces. Indeed, the proof is accomplished by view-
ing a module as a vector space (for more logical handwringing see Theorem
5.3.3).
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Theorem 5.3.1 If E is a simple A-module, then E is a vector space over
the division ring End,(E). If E™ ~ E™ as A-modules, then n = m.

Proof. If E is a simple A-module then, by Schur’s lemma,

def

D ¥ Endu(E)

is a division ring. Thus, F is a vector space over DD. Then E™ is the product
vector space over D. If dimp F were finite, then we would be done. In the
absence of this, there is a clever alternative route. Look at End4(E™). This is
a vector space over D, because for any A € D and A-linear f : E™ — E", the
map Af is also A-linear. In fact, each element of End4(E™) can be displayed,
as usual, as an n X n matrix with entries in D. Moreover, this effectively
provides a basis of the D-vector space End(E™) consisting of n? elements.
Thus, £E™ ~ E™ implies n = m.

Now we can turn to the uniqueness of the structure of semisimple modules
of finite type:

Theorem 5.3.2 Suppose a module E over a ring A can be expressed as
E~EM™®...0E™ (5.1)

where E, ..., E,, are non-isomorphic simple modules, and each m; is a posi-
tive integer. Suppose also that E can be expressed also as

E~Fl'e.. . @Fm

where FY, ..., F,,, are non-isomorphic simple modules, and each j; is a positive
integer. Then m = n, and each E, is isomorphic to one and only one Fj,
and then m, = j,. Every simple submodule of E is isomorphic to E; for
exactly one j € [n].

Proof. Let H be any simple module isomorphic to a submodule of £. Then
composing an isomorphism H — E with the projection £ — FE,., we see
that there exists an a for which the composite H — FE, is not zero and
hence H ~ FE,. Similarly, there is a b such that H ~ F,. Thus each E, is
isomorphic to some Fj. The rest follows by Theorem 5.3.1.

The preceding results, or variations on them, are generally called, in
combination, the Krull-Schmidt theorem . There is a way to understand them
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without peering too far into the internal structure or elements of a module;
instead we can look at the partially ordered set, or lattice , of submodules of
a module. Exercises 5.17 and 5.18 provide a glimpse into this approach, and
we include it as a token tribute to Dedekind’s much-maligned foundation of
lattice theory [17, 18] (see the ever readable Rota [64] for historical context).

The arguments proving the preceding results rely on the uniqueness of
dimension of a vector space over a division ring. The proof of this is iden-
tical to the case of vector spaces over fields, and is elementary in the finite
dimensional case. The proof of uniqueness of dimension for infinite dimen-
sional spaces is an unpleasant application of Zorn’s Lemma (see Hungerford
[46]). Alternatively, the tables can be turned and the decomposition theory
for semisimple modules, specialized all the way down to the case of division
rings can be used as proof for the existence of basis and uniqueness of dimen-
sion of a vector space over a division ring. With this perspective, we have
(adapted from Chevalley [13]):

Theorem 5.3.3 Let E and F' be modules over a ring A, such that E and
F are both sums of simple submodules. Assume that every simple submodule
of E s isomorphic to every simple submodule of F'. Then the following are
equivalent: (1) E and F' are isomorphic; (ii) any set of simple submodules of
E whose direct sum is all of E has the same cardinality as any set of simple
submodules of F' whose direct sum is F'. In particular, if A is a division ring
then any two bases of a vector space over A have the same cardinality.

Proof. By Theorem 5.2.1, if a module is the sum of simple submodules then
it is also a direct sum of a family of simple submodules. Let E be the direct
sum of simple submodules E;, with ¢ running over a set I, and F' the direct
sum of simple submodules F; with j running over a set J. Suppose that each
E; is isomorphic to each Fj; if |I| = |J| then we clearly obtain an isomorphism
E— F.

Now assume, for the converse, that f : £ — F is an isomorphism. First
we work with the case when [ is a finite set. The argument is by induction
on |I|. If I =@ then F =0 and so F' = 0 and J = ). Now suppose I # (),
assume the claimed result for smaller values of |I|, and pick a € I. Then,
by Theorem 5.2.1, a complement H of f(FE,) in F is formed by adding up a
suitable set of F}’s:

F:f(Ea) +dH7
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where 4+, signifies (internal) direct sum, with

H=>F,

jes

and S is a subset of J. Now choose b € J such that F} is not contained inside
H; such a b exists because f(FE,), being an isomorphic copy of the simple
module E,, is not 0. Then the quotient map ¢ : F' — F/H is not 0 when
restricted to £}, and so, by Schur’s Lemma used on the simplicity of Fj and
of F/H ~ f(E,) ~ E,, the restriction ¢|Fy : F,, — F/H is an isomorphism.
Then by Proposition 5.2.2, F}, is also a complement of H. But then

Fb+dZF}‘:Fb+dH:F:Fb+d Z F},
JjES jeJ—{b}

and, these being direct sums, we conclude that S = J — {b}. Combining the
various isomorphisms, we have

E/E,~F/f(E,) ~ H ~ F/F,.

This implies that the direct sum of the simple modules E;, with i € I —{a},
is isomorphic to the direct sum of the simple modules F; with j € J — {b}.
Then by the induction hypothesis, |I — {a}| = |J — {b}|, whence |I| = |J|.

Consider now the case of infinite /. For any ¢ € I, pick nonzero x; € F;,
and observe that there is a finite set S; C J such that f(z;) € > ;cq Fi,
whence f(E;) C ;s Fj. Let S, be the union of all the S;; then

f(E)C ) F

JES«

But f(E) = F, and so S, = J. The cardinality of S, is the same as that
of I, because I is infinite (this is a little set theory observation courtesy of
Zorn’s Lemma). Hence, |I]| = |J]|.

Lastly, suppose A is a division ring. Observe that an A-module is simple
if and only if it is of the form Aw for a nonzero element v in the module. Thus
every decomposition {E;}icr of an A-module E into a direct sum of simple
modules gives rise to a choice of a basis {v; };e; for E of the same cardinality
|I| and, conversely, every choice of basis of E gives rise to a decomposition

into a direct sum of simple submodules.
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5.4 Simple Modules for Semisimple Rings

An element y in a ring A is an idempotent if y* = y. Idempotents v, w are
orthogonal if vw = wv = 0. An idempotent y is indecomposable if it is not
zero and is not the sum of two nonzero, orthogonal idempotents. A central
idempotent is one which lies in the center of A.

Here is an ambidextrous upgrade on Proposition 4.2.2, formulated with-
out using semisimplicity.

Proposition 5.4.1 Ify is an idempotent in a ring A then the following are
equivalent:

(i) y is an indecomposable idempotent;

(ii) Ay cannot be decomposed as a direct sum of two nonzero left ideals in

A

(iii) yA cannot be decomposed as a direct sum of two nonzero right ideals in

A,

We omit the proof, which you can read out by replacing F[G] with A in the
proof of Proposition 4.2.2, and then going through a second run with ‘left’
replaced by ‘right.’

If a left ideal can be expressed as Ay we say that y is a generator of the
ideal. Similarly, if a right ideal has the form yA we call y a generator of the
ideal.

Theorem 5.4.1 Let L be a left ideal in a ring A. The following are equiva-
lent:

(a) there is a left ideal L. such that A is the direct sum of L and L.;
(b) there is an idempotent yr, € L such that L = Ayy,.

If (a) and (b) hold then
LL=L. (5.2)

Proof. Suppose
A=L® L.,
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where L. is also a left ideal in A. Then the multiplicative unit 1 € A
decomposes as
1= yr + Ye,

where y; € L and yc € L.. For any a € A we then have

a=al = ay;, + ay.
~— =
€L €L,

This shows that a belongs to L if and only if it is equal to ay,. In particular,
y? equals yr, and L = Ayr. Moreover,

L= AyL = AyLyL C LL.

Of course, L being a left ideal, we also have LL C L. Thus, LL equals L.
Conversely, suppose L = Ay, where y;, € L is an idempotent. Then A
is the direct sum of L = Ay, and and L. = A(1 —yp).
Next we see why simple modules are isomorphic to simple left ideals. The
criteria obtained here for simple modules to be isomorphic will prove useful
later.

Theorem 5.4.2 Let L be a left ideal in a ring A, and E a simple left A-
module. Then exactly one of the following holds:

(i) LE = 0;
(ii) LE = E and L is isomorphic to E.

If, moreover, the ring A is semisimple, and LE = 0 then E is not isomorphic
to L as a left A-module.

Proof. Since LFE is a submodule of E, it is either {0} or E. Suppose LE = E.
Then take a y € E with Ly # 0. By simplicity of E, then Ly = E. The map

L— E=Ly:a— ay

is an A-linear surjection, and it is injective because its kernel, being a sub-
module of the simple module L, is {0}. Thus, if LE = FE then L is isomorphic
to E.

Now assume that A is semisimple. If f: L — F is A-linear then

J(L) = f(LL) = Lf(L) = LE
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Thus, if f is an isomorphism, so that f(L) = F, then F = LE.
Finally a curious, but convenient fact about left ideals which are isomor-
phic as A-modules:

Proposition 5.4.2 If L and M are isomorphic left ideals in a semisimple
ring A then
L= Mz,

for some x € A.

Proof. We know that M = Ay, for some idempotent y,. Let f: M — L
be an isomorphism of A-modules. Then

L=f(M)= f(Aymym) = Ayn f(ym) = Mz,

where x = f(yn).

5.5 Deconstructing Semisimple Rings

We will work with a semisimple ring A. Recall that this means that A is
semisimple as a left module over itself.

Semisimplicity decomposes A as a direct sum of simple submodules. A
submodule in A is just a left ideal. Thus, we have a decomposition

A= Z{all simple left ideals of A.}

Let
{Li}ier
be a maximal family of non-isomorphic simple left ideals in A; such a family
exists by Zorn’s Lemma. Let

A; = Z{L : L is a left ideal isomorphic to L;}
Another convenient way to express A; is as L; A:

which makes it especially clear that A; is a two sided ideal.
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By Theorem 5.4.2, we have
LL' =0 if L is not isomorphic to L'.
So
Since A is semisimple, it is the sum of all its simple left ideals, and so
A=A
i€R
Thus, A is a sum of two sided ideals A;. As it stands there seems to be no

reason why R should be a finite set; yet, remarkably, it is finite!
The finiteness of R becomes visible when we look at the decomposition

of the unit element 1 € A:
5 54
1ER cA;
The sum here, of course, is finite; that is, all but finitely many u; are 0. For
any a € A we can write

a = Z a; with each q; in A;.
i€R
Then, on using (5.3),
a; = a;l = aju; = au;.
Thus a determines the ‘components’ a; uniquely, and so

the sum A =Y. A; is a direct sum.

If some u; were 0 then all the corresponding a; would be 0, which cannot
be since each A; is non-zero. Consequently,

the index set R is finite.

Since we also have, for any a € A,

a=1la= E u;a,

i€eR
we have from the fact that the sum A =), A, is direct,
U;a = a; = au;.

Hence, u; is the multiplicative identity in A;.
We have arrived at a first view of the structure of semisimple rings:
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Theorem 5.5.1 Suppose A is a semisimple ring. Then there are finitely
many left ideals Ly, ..., L, in A such that every left ideal of A is isomorphic,
as a left A-module, to exactly one of the L;. Furthermore,

Aj = L;A = sum of all left ideals isomorphic to L;

is a two sided ideal, with a non-zero unit element u;, and A is the product of
the rings A;, in the sense that the map

HAi—>A:(al,...,ar)>—>a1+---+ar (5.5)
i=j
is an isomorphism of rings. Any simple left ideal in A; is isomorphic to L.
Moreover,

l=uw +---+u,
AiA; =0 fori # 7.

Here is a summary of the properties of the elements u;:

Proposition 5.5.1 Let Ly, ..., L, be simple left ideal in a semisimple ring A
such that every left ideal of A is isomorphic, as a left A-module, to exactly
one of the L;. Let A; = L;A and u; an idempotent generator of A;. Then
Uy, ..., U, are non-zero, lie in the center of the algebra, and satisfy

ul =, wu; =0 if i #j

(5.7)
up+ - +u, = 1

Moreover, uy, ..., u, 18 a longest set of nonzero central idempotents satisfying
(5.7). Multiplication by w; in A is the identity on A; and is 0 on all A; for

j# 1L

The two sided ideals A; are, it turns out, minimal two sided ideals, and
every two sided ideal in A is a sum of certain A;.

Theorem 5.5.2 Let A; = LA, where Ly, ..., Ly are simple left ideals in a
semisimple ring A such that every simple left ideal is isomorphic, as a left
A-module, to exactly one of the L;. Then A;j is a ring in which the only two
sided ideals are 0 and A;. Every two sided ideal in A is a sum of some of the
A

j-
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Proof. Suppose J # 0 is a two sided ideal of A;. Since A;A;, = 0if i # k it
follows that J is also a two sided ideal in A. Since A is semisimple, so is J as
a left submodule of A. Then J is a sum of simple left ideals of A. Let L be
a simple left ideal of A contained inside J. Now recall that A; is the sum of
all left ideals isomorphic to a certain simple left ideal L;, and that all such
left ideals are of the form L,z for x € A. Then, since J is also a right ideal,
each such L;x is inside J and so A; C J. Thus, the only non zero two sided
ideals of A; are 0 and itself.

Now consider any two sided ideal I in A. Then AI C I, but also I C Al
since 1 € A. Hence

I=Al=Ad + -+ AT

Note that A;I is a two sided ideal, and A;I C A;. By the property we have
already proved it follows that A,[ is either 0 or A;. Consequently,

I= > A QED

J: AjI#0

5.6 Simply Simple

Let A be a semisimple ring; as we have seen, A is the product of minimal two
sided ideals Ay, ..., A,, where each A; is the sum of all left ideals isomorphic,
as left A-modules, to a specific simple left ideal L;. Each subring A; is
isotypical, in that it is the sum of simple left ideals which are all isomorphic
to one common left ideal.

We say that a ring B is simple if it is a sum of simple left ideals which
are all isomorphic to each other as left B-modules.

Since, by Proposition 5.4.2; all isomorphic left ideals are right translates
of one another, a simple ring B is a sum of right translates of any given
simple left ideal L. Consequently,

B=LB if B is a simple ring, and L any simple left ideal. (5.8)

As consequence we have:

Proposition 5.6.1 The only two sided ideals in a simple ring are 0 and the
whole ring itself.

Proof. Let I be a two sided ideal in a simple ring B, and suppose I # 0.
By simplicity, [ is a sum of simple left ideals, and so, in particular, contains
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a simple left ideal L. Then by (5.8) we see that LB = B. But LB C I,

because [ is also a right ideal. Thus, I = B. |QED
For a ring B, any B-linear map f : B — B is completely specified by the
value f(1), because

f(b) = f(b1) = bf(1)
Moreover, if f,g € Endp(B) then
(f9)(1) = f(g(1)) = g(1) (1),
and so we have a ring isomorphism
Endgp(B) — B°®P: f+— f(1) (5.9)

where B°PP_ the opposite ring, is the ring B with multiplication in ‘opposite’

order:
(a,b) — ba.

We then have

Theorem 5.6.1 If B is a simple ring, then B is isomorphic to a ring of

matrices
B ~ Matr,, (D), (5.10)

where n is a positive integer, and D is the division ring Endg(M) for any
simple left ideal M in B.

Proof. We know that B is the sum of a finite number of simple left ideals,
each of which is isomorphic, as a left B-module, to any one simple left ideal
M. Then B >~ M"™, as left B-modules, for some positive integer n. We also
know that there are ring isomorphisms

B ~ Endp(B) = Endg(M") ~ Matr,(D)

Taking the opposite ring, we obtain an isomorphism of B with Matr,, (D)°PP.
But now consider the transpose of n x n matrices:

Matr, (D) — Matr, (D) : A s A,

Then, working in components of the matrices, and denoting ‘opposite’ mul-
tiplication by x*:

(A * B)Zk = (BA)kz = Z Bijji = ZAjz’ * Bk’ja
j=1 j=1
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which is the ordinary matrix product A*B* in Matr,, (D°PP). Thus, the trans-

pose gives an isomorphism Matr,(D)°PP ~ Matr,, (D°PP).

The opposite ring often arises in matrix representations of endomor-
phisms. If M is a 1-dimensional vector space over a division ring D, with
a basis element v, then to each 7" € Endp(M) we can associate the ‘ma-
trix’ element T' € D specified through T'(v) = Tv. But then, for any
S,T € Endp(M) we have

ST =T8.

Thus, Endp(M) is isomorphic to D°PP via its matrix representation.

5.7 Commutants and Double Commutants

There is a more abstract, ‘coordinate free’ version of Theorem 5.6.1. First
let us observe that for a module M over a ring A, the endomorphism ring

AC = EIldA(M)

is the commutant for A, consisting of all additive maps M — M which
commute with the action of A. Next,

Age = Endy (M)
is the commutant of A.. Since, for any a € A, the multiplication
la: M — M:xw— ax (5.11)
commutes with every element of A, it follows that
lo € Aqge

Note that
lab - lalb

and [ maps the identity element in A to that in Ag., and so [ is a ring
homomorphism. The following result is due to Rieffel (see Lang [53]):

Theorem 5.7.1 Let B be a simple ring, L a non-zero left ideal in B,

B. =Endg(L),  Bu = Endp, (L)
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and
l:B— Bdc

the natural ring homomorhism given by (5.11). Then | is an isomorphism.
In particular, every simple ring is isomorphic to the ring of endomorphisms
on a module.

Proof. To avoid confusion, it is useful to keep in mind that elements of B,
and By, are all maps Z-linear maps L — L.
The ring morphism
[:B— Bg:b— 1,

is given explicitly by
lyx = bx, forallb e B, and x € L.

It maps the unit element in B to the unit element in By., and so is not 0.
The kernel of [ # 0 is a two sided ideal in a simple ring, and hence is 0. Thus,
[ is injective.

We will show that [(B) is Bgc. Since 1 € [(B), it will suffice to prove that
[(B) is a left ideal in Byc.

Since LB contains L as a subset, and is thus not {0}, and is clearly a two
sided ideal in B, it is equal to B:

LB =B.
Hence
I(L)I(B) =1(B).

Thus, it will suffice to prove that [(L) is a left ideal in By.. We can check
this as follows: if f € By, b € B, and y € L then

(flo)(w) = f(by)
= f(b)y because L — L :z+ zyisin B, = Endg(L)
= L),
thus showing that
[l =1,

and hence [(L) is a left ideal in Bye.
Lastly, let us make an observation about the center of a simple ring:
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Proposition 5.7.1 If B is a simple ring then its center Z(B) is a field. If
B is a finite dimensional simple algebra over an algebraically closed field F,
then Z(B) =TF1.

Proof. For each z € Z(B) the map
l,:B—> B:b—2zb

is both left and right B-linear. As we have seen before, [, € By.. Assume
now that z # 0. We need to produce z~!. We have the ring isomorphism

B—>Bdczx»—>lx,

so we need only produce I;!. Now [, : B — B : a + za is left and right
B-linear, and so ker [, is a two sided ideal. This ideal is not B because z # 0;
so kerl, = 0, and so the two sided ideal [,(B) in B is all of B. So I, is
invertible as an element of By, and so z is invertible. Thus, every non-zero
element in Z(B) is invertible. Since Z(B) is also commutative and contains
1#0, it is a field.

Suppose now that B is a finite dimensional F-algebra, and F is alge-
braically closed. Then any z € Z(B) not in F would give rise to a proper
finite extension of F and this is impossible (see the proof of Theorem 5.1.2).
QED

5.8 Artin-Wedderburn Structure

We need only bring together the understanding we have gained of the struc-
ture of semisimple rings to formulate the full structure theorem for semisimple
rings:

Theorem 5.8.1 If A is a semisimple ring then there are positive integer s,
dy,...,ds, and division rings D, ..., D, and an isomorphism of rings

A H M, (D;), (5.12)

j=1

where My, (Dj) is the ring of d; x d; matrices with entries in D;. Conversely,
the ring My(D), for any positive integer d and division ring D, is simple and
every finite product of such rings is semisimple. If a semisimple ring A is a

finite dimensional algebra over an algebraically closed field F then each Dj is
the field IF.
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The decomposition of a semisimple ring into a product of matrix rings is
generally called the Artin-Wedderburn theorem.
Proof. In Theorem 5.5.1 we proved that every semisimple ring is a product
of simple rings. Then in Theorem 5.6.1 we proved that every simple ring is
isomorphic to a matrix ring over a division ring. For the convserse direction
work out Exercise 5.4(a). By Theorem 5.6.1, the division ring D; is the
opposite ring of End4(L,), for a suitable simple left ideal L; in A, and then
by Schur’s Lemma (in the form of Theorem 5.1.2) D; = F if F is algebraically
closed.

Note that, for the second part of the conclusion in the preceding result,
all we need is if for F to be a splitting field for the algebra A.

5.9 A Module as Sum of its Parts

We will now see how the decomposition of a semisimple ring A yields a
decomposition of any A-module F.
Let A be a semisimple ring. Recall that there is a finite collection of
simple left ideals
Ly,...L. CA

such that every simple left ideal is isomorphic to L —i for exactly one i € [r].
Moreover,

A; 4 sum of all left ideals isomorphic to L;

is a two sided ideal in A, and A is the direct sum of these ideals as well as
being isomorphic to their product:

Recall that each A; has a unit element u;, and
uy + - u, = 1.

Every a € A decomposes uniquely as

T
a = E Qy,
i=1
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where
au; = a; = u;a € A;.

Consider now any left A-module E. Any element x € E can then be
decomposed as

azzlx:i U;T
~~

]:1 GE]'ZUJ'E

Note that
wir € B; < AE, (5.13)

and E; is a submodule of E. Observe also that since

Aj = ’LLjA,
we have

EJ = UjE
Moreover,

Ej=A;E= )  LE

left ideal L ~ L;

Proposition 5.9.1 If A is a semisimple ring and E # {0} an A-module then
E has a submodule isomorphic to some simple left ideal in A. In particular,
every simple A-module is isomorphic to a simple left ideal in A.

Proof. Observe that E = AE # {0}. Now A is the sum of its simple left
ideals. Thus, there is a simple left ideal L in A, and an element v € E, such
that Lv # {0}. The map

L—Lv:x— zv

is surjective and, by simplicity of L, is also injective. Thus, L ~ Lv, and Lv

is therefore a simple submodule of E.

Theorem 5.9.1 Suppose A is a semisimple ring. Let Ly, ..., Lg be left ideals
of A such that every simple left ideal of A is isomorphic, as a left A-module,
to L; for exactly one i € [s], and let A; be the sum of all left ideals of A
isomorphic to L;. Let u; be a central idempotent for which A; = Au;, for
each i € [s]. If E is a left A-module then

E=E .. PE.
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where

is the sum of all simple left submodules of E isomorphic to L;, this sum being
taken to be {0} when there is no such submodule.

Proof. Let F' be a simple submodule of E. We know that it must be isomor-
phic to one of the simple ideals L; in A. Then, since LF' = 0 whenever L is
a simple ideal not isomorphic to L;, we have

Thus, every submodule isomorphic to L; is contained in £j. On the other
hand, A; is the sum of simple left ideals isomorphic to L;, and so E; = A;FE
is a sum of simple submodules isomorphic to L;. The module F is the direct
sum of simple submodules, and each such submodule is isomorphic to some

L;. Summing up the submodules isomorphic to L, yields E;.

5.10 Readings on Rings

The general subject of which we have seen a special sample in this chapter
is the theory of noncommutative rings. Books on noncommutative rings
and algebras generally subscribe to the ‘beatings shall continue until morale
improves’ school of exposition. A delightful exception is the page-turner
account in the book of Lam [50]. The accessible book of Farb and Dennis
[26] also includes a slim, yet substantive, chapter on representations of finite
groups. Lang’s Algebra is also a very convenient and readable reference for
the basic major results.

5.11 Afterthoughts: Clifford Algebras

Clifford algebras are algebras of great use and interest that lie just at the
borders of our exploration. Here we take a very quick look at this family of
algebras.

A quadratic form Q on a vector space V, over a field F, is a mapping
Q@ : V — F for which

Q(cv) = A2Q(v) forallce Fand v eV,
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and such that the map
V xV = F: (u,0) = Bolu,v) = Qu+v) — Qu) — Qv)

is bilinear.
If w e V has Q(w) # 0, then the mapping

Bg(v,w)
Q(w)

fixes each point on the subspace w* = {v € V : Bg(v,w) = 0}, and maps
w to —w. This is therefore the reflection across w=, if the characteristic of
F is not 2. In case the characteristic of [F is 2, you can construct reflections
‘by hand’: for a hyperplane H in V', and a vector w outside H, fix a vector
vg € H, a reflection is produced by taking the linear map on V' for which
fixes each point on H and maps w to w + vy.

The Clifford algebra Cg for a quadratic form () on a vector space V' is
the quotient algebra

Tw:V =V iv—v-—

Co=T(V)/Jg, (5.14)
where T'(V) is the tensor algebra
T(V)=FeVaeV®a...
and Jg is the two sided ideal in T'(V') generated by all elements of the form
v® v+ Qv)l, for all v € V.

The natural injection V' — T'(V') induces, by composition with the projection
down to the quotient C(V), a linear map

jQ V= CQ(V) (515)
which satisfies
Jjo(0)?*+ Q) =0 forallveV. (5.16)

The map jo : V — Cq(V) specifies Cq(V) as the ‘minimal’ such algebra in
the sense that it has the ‘universal property’ that if f : V — A is any linear
map from V' to an F-algebra A for which f(v)? + Q(v) = 0, for all v € V,
then there is a unique algebra morphism fg : Co(V) — A such that

f=1Tqoq



146 Ambar N. Sengupta

For our discussion, let us focus on a complex vector space V of finite
dimension d, and the bilinear form B is specified by the matrix

Bo(ea, €p) = —204p, for all a,b € [d],

where eq,..., e; is some basis of V. The corresponding Clifford algebra, which
we denote by Cy, can be taken to be the complex algebra generated by the
€1,..., €4, subject to the relations

{€a, €} def epep + epey = —2041 for all a,b € [d]. (5.17)
A basis of the algebra is given by all products of the form

€sy- - -Csps

where m > 0, and 1 < 51 < 89 < -+ < 55, < d. Writing S for such a set
{s1,...,sm} C{1,...,d}, with the elements s; always in increasing order, we
see that the algebra has a basis consisting of one element eg for each subset
S of {1,...,d}. Notice also that the condition (5.17) implies that every time
a term eze;, with s > ¢, is replaced by eze,, one picks up a minus sign:

€16y = —€46; if s #£ t. (5.18)
Keeping in mind also the condition €? = 1 for all s € [d], we have
€SeT = €STESAT, (5.19)

where SAT is the symmetric difference of the sets S and T, and

€sT = | | €st,

sESteT
+1 ifs<t;
et =1 +1 ifs=t; (5.20)
-1 ifs>t,

and the empty product, which occurs if S or T'is ), is taken to be 1. The alge-
bra Oy can be reconstructed more officially as the 2¢-dimensional free vector
space over the set of formal variables eg, and then specifying multiplication
by (5.19). (For more see the book of Artin [2].)
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Each basis vector e, gives rise to idempotents

1 1
5(1+ea) and 5(1 —€eq).
In fact, the relation
(es,. . .€5,)% = (—1)mm=D) (5.21)

shows that any basis element eg in Cy, where S = {sy, ..., s,,} contains m
elements, produces orthogonal idempotents

1 — 1 m(m—
yrs =51 = (=)™ ) and oy g =S(1+(=1)"" T eg).

If d is odd then the full product eg = e;...e4 is in the center of the algebra
Cg, and the idempotents y4 4 are central idempotents. Thus, for d odd, Cy
is the product of 2 two sided ideals Cyy, ¢ and Cqy_ (4.

Particularly useful are the orthogonal idempotents arising from pairs

{a,b} C [d]:
1 1
Yt {aby = 5(1 +eqey) and  Y_ (ap) = 5(1 — €46p),

where a < b. Could this be an indecomposable idempotent? Recall the crite-
rion for indecomposability from Proposition 4.10.1 for a nonzero idempotent

y:
y is indecomposable if yxy is a scalar multple of y for every x € C.

(5.22)
A simple calculation shows that

Y+ fapy A , b}
Y+ {ap)c = Coll{at) 1 ¢ ¢ {a,0} (5.23)
ecYriapy if ¢ € {a,b}.

Thus, to construct an indecomposable idempotent we can take a product
of the idempotents y. f,41. Suppose first that d is even, and let 74 be the
partition of [d] into pairs of consecutive integers:

mg={{1.2},....{d - 1,d}}.

Let € be any mapping of 7w, to {41, —1}, giving a choice of sign for each pair
{j,7 + 1} in 4. Then we have the idempotent

Ye = H Ye(B),B> (5.24)

Bemy
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where, observe, the terms y.p) g commute with each other since the distinct
B’s are disjoint. An example of such an idempotent, for d = 4, is

1 1
5(1 + 6162)5(1 — e3ey).
Applying the criterion (5.22) with x = e., and using (5.23), it follows that
the idempotent y. is indecomposable. Thus, we have the full decomposition
of Cy, for even d, into simple left ideals

Ci= P Cuwe (5.25)

ee{+1,—1}7d

This explicitly exhibits the semisimple structure of Cy for even d. A straight-
forward extension produces the semsimple structure of Cy for odd d, on using
the central idempotents y (4.

If one thinks of eq,..., ¢4 as forming an orthonormal basis for a real vector
space Vj sitting inside V, the relation €2 = 1 is suggestive of reflection across
the hyperplane e-. More precisely, for any nonzero vector w € Vj, the map

Vo = Vo v —wow™!

takes w to —w and takes any v € wt to

—wow !t =vww Tt = v,

and is thus just the reflection map r,, across the hyperplane w*. A linear map
T : Vo — Vy is an orthogonal transformation, relative to @, if Q(Tv) = Q(v)
for all v € V4. A general orthogonal transformations is a compositions of
reflections, and so the Clifford algebra is a crucial structure in the study of
representations of the group of orthogonal transformations.

Exercises

1. Sanity check:

Is Q a semisimple ring?

Is a subring of a semisimple ring also semisimple?
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2. Show that a commutative simple ring is a field.

3. Let A be a finite-dimensional semisimple algebra over a field F, and
define Xyeg : A — I by

Xreg(a) = Tr (preg(a)), where preg(a) : A - A: 2z — ax. (5.26)

Let Lq,...,Ls; be a maximal collection of non-isomorphic simple left
ideals in A, so that A ~ [[/_, A;, where A; is the two sided ideal
formed by the sum of all left ideals isomorphic to L;. As usual, let 1 =
U1+ - - - +ug be the decomposition of 1 into idempotents u; € A; = Au;.
Viewing L; as a vector space over F, define

Xi(a) = Tr(preg(a)|Li) (5.27)
Note that since L; is a left ideal, pyeg(a)(L;) C L;. Show that:
(1) Xreg = 2.y dixi, where d; is the integer for which A; ~ Lfi as
A-modules.
(iii) Assume that the characteristic of F does not divide any of the
numbers dimg L; (in Exercise 3.7 there is an important case of

this). Use (ii) to show that the functions i, ..., xs are linearly
independent over F.

(iv) Let E be a left A-module, and define xg : A — F by
xe(a) =Tr (pp(a)), where pgp(a) : E— E x> azx. (5.28)

Show that xg is a linear combination of the functions y; with
non-negative integer coefficients:

XE = Z i Xi
i=1

where n; is the number of copies of L; in a decomposition of F
into simple A-modules.

(v) Under the assumption made in (iii), show that if F and F are left
A-modules with xg = xr then F ~ F.
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Let B = M,(D) be the algebra of n x n matrices over a division ring
D.

(a) Show that for each j € {1,...,n}, the set L; of all matrices in B
which have all entries 0 except possibly those in column j is a
simple left ideal. Since B = Ly + --- + L,,, this implies that B is
a semisimple ring.

(b) Show that if L is a simple left ideal in B then there is a basis
by, ...,b, of D" treated as a right D-module, such that L consists
exactly of those matrices T' for which T'h; = 0 whenever i # 1.

(c) With notation as in (a), produce orthogonal idempotent genera-
tors in Ly, ..., Ly,.

Prove that if a module N over a ring is the direct sum of simple submod-
ules, no two of which are isomorphic to each other then every simple
submodule of N is one of these submodules.

Suppose L, and L, are simple left ideals in a semisimple ring A. Show
that the following are equivalent: (i) LyLy = 0; (ii) Ly and Lo are not
isomorphic as A-modules; (iii) Lol = 0.

Suppose N; and N, are left ideals in a semisimple ring A. Show that
the following are equivalent: (i) NyNy = 0; (ii) there is no nonzero A-
linear map Ny — No; (iii) NoN; = 05 (iv) there is a simple submodule
of N7 which is isomorphic to a submodule of Nj.

. Let v and v be indecomposable idempotents in a semisimple ring A for

which uA = vA. Show that Awu is isomorphic to Av as left A-modules.

. Prove the results of section 4.10 for semsimple algebras, and, where

needed, assume that the algebra is finite dimensional over an alge-
braically closed field.

Suppose y is an idempotent in a ring A such that the left ideal Ay is
simple. Show that D, = {yzy : + € A} is a division ring under the
addition and multiplication operations inherited from A.

Let I be a nonempty finite set of commuting nonzero idempotents in a
ring A. Show that there is a set G of orthogonal nonzero idempotents
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12.

13.

14.

15.

16.

in A which add up to 1 such that every element of [ is the sum of a
unique subset of G.

For an algebra A over a field [F, define an element s € A to be semisim-
ple if s = cie; + - -+ 4+ ¢pe,, for some orthogonal nonzero idempotents
ej and ¢y, ..., ¢, € F. By adding up the terms for which the values of ¢;
are equal, we assume that cq, ..., ¢, are distinct. For such s, show that
each e; is equal to p;(s) for some polynomial p;(X) € F[X]. Show also
that the elements in A which are polynomials in s form a semisimple
subalgebra of A.

Let C be a finite nonempty set of commuting semisimple elements in
an algebra A over a field F. Show that there are orthogonal nonzero
idempotents ey, ..., e, such that every element of C' is an F-linear com-
bination of the e;.

Let A be a semisimple algebra over an algebraically closed field T,
{L;}ier a maximal collection of non-isomorphic simple left ideals in A,
and A; the sum of all left ideals isomorphic to L;. We know that A; ~
Endr(L;) and A ~ [],.x As, as algebras. Show that an element a € A is
an idempotent if and only if its representative block diagonal matrix in
[L;cx Endg(L;) is a projection matrix, and that it is an indecomposable
idempotent if and only if the matrix is a projection matrix of rank 1.

Let A be a finite dimensional semisimple algebra over an algebraically
closed field F. Let Ly, ..., Lg be simple left ideals in A such that every
simple A-module is isomorphic to L; for exactly one i € [s]. For every
a € Alet p;j(a) be the d; x d; matrix for the map L; — L; :  — ax
relative to a fixed basis |b1(i)), ..., |ba, (7)) of L;. Prove that the matrix-
entry functions p; jx @ a — (b;(7),abk(7)), with j, k € {1,...,d;} and
i € {1,...,r}, are linearly independent over . Using this conclude that
the characters x; = Trp; are linearly independent.

Show that if u and v are indecomposable idempotents in a semisimple
F-algebra A, where F is algebraically closed, then wv is either 0, or
has square equal to 0, or is an F-multiple of an indecomposable idem-
potent. What can be said if v and v are commuting indecomposable
idempotents?
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17. A partially ordered set (.5, <) is said to be a lattice if for any a,b € S

there is a least element which is > both a and b, and there is a greatest
element a A b which is < both a and b; the lattice is complete if every
T C S has an infimum (greatest lower bound) and a supremum (least
upper bound). The least element in S is denoted 0, and the greatest
element 1, if they exist. An atom in S is an element a € S such that
a # 0andif b < athenb € {0,a}. If S is a subset of a partially ordered
set, a mazimal element of S is an element a € S such that if b € S
with a < b then b = a; a minimal element of S is an element a € S
such that if b € S with b < a then b = a. A partially ordered set (.5, <)
satisfies the ascending chain condition if every nonempty subset of L
contains a maximal element; it satisfies the descending chain condition:
if every nonempty subset of IL contains a minimal element. Now let LL,,
be the set of all submodules of a module M over a ring A, and take the
inclusion relation Ly C Lo as a partial order on ILy;. Thus an atom in
LLys is a submodule which is simple. Prove the following:

(i) Las is a complete lattice.
(ii) The lattice Ly is modular:
If pym,b € Ly and m C b then (p+m)Nb= (pNb)+ m.
(5.29)

(The significance of modularity in a lattice was underlined by
Dedekind [17, section 4, eqn. (M)], [18, section I1.8].).)

(iii) Prove that if A is a finite dimensional algebra over some field then
A is left Artinian in the sense that the lattice of left ideals in A
satisfies the descending chain condition.

(iv) If A is a semisimple ring then A is left Noetherian in the sense
that the lattice of left ideals in A satisfies the ascending chain
condition.

(v) If A is a semisimple ring and [ and J are two sided ideals in A
then INJ =1J.

(vi) If A is a semisimple ring then the lattice of two sided ideals in A
is distributive:

INJ+K)=InJ)+(INK)
I+(JNK)=(I+J)Nn(I + K),
for all two sided ideals I, J, K in A.

(5.30)
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18. Let (L, <) be a modular lattice with 0 and 1 (these and other related
terms are as defined in Exercise 5.17). Let A be the set of atoms in L.
Denote by a + b the supremum of {a, b}, and by a Nb the infimum of
{a, b}, and, more generally, denote the supremum of a subset S C LL by
sup S or by > S. Elements a,b € L. are complements of each other if
a+b=1and anb = 0. Say that a subset S C A is linearly independent
if Y T1 =Y Ty for some finite subsets 77 C Ty C S implies T} = Ts.

(i) Suppose every element of L. has a complement. Show that if ¢t < s
in L then there exists v € L such that t +v =s and tNv = 0.

(ii) S C A is independent if and only if a N> T = 0 for every finite
T'cSandallae S—T.

(iii) Suppose every s € L has a complement and L satisfies the ascend-
ing chain condition. Show that for every nonzero m € L there is
an a € A with a < m.

(iv) Here is a primitive (in the logical, not historical) form of the Chi-
nese Remainder Theorem : For any elements A, B, [ and J in
a modular lattice for which J + K = 1, show that there is an
element C' such that C +1 = A+ 1 and C + J = B+ J. Next,
working with the lattice ILg of two sided ideals in a ring R, show
that if Iy, ..., I,, € Lg for which I, + I, = R for a # b, and if K7,
..., K,,, € L, then there exists C' € Lg such that C+1, = K,+1,
for all @ € {1,...,m}.



154 Ambar N. Sengupta



Chapter 6

Representations of 5,

Having survived the long exploration of semisimple structure, it may seem
that midway in our journey we are in deep woods, the right path lost. But
this is no time to abandon hope; instead we plunge right into untangling
the structure of representations of an important family of groups, the per-
mutation groups S,. This will be the only important class of finite groups
to which we will apply all the machinery we have manufactured. A natural
pathway beyond this is the study of representations of reflection groups.

There are several highly efficient ways to speed through the basics of the
representations of S,,. We choose a more leisurely path, beginning with a look
at permutations of [n] = {1,...,n} and partitions of [n]. This will lead us
naturally to a magically powerful device: the Young tableau, which packages
special pairs of partitions of [n]. We will then proceed to Frobenius’ con-
struction of indecomposable idempotents, or, equivalently, irreducible repre-
sentations of S,,, by using symmetries of the Young tableau.

6.1 Permutations and Partitions

To set the strategy for constructing the irreducible representations of S, in
its natural context, let us begin by looking briefly at the relationship between
subgroups of S,, and partitions of [n] = {1,...,n}.

A partition m of [n] is a set of disjoint nonempty subsets of [n] whose
union is [n]; we will call the elements of 7 the blocks of 7. For example, the
set

{{2,5,3}, {1}, {4,6}}

155
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is a partition of [6] consisting of the blocks {2,3,5}, {1}, {4,6}. Let
P, = theset of all partitions of [n]. (6.1)

Any subgroup H of S,, produces a partition 7y of [n] through the orbits:
two elements j, k € [n] lie in a block of 7y if and only if j = s(k) for some
se H.

A c¢ycle is a permutation which is has at most one block of size > 1; we
call this block the support of the cycle, which we take to be () for the identity
permutation ¢. A cycle ¢ is displayed as

C:(ilig Zk),

where c(iy) = ig,..., c(ig—1) = ik, c(ix) = i;. Two cycles are said to be disjoint
if their supports are disjoint. Disjoint cycles commute. The length of a cycle
is the size of the largest block minus 1; thus, the length of the cycle (1235)
is 4, and the length of a transposition (ab) is 1. If s € S, then a cycle of
s is a cycle which coincides with s on some subset of [n] and is the identity
outside it. Then s is the product, in any order, of its distinct cycles. For
example, the permutation

1—=1,2—53—24—6,5—3,6—14

1 2 3 4
1 5 26

and has the cycle decomposition

1S written as

w Ot
= O

(253)(46),

not writing the identity cycle. The length [(s) of a permutation s is the sum
of the lengths of its cycles, and the signature of s is given by

e(s) = (=1)"®, (6.2)

Multiplying s by a transposition ¢ either splits a cycle of s into two, or joins
two cycles into one:

(15)(123 ...5..m)=(123 ... j—=1D(Gj+1...m),

(15)(123...5-1)@Gj+1...m)=(123...5...,m), (6:3)
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with the sum of the cycle lengths either decreasing by 1 or increasing by 1:
l(ts) =1(s) £ 1 if ¢ is a transposition and s € S,,. (6.4)

Consequently, €(ts) = —e(s) if t is a transposition. Since every cycle is a
product of transpositions:

(12 ... k)=(12)(23)...(k—1k),
so is every permutation, and so
e(s) = (=1)*, if s is a product of k transpositions.

The permutation s is said to be even if €(s) is 1, and odd if €(s) = —1. We
then have
e(rs) = e(r)e(s) forall r;s € S,.

Thus, for any field F, the homomorphism € : S,, — {1, —1} C F*, provides a
one dimensional, hence irreducible, representation of S,, on .

Returning to partitions, let By, ..., B,, be the string of blocks of a partition
m € P, listed in order of decreasing size:

|Bi| > |Ba| > ... > | Bpl.

Then

is called the shape of m. Let P, be the set of all shapes of all elements of
7. A shape, in general, is simply a finite non-decreasing sequence of positive
integers. Shapes are displayed visually as Young diagrams in terms of rows
of empty boxes. For example, the diagram

displays the shape (4,3,3,2,1,1).
Consider shapes A and X in P,. If X # X then there is a smallest j for
which X} # A;. If, for this j, A} > A; then we say that X' > X in lexicographic
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order. This is an order relation on the partitions of n. The largest element

is
(n)

and the smallest element is (1,1,...,1). Here is an ordering of P3 displayed

in terms of shapes:

111 > >@ (6.6)

There is also a natural partial order on P,,, with m; < 7, meaning that
m; refines the blocks of ms:

m < mo if for any block A € m there is a block B € my with A C B, (6.7)

or, equivalently, each bock of my is the union of some of the blocks in 7.
Thus, m < 7y if w1 is a ‘finer’ partition than m,. For example,

{{2,3}, {5}, {1}, {4}, {6}} < {{2,5,3}, {1}, {4,6}}

in Pg. The ‘smallest’ partition in this order is {{1}, ..., {n}}, and the ‘largest’

is {[n]}:
0={{1},...{n}}, and  1={[n]}. (6.8)

If the interval
[, m) ={m €P, : m <7 < Ty}

coincides with {m, 7}, and m # mo, then we say that my covers m. If
m € P, can be reached from 0 in [ steps, each carrying it from one partition
to a covering partition, then [ is equal to

() = 3_(1B] - 1), (6.9)

Ber

which is independent of the particular sequence of partitions used to go from
0 to w. This is Exercise 6.2.

6.2 Complements and Young Tableaux

The partial ordering < of partitions makes IP,, a lattice: partitions m; and 7o
have a greatest lower bound as well as a least upper bound, which we denote

1 N To = inf{m, ’/TQ}7 and T vV o = sup{7r1, 7T2}. (610)
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More descriptively, m A o consists of all the non-empty intersections BN C),
with B a block of m; and C' a block of my. Two elements 4, j € [n] lie in the
same block of 7 V 7y if and only if there is a sequence

1L =10,%, -y tm = ],

where consecutive elements lie in a common block of either 7 or my. In other
words, two elements lie in the same block of 71V, if one can travel from one
element to the other by moving in steps, each of which stays inside either a
block of 7 or a block of 5.

As in the lattice of left ideals of a semisimple ring, in the lattice P,, every
element 7 has a complement ., satisfying

TAT.=0 and VT, = 1, (6.11)

and, as with ideals, the complement is not generally unique.
A Young tableau is a wondefully compact device encoding a partition of
[n] along with a choice of complemenent. It is a matrix of the form

a1 v Q1)

a921 A2\,
(6.12)

Am1 -+ Ami,

We will take the entries a;; all distinct and drawn from {1,...,n}. Thus,
officially, a Young tableau, of size n € {1,2,3, ...} and shape (A1, ..., \p,) € P,
is an injective mapping

T:{(i,7) - i €[ml],je N} —Inl:3G])— aj, (6.13)

The plural of ‘Young tableau’ is ‘Young tableaux.” In gratitude to Borchers
and Gieseke’s LaTeX package youngtab, we will sometimes use the terms
Youngtab and the plural Yountabs.

It is convenient to display Youngtabs using boxes; for example:

1]2]4]5]
3[6
L7

Let T,, denote the set of all Yountabs with n entries.
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Each Youngtab specifies two partitions of [n], one formed by the rows
and the other by the columns:

Rows(T') = {rowsof T'}

6.14
Cols(T") = {columns of T'} (6.14)

where, of course, the each row and each column is viewed as a set. Here is a
simple but essential observation about Rows(7") and Cols(7'):

a block R € Rows(T) intersects a block C' € Cols(T') in at most
one element.

In fact, something stronger is true: if you pick any two entries in the Youngtab
T then you can travel from one to the other by successively moving horizon-
tally along rows and vertically along columns (in the Youngtab, simply move
from one entry back to the first entry in that row, then move up or down
the first column till you reach the row containing the other entry, and then
move horizontally along the row.) Thus:

Rows(T) and Cols(T') are complements of each other in IP,,.

A Young tableau thus provides an efficient package, keeping track of two com-
plementary partitions of [n]. The complement provided by a Young tableau
has special and useful features. Here is a summary of observations about
complements in the lattice P,:

Theorem 6.2.1 Let m € P, be partition of [n]. Then there is a partition
. € P, for which

TAT. =0

mvVm, = 1.

(6.15)

Moreover, m. can be chosen to be any element in P,, which is mazimal among
those which satisfy the first condition in (6.15):

{m 7 Am =0} (6.16)

There is also a choice of m. for which the shape \(m.) is the largest in lexi-
cographic order among all elements of P, satisfying the first condition for m.
in (6.15). Such a choice is provided by Rows(T") if T is a Young tableau with
Cols(T) = 7, and similarly, with rows and columns interchanged.
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A Young complement of 7 is a complement of largest shape; clearly such
a complement is provided by a Youngtab for a partition.

Outline of Proof: We leave the details of the proof of the theorem as
Exercise 6.5. Here is a brief sketch: Let By,..., B,, be the blocks of 7. Let C}
contain exactly one element r;; from each B;. Next form C5 by picking one
element each nonempty B; —{r;1 }. Proceed in this way to form a partition 7.
of [n]. By construction, each block of 7, intersects any block of 7 in at most
one element. Now you can check that vz, is 1. Next consider a maximal
element my for (6.16); maximality implies that two blocks of 7y cannot be
combined while still retaining the first condition on . in (6.15) for my, and
this means that for any two blocks of 7y each contains an element such that
these two elements lie in the same block of 7. From this it follows that the
second condition for 7, in (6.15) also holds for .

The argument above provides a constructive view of a Young complement.
Let Ry, ..., R,, be the blocks of 7; think of each R; listed as a row of elemets.
Let C1, ..., C; be the blocks of any Young complement 7, listed in decreasing
order of size: |Cy| > ... > |C,|. Then: (a) C; contains exactly one element
ri1 from R; for each i; (b) Cy contains one element r; 5 from R; — {r;} for
each ¢ for which this set is nonempty; (c) inductively, having obtained Cf,
..., Cj, with C} consisting of elements 7;;, € R; for certain of the i, let Cj44

contain one element r; ;11 from R;—{r;1,...,r;;} for each ¢ for which this set
is nonempty. Conversely, by finteness of n, this procedure comes to a halt
after producing a finite collection C4, ..., C,, of subsets of [n] which form

a partition of [n], which is a complement to 7 of maximal shape, a Young
complement.

6.3 Symmetries of Partitions

The action of S,, on [n] induces an action on the set P, of all partitions of [n]:
a permutation s € S, carries partition m to the partition s(7) whose blocks
are s(B) with B running over the blocks of 7. For example:

(13)(245) - {{2,5,3}, {1}, {4,6}} = {{4, 2,1}, {3}, {5, 6}}.

Define the fixing subgroup Fix, of a partition = € P, to consist of all permu-
tations which carry each block of 7 into itself:

Fix, ={s €S, : s(B)=DB forallB e w}. (6.17)
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Theorem 6.3.1 The mapping
Fix : P,, — {subgroupsof S, } : m — Fix, (6.18)

is injective and order-preserving when the subgroups of S, are ordered by in-
clusion. The mapping Fix from P, to its image inside the lattice of subgroups
of Sy, 1s an isomorphism:

Fix,, C Fix,, if and only if m < 7.
Furthermore, Fix also preserves the lattice operations:

Fixqar, = Fixg, N Fixg,

6.19
Fix; v, = the subgroup generated by Fix,, and Fix,,, ( )
for all my,m € P,.
There is an isomorphism of groups
FiX7T — S)\l(ﬂ) X ... X S)\m(w), (620)

where ()\1(7), ...,)\m(w)) is the shape of . In particular, Fix, is generated
by the transpositions it contains.

Proof. A partition 7 is recovered from the fixing subgroup Fix, as the set of
orbits of Fix, in [n]. Hence, 7w — Fix, is injective.

Suppose m; < o in P,. Then any B € 75 is a union of blocks By, ..., By, €
m and so s(B) is the union s(By)U...Us(By) for any s € S,; thus, s(B) = B
if s € Fix,,. Hence, Fix,, C Fix,,.

Conversely, suppose Fix,, C Fix,,, and B is any block of my; then every
s € Fix,, maps B into itself and so B is a union of blocks of .

Let s € Fix,, N Fix,,, and consider any block B € m; A my. Then B =
By N By, for some By € m and By € 7y, and so s(B) = s(B;1) N s(By) =
By N By = B. Hence, Fix;, NFix,, C Fix; ar,. The reverse inclusion follows
from the fact that Fix is order-preserving.

We turn next to (6.20). Let By, ..., B,, be the blocks of a partition 7, and
let Sp, be the group of permutations of the set Bj; then

Fix, = [ [ S5, : s+ (s|B1, .., s| Bm)

j=1
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is clearly an isomorphism. Since each Sp; ~ Sp;| is generated by its trans-
positions, so is Fix,.

Now consider a transposition (ab) € Fixqyr,. If {a,b} is in a block of
m or my then s is in Fix,, or Fix,,. Suppose, next that a € By € m and
b € By € my. Now two elements lie in the same block of m; Vs if and only if
there is a sequence of elements starting from one and ending with the other:

a =11, i, ..., 7, = b,

with consecutive terms in the sequence always in the same block of either 7
or of my. Consequently,

(i ik+1) € Fixy, UFix,, for all k € {1,...,7 — 1}.
Let F' be the subgroup of 5,, generated by Fix,, and Fix,,. Observe that
(Zl Zg)(ZQ 23)(21 ZQ) == (Zl 23) E F

and then
(7,1 23)(23 Z4)(Z1 23) — (’Ll 24) G F,
and thus, inductively,
(ab) = (iyi,) € F.

Hence, every transposition in Fix; v., is in F. Since Fix; v, is generated
by its transpositions, it follows that Fix,, v, is a subset of F'. The reverse
inclusion holds simply because Fix,, and Fix,, are both subsets of Fix, v,
This completes the proof of the second part of (6.19).

Recall from the outline proof of Theorem 6.2.1 how we can construct, for
a partition 7 € IP,,, a partition 7, of largest shape satisfying m A 7, = 0. If
7, is another such partition then a largest block Cy of 7, and a largest block
C7 of 1, both contain exactly one element from each block of 7; hence there
is a permutation s; € Fix,, which is a product of one transposition each for
each block of 7, which maps ] to C;. Next, removing Cy and C] from the
picture, and arguing similarly for a next largest block Cs of 7, and a next
largest block C of 7T/yc we have a permutation, again a product transpositions
preserving every block of 7, which carries CY to C. Proceeding in this way
we produce a permutation s € S, which fixes each block of 7 and carries ,,
to my., with C; going over to s(C;) = C}. In summary:
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Theorem 6.3.2 Let m € P, and suppose my., . € P, are Young comple-
ments of 7:

!/

Aye) = A(my.) = i;X{A(Wl) .7 AT =0}, (6.21)

Let Cy, ..., Cp, be the distinct blocks of ., ordered so that |Cy| > ... > |Cy|,
and C1, ..., C}, the distinct elements of m,,. also listed in decreasing order of
size. Then there exists an s € Fix, such that

s(C;) = Cj  for all j € [m].

TATye=0=7AT

Conversely, if s € Fix, then s(my.) is a Young complement of 7.

Here is a useful consequence:

Theorem 6.3.3 Suppose m,. is Young complement of m € P,,. Then, for
any s € Sy,

Fix, N sFi><;7Tst_1 ={t} if s € Fix,Fix,, , and

6.22
Fix, N sFixﬁycs’1 # {1} ifs ¢ Fix Fix,,, ( )
where ¢ is the identity permutation. The group Fix, N SFiXWyCS_l, as with all
fixing subgroups, is generated by the transpositions it contains.
Thus, if T is any Young tableau with n entries, and s € S,, then
CrNsRrs™' ={e} if and only if s € CrRy, (6.23)

where Ry is the fizing subgroup for Rows(T') and Cr is the fizing subgroup
for Cols(T). The group CrNsRys™, if non-trivial, contains a transposition.

Proof. Let Cf, ..., C; be the blocks of . in decreasing order of size; then
s(Cy), ..., s(Cy) are the blocks of s(m.), also in decreasing order of size. From
Fixpns(r,e) = Fixy N sFixwst_l

we see that this subgroup is trivial if and only if © A s(my.) is 0. Thus, this
condition means s(m,.), which has the same shape as 7, is also a Young
complement of 7. By Theorem 6.3.2 this holds if and only if there is an
element s; € Fix, such that s;5(C;) = C; for each j € [g]. The latter means
515 is in the fixing subgroup of m,., and so the condition Fix, N sFixﬂycs_1 =
{1} is equivalent to s = s]'sy for some s; € Fix, and sy € Srye- This
establishes (6.22). The result (6.23) follows by specializing to m = Rows(T')

and m,. = Cols(T").
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6.4 Conjugacy Classes to Young Tableaux

Any element in S,, can be expressed as a product of a unique set of disjoint
cycles:

(@115 ey @10y) - - (Qp1s ooy Q)

where the a;; are distinct and run over {1,...,n}. This permutation thus
specifies a partition
(A1 ooy Am)

of n into positive integers Ay, ..., \p:

M4+ A =n.
To make things definite, we require that

AM> > >\
The set of all such shapes (A, ..., A,) is naturally identifiable as the quotient

P, ~P,/S,. (6.24)

This delineates the distinction between partitions of n and partitions of [n].
Two permutations are conjugate if and only if they have the same cy-
cle structure. Thus, the conjugacy classes of S, correspond one to one to
partitions of n.
The group 5, acts on the set of Youngtabs corresponding to each partition
of n; viewing a Young tableau as a mapping 7" as in (6.13) the action is defined
by composition with permutations:

Sy x T, =T, :(c,T)—coT.

For example:

2[4]5]
6 pr—

5/1]2]
7

(134)(25)(67)

‘\le
O~

For a tableau 7', Young introduced two subgroups of S,,:

Ry ={ all p € S,, which preserve each row of T'} (6.25)
Cr = { all ¢ € S,, which preserve each column of T'}. '

If we think in terms of the natural action of S, on the set PP, of partitions
of [n], Ry is the fixing subgroup of the element Rows(T") € P,, and C7 is the
fixing subgroup of Cols(T) € P,, .
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6.5 Young Tableaux to Young Symmetrizers

The Young symmetrizer for a Youngtab 7' is the element

yr & opry = Z (—1)1gp € Z[S,), (6.26)

q€Cr,pERT

cr = Z (_1)qq

qeCr

rr = Zp

pERT

where

(6.27)

We have used the notation

(—1)* = sgn(q).

Observe that Ry acts with the trivial representation on the one dimensional
space Qrr, and Cr acts through the representation ¢|/C'r on the one dimen-
sional space Qcy. Indeed, cr and r are, up to scalar multiples, idempotents
in Q[S,]. Frobenius constructed y from c¢r and rr and showed that, up to
scalar multiple, y7 is an indecomposable idempotent in Q[S,,].

Here is a formal statement of some of the basic obervations about rr, cr,
and yr:

Proposition 6.5.1 Let T be any Young tableau T with n entries. Then
qyr = (-1)r  if g€ Cr;

. 6.28
yrp =yr ifp € Rr. (6:28)
The row group Ry and column group Cr have trivial intersection:

Ry N Cr = {identity permutation} (6.29)

Consequently, each element in the set
CrRr={qp:q € Cr,p € Rr}

can be expressed in the form qp for a unique pair (q,p) € Cr X Rr. For any
s € Sy, the row and column symmetry groups behave as:

Ry = sRps™ L, and Cyp = sCps™?, (6.30)
and the Young symmetrizer transforms to a conjugate:
Yo = SYrs L. (6.31)

We leave the proof as Exercise 6.1.
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6.6 Youngtabs to Irreducible Representations

We denote by ¢ € S, the identity permutation. Let R be any ring; then there
is the ‘trace functional’

TrO:R[Sn]%R:x:szsr—):c,

SGSn

Theorem 6.6.1 Let T be a Young tableau for n € {2,3,...}. Then, for
the Young symmetrizer yr € Z[S,], the trace Tro(y3) is a positive integer
vr, dividing n!. The element ep = %TyT 1s an indecomposable idempotent
in Q[S,]. The corresponding irreducible representation space Q[S,|yr has

dimension dr given by
n!

dr = —. 6.32
r= (6.32)

There are elements vy, ..., vq, € Z[Sy)yr which form a Q-basis of Q[S,]yr.

Proof. The indecomposability criterion in Proposition 4.10.1 will be our key
tool.
To simplify the notation in the proof, we drop all subscripts indicating
the fixed tableau T'; thus, we write y instead of yr.
Fix t € S, and let
z = yty. (6.33)

Our first objective is to prove that z is an integer multiple of y.
Observe that

qgzp = (—1)?z for all p € Ry and ¢q € Cr, (6.34)

because qy = (—1)%y and yp = y. Writing z as

z = E ZsS,

SESn

where each z, is an integer, we see that, for ¢ € C'r and p € Rp,
zgp = coeff. of v in ¢ lzp™t = (—1)%2,
Using this, we can express z as

z=zy+ Z 258, (6.35)
s¢Cr Ry
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Next we show that the second term on the right is 0. For this we recall from
Theorem 6.3.3 that if s ¢ Cr Ry then Cr N sRps™! is non-trivial, and hence
contains some transposition 7; thus:

If s ¢ Cr Ry then there are transpositions o € Ry and 7 € Cr such that

7 lso! = s, (6.36)

Consequently:
(T20)s = zs.

But since 7 € Cr and o € Ry we have
Tz0 = (—1)"2 = —2z,
from which, specializing to the coefficient of s, we have
(T20)s = —2zs.

Hence
2, =0 if s ¢ CrRy.

Looking back at (6.35), we conclude that
z=zy. (6.37)

Recalling the definition of z in (6.33), we see then that yty is an integer
multiple of y for every t € S,,. Consequently,

yxy is a Q-multiple of y for every z € Q[S,,]. (6.38)

Specializing to the case t = ¢, we have

Yy =Y, (6.39)
where
7= (). (6.40)
In particular, the multiplier v is an integer.
If v # 0, then
e=7"y (6.41)

is clearly an idempotent in Q[S,]. We will show shortly that v is a positive
integer dividing n!. Then e is an idempotent in Q[S,]. By (6.38), exe is a
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Q-multiple of e for all z € Q[S,]. Hence by the indecomposablity criterion
in Proposition 4.10.1, e s an indecomposable idempotent.

It remains to prove that v is a positive integer dividing n!. Consider the
right multiplication map

T, : Q[S,] — Q[S,] : a— ay (6.42)

This is Q-linear, on the subspace Q[S,]y it equals multiplication by the con-
stant 7 and maps any complementary subspace into Q[S,]y, and so has trace
equal to v dimg (Q[Sn]y) On the other hand, in terms of the standard basis
of Q[S,] given by the elements of S,,, the trace of T}, is

Tr (T,) = nly, = nl, (6.43)
since, from the definition of y it is clear that

yl,:l'

Thus,
v dimg (Q[S,Jy) = n!. (6.44)

Hence v is a positive integer dividing n!.

To finish up, note that the elements ty, with ¢ running over .S,,, span
Z[S,)y. Consequently, a subset of them form a Q-basis of the vector space
Qls,ly

We can upgrade to a general field. If F is any field, there is the natural
ring homomorphism

def
Z—TF:m— mp = mlp,

which is injective if F has characteristic 0, and which induces an injection of
Z, = Z/pZ onto the image Zy of Z in F if the characteristic of F is p # 0.
To avoid too much notational distraction, we often sacrifice precision and
denote mly as simply m instead of mp, bearing in mind that this might be
the 0 element in F. Passing to the group rings, there is naturally induced a
ring homomorphism

Z[S,] — F[S,] : a — ag,

for any n € {1,2,...}. Again, we often simply write a instead of ap. For
instance, the image of the Young symmetrizer yr € Z[S,,] in F[S,] is denoted
simply by yr in the statement of the following result.
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Theorem 6.6.2 Let n € {2,3,...} and F a field in which n! # 0. Let T be
a Young tableau for n. Then vy = Tro(y%) is not zero in F, and the element
er = %TyT, viewed as an element in F[S,], is an indecomposable idempotent.
The corresponding representation space F[S,|yr has dimension dyr which
satisfies

n!

dprlp = —15. (6.45)

T

If F has characteristic 0 then
n!

d]F,T = dT = — (646)
YT

does not depend on the field IF.

Proof. The argument is essentially a rerun of the proof of Theorem 6.6.1,
mostly making sure we don’t divide by 0 anywhere. In place of (6.38) we
have now

yrzyr is an F-multiple of yr for every x € F[S,,]. (6.47)

This again implies that er = ’y}lyT is an indecomposable idempotent, pro-
vided we make sure yp = Tro(y%) isn’t 0 in F. But v is a divisor of n!, and
hence is indeed # 0 in F. Lastly, writing y for yr and arguing as in (6.43),
we work out the trace of

T, : F[S,]| = F[S,] : a — ay (6.48)

to be
Tr (T,) = nly, = nl, (6.49)

by one count, and equal to vy dimp (F[Sn]y) by another count; this shows
that dimg (F[S,]y) equals n!/y7, both viewed as elements of F.

6.7 Youngtab Apps

There is a whole jujitsu of Young tableau combinatorics which yield a power-
ful show of results. Here we go through just a few of these moves, extracting
three ‘apps’ which are often used. The standard, intricate and efficient, path-
way to the results is from Weyl [75] who appears to credit von Neumann for
this approach. We include alternative insights by way of proofs based on the
viewpoint of partitions.
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Proposition 6.7.1 For Youngtabs T and T', each with n entries, if N(T") >
MT) in lexicographic order, then:

(i) there are two entries which both lie in one row of T' and in one column
of T as well.

(i) there exists a transposition o lying in Ry N Crp.

In the language of partitions, if A(T") > A(T') then Cols(T) A Rows(T") # 0,
and the nontrivial group

Ry N CT = FiXCols(T)/\Rows(T’) (650)
s generated by the transpositions it contains.

Proof. Recall from Theorem 6.2.1 that the Young complement Rows(7T)
of Cols(T') is the partition of largest shape among all m; € P, for which
Cols(T) Am = 0. Now A(7”) > A(T) means that the shape of Rows(T") is
larger than the shape of Rows(7T'), and so

Cols(T) A Rows(T") # 0.

This just means that there is a column of 7" which intersects some row of
T’ in more than one element. Let i and j be two such elements. Then the
transposition (i j) lies in both Ry and Cpr. Theorem 6.3.1 implies that the

fixing subgroup (6.50) is generated by transpositions.
Here is the more traditional argument:

Traditional Proof. Write X for A(7”), and A for A(T"). Suppose A wins
over A right out in row 1: A} > A;. Now A;(5) is not just the number of
entries in row 1 of a Young tableau .5, it is also the number of columns of
S. Therefore, there must exist two entries in the first row of 7" which lie
in the same column of 7. Next suppose A} = A;, and the elements of the
first row of T” are distributed over different columns of 7. Then we move
these elements ‘vertically’ in 7" all to the first row, obtaining a tableau T}
whose first row is a permutation of the first row of 7’. Having used only
vertical moves, we have T7 = ¢, T, for some ¢ € Cp. We can replay the
game now, focusing on row 2 downwards. Compare row 2 of 7" with that of
T. Again, if the rows are of equal length then there is a vertical move in
Ty (which is therefore also a vertical move in T, because Cy,r = Cr) which
produces a tableau Ty = ¢goqi T, with ¢ € Cp, whose first row is the same
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as that of 77, and whose second row is a permutation of the second row of
T'. Proceeding this way, we reach the first j for which the j-th row of 7" has
more elements than the j-th row of T'. Then each of the first j — 1 rows of T’
is a permutation of the corresponding row of 7};_;; focusing on the Youngtabs
made up of the remaining rows, recycling the argument we used for row 1,
we see that there are two elements in the j-th row of 7" which lie a single
column in 7}_;. Since the columns of 7}_; are, as sets, identical to those of
T, we are done with proving (i). Now, for (ii), suppose a and b are distinct
entries lying in one row of 7" and in one column of T; then the transposition
(a,b) lies in Ry N Cr.

The next result says what happens with Youngtabs for a common parti-
tion.

Proposition 6.7.2 Let T and T' be Young tableaux associated to a common
partition A. Let s be the element of S, for which T' = sT. Then:

(i) s &€ CrRr if and only if there are two elements which are in one row
of T" and also in one column of T';

(i) s ¢ CrRy if and only if there is a transposition o € Ry and a transpo-
sition T € Cr, for which
TSO = 8. (6.51)

Statement (i), stated in terms of the row and column partitions, says that
Rows(sT') and Cols(T) are Young complements of each other if and only if
s € CrRy.

Proof. The condition that there does not exist two elements which are in one
row of 7" = sT and also in one column of 7" means that

Rows(T") A Cols(T) = 0,

which, since 7" and T have the same shape, means that Rows(7”) is a
Young complement of Cols(7"). From Theorem 6.3.2, Rows(7”) is a Young
complement for Cols(7") if and only if s;Rows(7”) = Rows(7") for some
s1 € Fixco(r). Since Rows(1T”) = sRows(T'), the condition is thus equiv-
alent to:

there exists 51 € Fixcols() for which s15 € Fixpows(7)-
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Thus, the condition that Cols(7”) is a Young complement to Rows(T") is
equivalent to s € Scols(7)SRows(1) = CrRr.
For (ii), recall that

FiXCols(T)/\Rows(sT) = FiXCols(T) M FiXRows(sT)
= FiXCols(T) N SFiXRows(T)Sil (652)
= CT N SRTS_l

and the fixing subgroups are generated by the transpositions they contain.
Therefore, Cols(7") and Rows(sT') are not Young complements if and only
if there exists a transposition 7 € Cr such that ¢ = s~ !7s is in Ry; being
conjugate to a transposition, ¢ is also a transposition. | QED
Here is a proof which bypasses the structure we have built about parti-
tions:
Traditional Proof. Suppose that s = gp, with ¢ € Cr and p € Ry. Consider
two elements s(7) and s(j), with i # j, lying in the same row of T":

TO/Lb - S<i)7 Tc/tc = 8(])
Thus, 7, 7 lie in the same row of T"
Tab = 7:7 Tac = .]

The images p(i) and p(j) are also from the same row of T' (hence different
columns) and then ¢p(i) and gp(j) would be in different columns of 7". Thus
the entries s(i) and s(j), lying in the same row in 77, lie in different columns
of T.

Conversely, suppose that if two elements lie in the same row of 7" then
they lie in different columns of 7. We will show that the permutation s € .S,
for which 7" = sT has to be in CrRr. Bear in mind that the sequence of
row lengths for 7" is the same as for T. The elements of row 1 of 7" are
distributed over distinct columns of T'. Therefore, by moving these elements
vertically we can bring them all to the first row. This means that there is an
element ¢; € Cr such that T} = ¢;7 and T have the same set of elements for
their first rows. Next, the elements of the second row of 7" are distributed
over distinct columns in 7', and hence also in 77 = ¢; 1. Hence there is a
vertical move

q2 € Cyyr = Crp,
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for which Ty = ¢} and T” have the same set of first row elements and also
the same set of second row elements.

Proceeding in this way, we obtain a ¢ € C'r such that each row of T" is
equal, as a set, to the corresponding row of ¢7"

{To, 1 <b< A} ={q(Tw) : 1 <b< AL, for each a.

But then we can permute horizontally: for each fixed a, permute the numbers
Tup so that the g(T,,) match the 7),. Thus, there is a p € Ry, such that

T" = qp(T).

Thus,
s=gqp € CrRr.

We turn to proving (ii). Suppose s ¢ CpRp. Then, by (i), there is a row
a, and two entries i = Ty, and j = T,., whose images s(i) and s(j) lie in a
common column of T. Let 0 = (i,5) and 7 = (s(i),s(j)). Then o € Ry,
7 € Cr, and

TSO =,

which is readily checked on 7 and j.

Conversely, suppose 7so = s, where 0 = (ij) € Ry. Then i and j are
in the same row of T, and so s(i) and s(j) are in the same row in 7”. Now
s(i) = 1(s(j)) and s(j) = 7(s(7)). Since 7 € Cr it follows that s(i) and s(j)
are in the same column of 7. | QED

A Young tableau is standard if the entries in each row are in increasing
order, left to right, and the numbers in each column are also in increasing
order, top to bottom. For example:

112]7]
314
5]6

Such a tableau must, of necessity, start with 1 at the top left box, and each
new row begins with the smallest number not already listed in any of the
preceding rows. Numbers lying directly ‘south’, directly ‘east’, and southeast
of a given entry are larger than this entry, and those to the north, west, and
northwest are lower.

In general, the boxes of a tableau are ordered in ‘book order’: read the
boxes left to right along a row and then move down to the next row.
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The Youngtabs, for a given partition, can be linearly ordered: if 7" and
T' are standard, we declare that

T >T

if the first entry Ty, of 7' which is different from the corresponding entry 77, of
T" satisfies Ty, < T,. The tableaux for a given partition can then be written
in increasing/decreasing order. Here is how it looks for some partitions of 3:

> > > [201]3]> [1[3]2] >

For the partition (2,1) the Yountabs descend as:

sl2]  8)a] o 23] o [2[1]_ [1]3] 1]2]

With this ordering we have the following result which states a condition
for Young complementarity in terms of Yountabs, not the partitions:

Proposition 6.7.3 IfT and T’ are Young tableauzx with a common partition,
and T" > T, then there are two entries in some row of T' which lie in one
column of T'. Consequently, there exists a transposition o lying in Ry N Cpr.

Proof. Let x = T}, be the first entry of T" which is less than the corresponding
entry y = T,,. The entry = appears somewhere in the tableau 7". Because
ab is the first location where T differs from 77, and T,, = =, we see that x
cannot appear prior to the location 77,. But x being < y = T7,. it can also
not appear directly south, east, or southeast of 7”,. Thus,  must appear in
T’ in a row below the a-th row and in a column ¢ < b. Thus, the numbers
Tue (which equals 7)) and T,, = x, appearing in the a-th row of T', appear

in the c-th column of 7.

6.8 Orthogonality

We have seen that Youngtabs correspond to irreducible representations of S,
via indecomposable idempotents. Which Yountabs correspond to inequiva-
lent representations? Here is the first step to answering this question:
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Theorem 6.8.1 Suppose T and T' are Young tableaux with n entries, where
n €42,3,...}; then

yryr =0 if X(T") > N(T) in lexicographic order. (6.53)

Proof. Suppose A(T”) > A(T). Then by Proposition 6.7.1, there is a trans-
position o € Ry N Cr. Then

yryr = yrooyr = (yr)(—yr) = —yryr

Thus, yryr is 0.

Here is the corresponding result for standard Youngtabs with common
shape:

Theorem 6.8.2 If T and T' are standard Young tableauz associated to a
common partition of n € {2,3,...}, then

Proof. By Proposition 6.7.3, there is a transposition o € Ry N Cpr. Then

yryr = yrooyr = (yr)(—yr) = —yryr

and so yryr is 0.

6.9 Deconstructing F[S,)]

As a first consequence of orthogonality of the Young symmetrizers we are
able to distinguish between inequivalent irreducible representations of S,:

Theorem 6.9.1 Let T and T" be Young tableauz with n entries. Let F be a
field in which n! # 0. Then the left ideals F[S,]yr and F[S,|yr in F[S,] are
isomorphic as F[S,]-modules if and only if T and T have the same shape.

Proof. Suppose first that A(T) # A(T"). Back in Proposition 4.10.1 we
showed that, for any finite group G and field F in which |G|1r # 0, idempo-
tents y; and yy in F[G] generate non-isomorphic left ideals if 1, F[G]y, = 0.
Thus it will suffice to verify that yz syr is 0 for all s € S,,. This is equivalent
to checking that y7vsyps—! is 0, which, by (6.31), is equivalent to y/ysr being
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0. Since 7" and T have different shapes, we can assume that A\(T") > A\(T).
Then also A(T") > A(sT"), because sT and T have, of course, the same shape.
Then the orthogonality result (6.53) implies that yrysr is indeed 0.

Now suppose T" and 7" have the same shape. Then there is an s € S,
such that 7" = sT. Recall that y,r = syrs~!. So there is the mapping

[ F[S,Jyr — FSulyr : v — vs 1.

This is clearly F[S,]-linear as well as a bijection, and hence an isomorphism

of F[S,]-modules.

Next, working with standard Youngtabs, we have the following conse-
quence of orthogonality:

Theorem 6.9.2 IfT,,...,T,, are all the standard Young tableaux associated
to a common partition of n, then the sum 37" F[S,|yr, is a direct sum, if
the characteristic of F does not divide n!.

Proof. Order the 7}, so that T} < Ty < --- < T,,,. Suppose Z;”:l F[Sy,]yr, is
not a direct sum. Let r be the smallest element of {1,...,n} for which there
exist x; € F[S,]yr,, for j € {1,...,r}, with z,. # 0, such that

Z l’j = 0.
j=1
Multiplying on the right by yr. produces

yr. 2, = 0,

because y. = vr,yr,, and yr,yr, = 0 for s < r. Now 77, is a divisor of n!,
and so 77, is not 0 in IF, and so

z, = 0.

This contradiction proves that > 7 | F[S,]yr; is a direct sum.
Finally, with all the experience and technology we have developed, we
can take F[S,] apart:
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Theorem 6.9.3 Letn € {2,3,...}, and F a field in which n!1g # 0. Denote
by T, the set of all Young tableaur with n entries, and P, the set of all
partitions of n. Then for any p € P,, the sum

Alp)= Y. FlSuyr (6.55)
TETw NT)=p

is a two sided ideal in F[S,] which contains no other nonzero two sided ideal.
The mapping

I: H A(p) = F[Sa) : (ap) 5, — Z a, (6.56)

15 an isomorphism of rings.

Take a look back to the remark made right after the statement of Theorem
5.2.1. From this remark and (6.55) it follows that there is a subset Sh,, of
T € T,, all with fixed shape p, for which the simple modules F[S,]yr form a
direct sum decomposition of A(p):

Alp) = €D FlS.lyr- (6.57)

Proof. Tt is clear that A(p) is a left ideal. To see that it is a right ideal we
simply observe that if A(T") = p then for any s € S,;:

]F[Sn]yTs = ]F[Sn]ss_lyTs = ]F[Sn]ysflT - A(p)

where the last inclusion holds because A\(s™'T) = \(T) = p.

Now suppose p and p’ are different partitions of n. Then for any tableaux
T and T" with \(T') = p and \(T") = p/, Theorem 6.9.1 says that F[S,]yr is
not isomorphic to F[S,|yr, and so

F[Sn]yTF[Sn]yT’ = 07

because these two simple left ideals are not isomorphic (see Theorem 5.4.2,
if you must). Consequently

A(p)A(p') = 0.

From this it follows that the mapping (6.56) preserves addition and multi-
plication.
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For injectivity of I, let u, be an idempotent generator of A, for each

peP,. If

Z ap, =10

peP,
then multiplying on the right by wu, zeroes out all terms except the p-th,
which remains unchanged at a, and hence is 0. Thus, I is injective.

On to surjectivity. It’s time to recall (4.12); in the present context, it
says that the number of non-isomorphic simple left F[S,,]-modules is at most
the number of conjugacy classes in S,,, which is the same as |P,|. So if L is
any simple left ideal in F[S,] then it must be isomorphic to any simple left
ideal F[S,]yr lying inside A(p), for exactly one p € P,, since such p are, of
course, also |P,| in number. Then L is a right translate of this F[S,]yr and
hence also lies inside A(p). Therefore, the image of I is all of F[S,,].

Consequently, the image of I covers all of the group algebra F[S,,].

This is a major accomlishment. Yet there are tasks unfinished: what
exactly is the value of the dimension of F[S,|yr? And what is the character
xr of the representation given by F[S,|yr? We will revisit this place, enriched
with more experience from a very different territory in Chapter 10, and gain
an understanding of the character yr.

6.10 Integrality

Here is a dramatic consequence of our concrete picture of the representations
of S, through the modules F[S,]yr:

Theorem 6.10.1 Suppose p : S, — Endg(FE) is any representation of S,, on
a finite dimensional vector space E over a field F of characteristic 0, where
n € {2,3,...}. Then there is a basis in E relative to which, for any s € S,
the matriz p(s) has all entries integers. In particular, all characters of S,
are integers.

Proof. First, by decomposing into simple pieces, we are going to assume that
E is an irreducible representations. Then, thanks to Theorem 6.9.3, we can
further take E = F[S,]yr, for some Youngtab T, and p the restriction pr of
the regular representation to this submodule of F[S,,].

The Z-module Z[S,]yr is a submodule of the finitely generated free mod-
ule Z[S,], and hence is itself finitely generated and free (Theorem 12.5.1). Fix
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a Z-basis vy, ..., Vg, of Z[S,|yr. Multiplication on the left by a fixed s € S,
is a Z-linear map of Z[S,|yr into itself and so has matrix Mr(s), relative to
the basis {v;}, having all entries in Z. Now 1®wvy, ..., 1 ® vg,. is an F-basis for
the vector space F[S,]yr = F ®z Z[S,|yr (see Theorem 12.10.1). Hence the
matrix for pr(s) is Mr(s), which, as we noted, has all integer entries.

There is a more abstract reason, noted by Frobenius [28, §8], why char-
acters of S,, have integer values: if s € 5, and k is prime to the order of s
then s* is conjugate to s. See Weintraub [74, Theorem 7.1] for more.

6.11 Rivals and Rebels

In contrast to our leisurely exploration, there are extremely efficient ex-
positions of the theory of representations of S,,. Among these we men-
tion the short and readable treament of Diaconis [21, Chapter 7] and the
characteristic-free development by James [49]. The long established order of
Young tableaux has been turned on its side by the sudden appearance of a
method propounded by Okounkov and Vershik [61]; the book of Ceccherini-
Silberstein, Scarabotti, and Tolli [11] is an extensive introduction to the
Okounkov-Vershik theory, and a short self-contained exposition is available
in the book of Hora and Obata [44, Chapter 9]. The study of Young tableaux
is in itself an entire field which to the outsider has the feel of a secret soci-
ety with a plethora of mysterious formulas, and rules and rituals with hy-
phenated parentage: the Murnaghan-Nakayama rule, the jeu de taquin of
Schiitzenberger, the Littlewood-Richardson correspondence, the Robinson-
Schensted-Knuth algorithm. An initiation may be gained from the book of
Fulton [36] (and an internet search on Schensted is recommended). We have
not covered the hook length formula which gives the dimension of irreducible
representations of S,,; an unusual but simple proof of this formula is given
by Glass and Ng [38].

6.12 Afterthoughts: Reflections

The symmetric group S, is generated by transpositions, which are just the
elements of order two in the group. There is a class of more geometric groups
which are generated by elements of order two. These are groups generated
by reflections in finite dimensional real vector spaces. In this section we will
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explore some aspects of such groups which resemble features we have studied
for S,,.

Let E be a finite dimensional real vector space, equipped with an in-
ner product (-,-). A hyperplane in E is a codimension one subspace of F;
equivalently, it is a subspace perpendicular to some nonzero vector v:

v ={z € E:(z,v) =0}
Reflection across this hyperplane is the linear map
R, :FE—FE

which fixes each point on 7 and maps v to —uv:

RHL((’,E):.T—2<I’/U>’U for all x € E.
(v, v)

A more elegant definition of reflection requires no inner product structure: a
reflection across a codimension one subspace B in a general vector space V'
is a linear map R : V — V for which R? = I, the identity map on V, and
ker(I — R) = B.

By a reflection group in E let us mean a finite group of endomorphisms of
E generated by a set of reflections across hyperplanes in £. Not all elements
of such a group need be reflections. Let Hy, be the set of all hyperplanes B
such that the reflection Rp across B is in W. This is a finite set, of course.
Let

Pw = {7 : 7 is the intersection of a set of hyperplanes in Hy }.  (6.58)

Observe that each m € Py, is the intersection of all the hyperplanes of Hy,
which contain 7 as subset:

m=({Be€Hy:rC B} (6.59)
The set Py, is partially ordered by inclusion:
™ < Ty means m; C 7.

A note of caution: it is somewhat disorienting, but when comparing with the
story for S, the order relaton needs to reversed.
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The least element 0 and the largest element 1 are:
Q:ﬁBEHWB7 and l:E7

where F is viewed as the intersection of the empty family of hyperplanes in
E (though, in general, N{ is fallacious territory in set theory!). Moreover, if
m, o € Py then

def .
T A o = 1nf{7r1,7rg} =T N 9

(6.60)

TV Ty dof sup{my, m} = inf{r € Py : 7w < 7y, ma }.

Here, by definition, sup S is the smallest element > to all elements of .S, and
it exists, being just the intersection of the subspaces in S. For example, if B;
and By are distinct hyperplanes, then By V By is E. Thus, Py is a lattice.
Compare with the lattice P,, we have used for .S,,.

In the lattice P,,, an atom is a partition which contains one two-element
set and all others are one-element sets. The analog in the lattice Py, are
maximal elements less than 1; these are the hyperplanes of Hy,. The relation
(6.59) means that each element m € Py, is the infimum of the maximal
elements which lie above it:

m=inf{B € Hy : B <7} (6.61)

For a subspace m € Py, let . be the intersection of the hyperplanes in
Hy, which do not contain

me=(|{B€Hy: ¢ B} (6.62)
Using (6.59) we then have

TAm= (] B=0. (6.63)

Moreover, since there is no hyperplane which contains both 7 and 7., the
supremum of {7, 7.} is E:
TV, =1 (6.64)

For this lattice complementation we also have:

m < mg = (m2). < (m1)e

(ﬂ—c)c =T (665)
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Now consider symmetries of Py : for each m € Py, we have the subgroup of
all s € S which fixes each point in 7:

Fix, ={s e W : s|r =id,}. (6.66)

The mapping
Fix : Py — {subgroups of W}

is clearly order-reversving:
if m < my then Fix,, C Fix,,. (6.67)

Remarkably, Fix, is generated by the order two elements it contains, these
being the reflections across the hyperplanes containing 7 (see Humphreys [45,
§1.5]. Consequently, 7 may be recovered from Fix, as the intersection of the
fixed point sets of all reflections r € Fix,:

T = NyeFix, r2—1 ker(I — 7). (6.68)

We can now summarize our observations into the following analog of Theorem

6.3.1:
Theorem 6.12.1 The mapping
Fix : Py — {subgroupsof W} : 7 — Fix,

is injective and order-reversing when the subgroups of W are ordered by inclu-
sion. The mapping Fix from Py to its image inside the lattice of subgroups
of W is an order-reversing isomorphism:

Fix,, C Fix,, if and only if mo < 1.
Furthermore, Fix also preserves the lattice operations:

Fixq,vr, = Fixg, N Fix,,

Fix;, ar, = thesubgroup generated by Fix,, and Fix,, (6.69)
for all my, 79 € Pyy.
The group Fix, is generated by the reflections it contains.
As in the case of S,,, we also have
Fixy(n) = sFixzs™' (6.70)

for all m € Py, and s € W.

We step off this train of thought at this point, having seen that the method
of using partitions, and beyond that the Young tableaux, have reflections
beyond the realm of the symmetric groups.
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Exercises

1.
2.

Prove Proposition 6.5.1.

Prove that if r € P, and 0 = 7y < Im; < ... < 7w = 7 is a sequence
such that 7; is covered by m;44, for each j € {0,...,{ — 1}, then [ is the

sum Y (|B] = 1).

. Work out the Young symmetrizers for all the Youngtabs for Ss;. De-

compose F[S;] into a direct sum of simple left ideals. Work out the
irreducible representations given by these ideals.

. Let G be a finite group and F the field of fractions of a principal ideal

domain R ( just take R = Z and F = Q and you will get the picture).
If p: G — Endg(V) is a representation of G on a finite dimensional
vector space V over I, show that there is a basis of V' such that, for
every g € GG, the matrix of p(g) relative to this basis has entries all in
R. (You can use Theorem 12.5.2.)

. Prove Theorem 6.2.1 .
. For H any subgroup of S, let Orby be the set of all orbits of H in

[n]; in detail, Orby = {{h(j) : h € H} : j € [n]}. Then Orb :
{subgroups of S,,} — P, is an order-preserving map, where subgroups
are ordered by inclusion, and the set P, of all partitions of [n] is ordered
so that m < my if each block in 7 is contained inside some block of
my. For any partition 7w € P, let Fix, be the subgroup of S, consisting
of all s € S, for which s(B) = B for all blocks B € w. Show that for
m € P, and H any subgroup of S,: (a) if Fix, C H then 7 < Orby;
(b) if H C Fix, then Orby < 7.

. For any positive integer n, and any k € [n] = {1,...,n}, the Jucys-

Murphy element Xy, in R[S,,] is defined to be
Xp=0k)+---+(k—1k), (6.71)

with X_0, and R is any commutative ring. Show that, for £ > 1, the
element X}, commutes with every element of R[Sy_1], where we view
Si_1 as a subset of S in the natural way. Show that X7,...,X,, generate
a commutative subalgebra of R|[S,]. For the standard Young tableau

1/2]5]
3[4

T —
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work out X,y7r. The Jucys-Murphy elements play an important role in
the Okounkov-Vershik theory [61].
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Chapter 7

Characters

The character of a representation p of a finite group GG on a finite dimensional
F-vector space E is the function y, on G given by

Xo: G—TF:gm Tr(p(g)). (7.1)

Sometimes it is convenient to write x g instead of x,.

A character of G is the character of some finite dimensional representation
of G. In the case of greatest use, the underlying field is C; for this case, we
will use the term complex character. An irreducible or simple character is the
character of an irreducible representation.

A character is always a central function:

Xo(ghg™") = x,(h) for all g, h € G. (7.2)
A different face of conjugation invariance is expressed by the fact that

Xp1 = Xp2

whenever p; and py are equivalent representations. We have proved this in
Proposition 1.8.1.
The character x, extends naturally to a linear function

X, FIG] = TF
which is central in the sense that

Xp(ab) = x,(ba) for all a,b € F[G]. (7.3)

187
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There is generally no need to distinguish between y viewed as a function on
F[G] and as a function on G.
We have seen that

XEoF = XE T XF
XEgF = XEXF

—~
NN

If £ decomposes as

where F; are representations, then

XE = Z i X E; (7.6)
=1

7.1 The Regular Character

We work with a finite group GG and a field F.

The regular representation pyeg of a finite group G is its representation
through left multiplications on the group algebra F[G]: to g € G is asso-
ciated preg(g) : F|G] — F[G] : © — gx. We denote the character of this
representation by Xyeg:

Xreg & character of the regular representation. (7.7)
As usual, we may view this as a function on F[G]; this
Xreg(2) = Trace of the linear map F[G] — F[G] : y — zy (7.8)

for all z € F[G].
Let us work out xreg on any element

b= byh € F[G].
heG
For any g € G we have

bg = bihg=beg+ Y  byrw,

heG weG,w#g
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and so, in terms of the basis of F|G] given by the elements of G, left multi-
plication by b has a matrix with b, running down the main diagonal. Hence

Xreg(b) - ’G|be (79)
We can rewrite (7.9) as
1
@Tr (Preg(b)) = b if |G| #0in F. (7.10)

The map
Tr. : F|[G] = F : b — b,

is itself also called a trace, and is a central function on F[G]. Unlike Xyeq, the
trace Tr. is both meaningful and useful even if |G|1f is 0 in F.

In Chapter 4 we saw that there is a maximal string of nonzero central
idempotent elements w1, ..., us; in F[G] such that the map

I: [[FIGlui = FIG) : (a1, ....a0) = ay + - + a, (7.11)
=1

is an isomorphism of algebras, where F|[G|u; is a two sided ideal in F[G] and
is an algebra in itself, with u; as multiplicative identity. The statement that
I'in (7.11) preserves multiplication encodes the observation that

If |G|1r # 0 then, on picking a simple left ideal L; of F[G] lying inside F[G];
for each i, every irreducible representation of G, viewed as an F[G]-module,
is isomorphic to some L;, and

~—_———
d; copies

for some positive integer d; every i € {1,...,s}. Let y; be the character of
the restriction of the regular representation to the subspace L;:

Xi(9) = Tr (preg(9)|Li) (7.12)

If |G|1g # 0 then every finite dimensional representation of G is isomorphic
to a direct sum of copies of the L;, and so in this case every character x of
G is a linear combination of the form

X = ZWX% (7-13)
=1
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where n; is the number of copies of L; in a direct sum decomposition of the
representation for y into irreducible components.

In the remainder of this section, whenever we work with y; we will assume
that the algebra is semisimple, or, equivalently, that |G|1F # 0 in F.

In particular, with |G|1r # 0 in [F, we have

Xreg = Z diXi, (7~14)
i=1
is the number of copies of L; in a direct sum decomposition of F[G] into
simple left ideals. We know that
d; = dimp, L;,
where D; is the division ring
D; = Endp(g)u, Li-

When F is also algebraically closed, d; equals dimp L;.
Recalling (7.8), and noting that

a;F|Glu; =0 if a; € F[Glu; and j # 1,

we have
xi(a;) =0  if a; € F|G]u; and j # i. (7.15)
Thus,
Xi|F[Glu; =0 if j #1 (7.16)
Equivalently,

where, as usual, u; is the generating idempotent for F[G]u;. On the other
hand,

because the central element u; acts as the identity on L; C F[G]u;. In fact,
we have

Xreg(yui) = diXi(y) for ally € G (7-19)

Lemma 7.1.1 If L is an irreducible representation of a finite group G over
an algebraically closed field F whose characteristic does not divide |G|, then
dimp L is also not divisible by the characteristic of IF.
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There will be a remarkably sharpened version of this result later in Theorem
7.5.1.
Proof. Let P : L — L be alinear projection map with one-dimensional range.
Then by Schur’s Lemma, the F[G]-linear map P, = > _,gPg~"': L — Lis
a scalar multiple ¢l of the identity, and so, taking the trace, we have |G| - 1p
(which, by assumption, is not 0) equals ¢dimp L. Hence, dimg L is not 0 in
d

One aspect of the importance and utility of characters is codified in the
following fundamental observation:

Theorem 7.1.1 Suppose G is a finite group and F a field; assume that either
(i) F has characteristic 0 or (ii) |G|1g # 0 and IF is algebraically closed. Then
the wrreducible characters of G over the field F are linearly independent.

Proof. Let x, ..., xs be the distinct irreducible characters of G for represen-
tations on vector spaces over the field F. From (7.17) and (7.18) it follows

that if .
Z cixi =0
=1

where ¢y, ...,¢, € I, then, on applying this to a;,
Cj dlmF Lj =0.

Thus, since either of the hypotheses (i) and (ii) imply that each dimg L; is
not 0 in I, it follows that each ¢; is 0. | QED

Linear independence encodes the following important fact about charac-
ters:

Theorem 7.1.2 Suppose G is a finite group and F is an algebraically closed
field whose characteristic is not a divisor of |G|. Two finite dimensional
representations of G, over IF, have the same character if and only if they are
equivalent.

Proof. Let Ly, ..., Ly be a maximal collection of inequivalent irreducible rep-
resentations of GG. If E is a representation of G then E is isomorphic to a
direct sum

E~ P niL; (7.20)
=1
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where n;L; is a direct sum of n; copies of L;. Then
XE = mez’
i=1

The coefficients n; are uniquely determined by x g, and hence so is the de-
composition (7.20) up to isomorphism. | QED

7.2 Character Orthogonality

The character, being a trace, has interesting and useful features which it
inherits from the nature of the trace functional.
Assume that G is a finite group and F a field. Let

T:EF—=F

be an F-linear map between simple F[G]-modules. Then the G-symmetrized

version
Ty=Y gTg™
geG

satisfies
th = Tlh for all h € G

and so is F|G]-linear. Hence by Schur’s Lemma it is either 0 or an isomor-
phism. A general linear map 7' : £ — F', viewed as matrix relative to bases
in £ and F', is a linear combination of matrices which have all entries zero
except for one which is 1; we specialize T" to such a matrix. We choose now
a special form for the map T'; picking a basis |e1), ..., |e,,) of the vector space
E, and a basis |f1), ...|fn) of F, and let T be given by

T = |f;){ex| - v (ex|v] f;) = vel ),

where vy, is the k-th component of v written out in the basis |e1), ..., [em).
Then
T = ZPF(9)|fj><ek|pE(g)_l' (7.21)
geG

If pr and pp are inequivalent representations of G, then 77 is 0, and so

(fi|Tilex) =0
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which says
> oe(9)iipe(g™" )k = 0. (7.22)

geG

Summing over j as well as k produces:

> xrlg)xe(g™) =0. (7.23)

geG

This is one of several orthogonality relations discovered by Frobenius. Here
is an official summary:

Theorem 7.2.1 If p; and ps are inequivalent irreducible representations of
a finite group on vector spaces over some field F then

D X (@Xm(g) =0. (7.24)

geG

Why the term ‘orthogonality’? The answer is seen by noticing that,
working with complex representations, the relation (7.24) can be viewed as
saying that the vectors

(x£(9))4ec € C°

are orthogonal to each other for inequivalent choices of the irreducible rep-
resentation F.

Next we use Schur’s Lemma in the case the representations are the same.
Thus, consider an F-linear map

T:E—E,

where E is a simple F[G]-module. Forming the symmetrized version just as
above we have, again by Schur’s Lemma,

> gTg ' =cl, (7.25)

geG

for some scalar ¢ € F, provided, of course, we assume now that F is alge-
braically closed (or at least that F is a splitting field for G). The value of ¢
is obtained by taking the trace of both sides in (7.25):

|G|Tr (T") = cdimg E. (7.26)
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Picking a T" whose trace is 1 shows that dimg £ # 0 in the field F, provided
|G|1r # 0; with this assumption we have then

_ G|Tr (T)
Tg ! = |—I. 2

Using a basis |ey), ..., |en) of E we take T to be

Ty = lej) e,
and this gives
> pel9)les)elpp(9) ™" = el (7.28)
geG
where
cjr dimp E = |G| Tr (Tj;) = 0,1|G]. (7.29)
(Notice that from this it follows again that if |G|1y # 0 in F then dimg F is
also nonzero as an element of F. Bracketing (7.28) between (e;|---|ex) we
have:
> (ejlpe(g)les)exlpe(g) " er) = cindin.
geG

Summing over j and k produces, on dividing by |G|1p,
Z xe(9)xe(g ) = |G|
geG

Here is a clean summary of our conclusions:

Theorem 7.2.2 If p is an irreducible representation of a finite group on a
vector space over an algebraically closed field F in which |G|1g # 0, then

> Xo(@)x(g7) =Gl (7.30)

geG

As is often the case, the condition that F is algebraically closed can be
replaced by the requirement that IF be a splitting field for G.

The two results we have proven here so far can be combined into one: if
p1 and py are irreducible representations then

1 if p; is equivalent to py
Z Xp1 XPQ ) = 0 f . . (731)
ge z if p; is not equivalent to po,
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provided that the underlying field F is algebraically closed and |G|1g # 0.
Here is another perspective on this:

Theorem 7.2.3 Suppose p; and ps are representations of a finite group G
on finite dimensional vector spaces E1 and Es, respectively, over a field F in
which |G|1g # 0. Then

Z X1 (9)Xp> (97") = dimg Homp(g)(Ey, Es) (7.32)

gEG

where Hompg)(E1, Es) is the vector space of all F|G]-linear maps Ey — Es.

Before heading into the proof observe that if p; and ps are inequivalent
irreducible representations then, by Schur’s Lemma, Hompg(E1, E>) is 0,
whereas if p; and ps are equivalent irreducible representations then, again by
Schur’s Lemma, Homgjg (£}, E>) is 1-dimensional if IF is algebraically closed.
The version we now have works even if p; and py are not irreducible and
shows that in fact the averaged character product on the left in (7.31) takes
into account the multiplicities of irreducible constituents of £ and Es.
Proof. The key point is that the G-symmetrization or averaging 7" — Tj in
(7.33) below is a projection map onto Homgyg(£1, E2) and the trace of this
projection gives the dimension of Homgg) (£, £2). In more detail, consider
the map

Iy : Homg(E), Ey) — Homg(Ey, By) : T+ Ty = 1 Z,% g, (9).
geG
(7.33)
Clearly, Tj lies in the subspace Hompg)(E1, E»). Moreover, if T' is already
in this subspace then Ty = T'. Thus, 112 = TI; and is a projection map with
image Homp(q(E1, ). Every element T' € Homg(Ey, E,) splits uniquely as
a sum
T = I(T) + (1 - )(T).
—— N——
€Im(Ip) eker(Ilp)

Thus:
Homg(E1, E») = Hompg)(Eh, Eo) @ ker I,

Form a basis of Homg (£, E3) by pooling together a basis of Hompg(£1, Eb)
with a basis of kerIly; relative to this basis, the matrix of F, is diagonal,
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with an entry of 1 for each basis vector of Homgyg) (£, F2) and 0 in all other
entries. Hence,

Tl"(Ho) = dlIIl]F HOII]F[G](El, EQ) (734)

Now let us calculate the trace on the left more concretely. If Fy or Ej is
{0} then the result is trivial, so we assume that neither space is 0. Choose a
basis |e1), ..., |en) in Eq, and a basis | f1), ..., | fn) in Es. The elements

Ti = | fj)(ex| 1 Br — By |v) = (ex|v)(fjl

where (eg|v) is the k-th component of |v) in the basis {|e;)}, form a basis of
Hompg(E4, Ey). The image of T}, under the projection Iy is

ZIOE2 ’f] ek|pE1( )

g€G

(7.35)
= Z Z filpe(9) 7 | i) exlpm (9)lea) Lfi) esl.
1§z‘§m,1§l§n gGG
Thus, the Tj;-component of IIy(Tj) is
Z Filpea(9) 1 f5) ekl pr, (9)les)
gEG
and so the trace of Il is found by summing over j and k:
HO |G| Z XPQ _1 XPI ) (736)

geG

Combining this with (7.34) brings us to our goal (7.32). | QED
The roles of characters and conjugacy classes can be interchanged to
reveal another orthogonality identity:

Theorem 7.2.4 Let R be a mazximal set of inequivalent irreducible repre-
sentations of a finite group G over an algebraically closed field F in which

|G|1r # 0. then
, _ G
E Xp(C )Xp(c 1) lC:(SCC/ (737)

PER

for any conjugacy classes C and C" in G.
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Proof. Let x1,...,x, be all the distinct irreducible characters of G, over F, and
let CY,...,C, be all the distinct conjugacy classes in G. Then by Theorems
7.2.2 and 7.2.1, writing each sum ) , 8 a sum over conjugacy classes, we
have

Z ‘|G] Xi(Ci)x(CF) = b (7.38)

Let us read this as a matrix equation: let A and B be r X r matrices specified
by

1G5 B
AZ] ’G| (Oj>7 and Bjk = Xk(cj 1)?

for all 7, j, k € [r]. Then the relation (7.38) means AB is the identity matrix
I, and hence BA is also I. Thus

> BijAj = ou

j=1
which spells out as

: C
S (e % e =
0]
for all 7,k € [r]. Writing C” for C; and C for Cj, and a small bit of rear-
rangement, brings us to our destination (7.37).
The argument given above is a slight reformulation of Frobenius’ proof.

You can explore a longer but more insightful alternative route in Exercise
7.2.
Here is a nice consequence, which can be seen by other means as well:

Theorem 7.2.5 Let G be a finite group, F an algebraically closed field in
which |G|1p # 0. If g1, g2 € G are such that x(g) = x(h) for every irreducible
character x of G over F, then g1 and gy belong to the same conjugacy class.

Proof. Let C be the conjugacy class of g; and C’ that of go. Then x(C') =
x(C) for all irreducible characters. Let x1,...,x, be all the distinct irreducible
characters of G over F. Then using (7.37) we have

Gl < 1y _ |G
T Xi C z Xz z 5 7y



198 Ambar N. Sengupta

which implies that C' coincides with C".

Before looking at yet another consequence of Schur’s Lemma for charac-
ters, it will be convenient to introduce a certain product of functions on G
called convolution. Let G be a finite group and F any field. Recall that an
element ) 249 of the group algebra F[G] is just a different expression for
the function G — I : g — z,. It is, however, also useful to relate functions
G — F to elements of F[G] in a less obvious way. Assume |G|1p # 0 and
associate to a function f : G — [ the element

1 -1
= e gez; f(9)g (7.39)

The association

F¢ > FG]: f— f

is clearly an isomorphism of F-vector-spaces. Let us see what in F corre-
sponds to the product structure on F[G]. If fi, fo : G — F then a simple
calculation produces

fifo= fixfo (7.40)
where f; % fy is the convolution of the functions f; and fs, specified by
1 _
firfal) = 177 > Fu(9)falhg™) (7.41)

geG

for all h € G. Of course, all this makes sense only when |G|1r # 0. (If |G|
were divisible by the character of the field F then one could still define a
convolution by dropping the dividing factor |G|. One other caveat: we put a
twist in (7.39) with the ¢! on the right which has resulted in what maybe
a somewhat uncomfortable twist in the definition (7.41) of the convolution.)

Here is a stronger form of the character orthogonality relations, expressed
in terms of the convolution of characters:

Theorem 7.2.6 Let E' and F' be irreducible representations of a finite group
G over an algebraically closed field in which |G|1g # 0. Then

oy — {mm if B and F are equivalent; (7.42)

0 if E and F are not equivalent.
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Ezxplicitly,

ZXE gh™"xr(h) =

heG 0 if B and F are not equivalent.

(7.43)
More generally, if x1,..., xx are characters of irreducible representations of

G, over the field F, then

{m)@(g) if E and F are equivalent;

k—1
G .
Z xi(ar)...xk(ak) = (%> xi(e) if all x; are equal to xu;
{(a1,...,ax)EG*:aq...ap=c} 0 Otherwise,

(7.44)
for any ¢ € G, with di = x1(e) being the dimension of the representation
space of the character x;.

As in the first character orthogonality result, Proposition 7.2.1, the second
case in (7.42) holds without any conditions on the field F.

Proof. Suppose first £ and F' are inequivalent representations. In this case
the argument is a rerun, with a simple modification, of the proof of the first
character orthogonality relation Proposition 7.2.1. Fix bases |e;), ..., |e,,) in
E,and |f1),...,|fn) in F, and let

Tie = | f5)(exl-

Then
Z pr(g 1 gka<h>pE(g)

geG

is an F[G]-linear map F — F and hence, by Schur’s Lemma, is 0; bracketing
between (f;| and |e;) gives:

S Hilor(g O exlps(h)ps(g)les) = 0.

geG

Summing over j and k produces

> xrlg  xe(hg) =0,

geG
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which is the second case in (7.42). Now suppose E and F' are equivalent,
and so we simply set F' = E. Recall from (7.27) the identity

> (g )T pu( )_MI, (7.45)

dimp £
geG

valid for all T' € Endp(E). Apply this to |e;){ex|pr(h) for T to obtain:

dimp F
geG

Bracketing this between (e;| and |ey) gives

|G|
> oe(g )ips(hg)w = G 7P ()i 0ji

geG

Summing over j and k produces

G
ZXE Yxe(hg) = di1|rnF|EXE(h)'

geG

Iterating this we obtain the general formula (7.44).

7.3 Character Expansions

From the results of the preceding sections we know that the irreducible char-
acters of a finite group are linearly independent.

Theorem 7.3.1 Let G be a finite group and F a field; assume that |G|1g # 0
and F is algebraically closed. Then the distinct irreducible characters form a
basis of the vector space of all central functions on G with values in F.

As usual, this would work with algebraic closedness replaced by the require-
ment that I is a splitting field for G. This result also implies Theorem 7.2.5
which we proved earlier directly from the orthogonality relations.

Proof. Viewing a function on G as an element of F[G], we see that the
subspace of central functions corresponds precisely to the center Z of F|G].
As we have seen in Theorem 4.8.1 and the discussion preceding it, under



Representing Finite Groups 12/05/2010 201

the given hypotheses, dimp Z is exactly the number of distinct irreducible
characters of GG. Since these characters are linearly independent, we conclude
that they form a basis of the vector space of central functions G — F.

When the underlying field F is a subfield of the complex field C, we
denote by L?*(G) the vector space of all functions G — F, equipped with the
hermitian inner product specified by

(f1, fa)r2 = é Z fl(g)m (7.46)

geG

for f1, fo: G — F C C. (For a general field we can consider the bilinear form
given by - i fi(9)f2(971).)

From character orthogonality (7.31) we know that the irreducible complex
characters are orthonormal:

<Xj7Xk>L2 = 0jk,

whereas from Theorem 7.3.1 above we know that they form a basis of the
space of central functions. Thus, we have:

Theorem 7.3.2 For a finite group G, the irreducible complex characters
form a basis of the vector space all central functions G — C with respect to
the inner product (-, Y2 in (7.46).

Let us note the following result which can be a quick way of checking
irreducibility:

Proposition 7.3.1 A complez character x is irreducible if and only if | x| 2 =
1.

Proof. Suppose y decomposes as

X = Z T X,
i=1

where Y1, ..., Xs are the irreducible complex characters. Then

S
=1

and so the norm of y is 1 if and only if all n; are zero except for one which

equals 1.

Here is an immediate application:
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Proposition 7.3.2 Let Ey,....,Es be a mazximal collection of inequivalent
irreducible complex representations of a finite group. Then, for any posi-
tive integer n and for each i = (iy,...,1i,) € {1,...,s}", the representation
pi=pi, Q- Qp;, of G" on E; = E;, ®---QFE;, is irreducible and the p; with
i running over {1, ...,s}" form a mazimal collection of inequivalent complex
representations of G™.

Proof. Write y; for xg, for any j € {1,...,s}. Then for any i = (iy,...,4,) €
{1,...,s}",
Xi = Xir @ @ X, G = C i (g1, -, n) = Xir(91) - - X (n)

is the character of the tensor product representation of G" on E;, ® -+ - ® F; .
The functions y; are orthonormal in L?*(G"), and s” in number. Now s" is
the number of conjugacy classes in G". Hence F;, ® --- ® E; runs over all
the irreducible representations of G™ as (iy, ..., 4,) runs over {1, ..., s}".

The appearance of the hermitian inner product (-, )2 maybe a bit uset-
tling: where did it come from? Is it somehow ‘natural’? The key feature
that makes this pairing of functions on G so useful is its invariance:

Proposition 7.3.3 For any finite group G, identify L*(G) with the group
algebra C[G] by the linear isomorphism

[:LXG)—C[G]: f—~I(f)=f,

where

Then the regular representation p.es of G' corresponds to the representation
Rieg = I ' pregl on L*(G) given explicitly by

(Rreg(9)f)(h) = f(hg) (7.47)

for all g,h € G, and f € L*(G). Moreover, Ryeq is a unitary representation
of G on L*(G):

(Rieg(9) f1, Reeg(9) f2) 12 = (1, f2) 12 (7.48)
for all g € G, and all fi, f> € L*(G).

The proof is straightforward verification, which we leave as an exercise.

There is still one curiosity not satisfied: does the G-invariance of the inner
product pin it down uniquely up to multiples? Briefly, the answer is ‘nearly’;
explore this in Exercise 7.9 (and look back to Exercise 3.10 for some related
ideas.)
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7.4 Comparing Z-Bases

We work with a finite group GG and an algebraically closed field F in which
|G[1p # 0.

We have seen two natural bases for the center Z of F[G]. One consists of
all the conjugacy class sums

20 = Z g, (7.49)

gelC

with C running over C, the set of all conjugacy classes in G (take a quick
look back at Theorem 3.4.1). The other consists of uy, ..., us which form the
maximal set of non-zero orthogonal central idempotents in F[G] adding up
to 1 (for this see Proposition 4.8.1). Our goal in this section is to express
these two bases in terms of each other by using the simple characters of G.
Pick a simple left ideal L; in the two sided ideal F[G]u;, for each i €
{1, ..., s}, and let x; be the character of p;, the restriction of the regular rep-
resentation to the submodule L; C F[G]. Then i, ..., xs are all the distinct
irreducible characters of G. Multiplication by wu; acts as the identity on the
block F[G]u; and is zero on all other blocks F[G]u; for j # i. Moreover,

F[Glu; ~ L%,
where

From this we see that xyeg(gu;) is the trace of a matrix which is a block
diagonal matrix, with one d; x d; block given by p;(g) and all other blocks
zero; hence:

Xreg(9u5) = X;(9)d;, (7.50)
for all ¢ € G and j € {1,...,s}, with y,e being the character of the regular
representation, given explicitly by

G| ifg=¢;
re = 7.51
X g(g) {0 it g£e. ( )

We are ready to prove the basis conversion result:

Theorem 7.4.1 Let x1,..., xs be all the distinct irreducible characters of a
finite group G over an algebraically closed field F in which |G|1p # 0, and
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let d; = x;(e) be the dimension of the representation space for x;. Then the
elements

d; - d; _
u; = Z @Xi(g Ng = Z mx,-(C’ Yze, (7.52)
ge@ ceC

fori e {1,...,s}, form the maximal set of non-zero orthogonal central idem-
potents adding up to 1 in F[G], where C is the set of all conjugacy classes in
G and x;(C™Y) denotes the value of x; on any element in the conjugacy class
C~t={c':ce C}. In the other direction,

. |C
e =3 (o (7.59)
j=1

for every C € C.

Proof. Writing u; as

w=) uig)g

geG

and applying Yyeg to ¢ 'u; we have

ul(g)lG’ = Xreg(g_lui) = Xz(g_l)dz (754)
Thus,
d; _
Ui = Z @Xi(g g, (7.55)
geG

and the sum can be condensed into a sum over conjugacy classes since

{g‘ Xi(g™!) is constant when g runs over a conjugacy class.
To prove (7.53), note first that since uy, ..., us is a basis of Z, we can write
o= A, (7.56)
j=1
for some Ay, ..., \s € F. To find the value of A;, apply the character x; to z¢:
xi(ze) =D xilg) = 0y (0) (7.57)
geC

Because x;(u;) = 6;;d;, from (7.56) it is also A;d;. Hence we have (7.53).
QED

More insight into (7.53) will be revealed in (7.77) below.

We will put the basis change formulas to use in the next two sections to
explore two very different paths.
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7.5 Character Arithmetic

In this section we venture out very briefly in a direction quite different from
what we have been exploring in this chapter. Our main objective is to prove
the following remarkable result:

Theorem 7.5.1 The dimension of any irreducible representation of a finite
group G is a divisor of |G|, if the underlying field F for the representation is
algebraically closed and has characteristic 0.

We work with a finite group G, of order n = |G|, and a field F which
is algebraically closed and has characteristic 0 (think of F as being either C
or the algebraic closure Q of the rationals). Being a field of characteristic
0, F contains a copy of Z and hence also a copy of the rationals Q. Being
algebraically closed, such a field also contains n distinct n-th roots of unity.
Moreover, these roots form a multiplicative group which has generators called
primitive n-th roots of unity (these are e?™*/™ with k € {1,...,n} coprime to

A key fact to be used is the arithmetic feature of characters we had noted
back in Theorem 1.9.1: the value of any character of GG is a sum of n-th roots
of unity. We will first reformulate this slightly using some new terminology.

A polynomial p(X) is said to be monic if it is of the form > ;" pr X"
with p,, =1 and m > 1. An element « € [ is an algebraic integer if p(a) = 0
for some monic polynomial p(X) € Z[X]. Here are two useful basic facts:

(i) the sum or product of two algebraic integers is an algebraic integer,
and so the set of all algebraic integers is a ring;

(ii) if z € Q is an algebraic integer then z € Z.

Proofs are in section 12.7.

With this language and technology at hand, here is a restatement of
Theorem 1.9.1:

Theorem 7.5.2 Suppose G is a group containing n elements and F a field
of characteristic 0 which contains n distinct n-th roots of unity. Then for
any representation p of G- on a finite dimensional vector space over F and for
any g € G the value x,(g) is a linear combination of 1,1, ...,n" " with integer
coefficients, where 1 is a primitive n-th root of unity; thus, x,(g) € Zn)
viewed as a subring of F. In particular, x,(g) is an algebraic integer.
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We can turn now to proving Theorem 7.5.1.
Proof of Theorem 7.5.1. Let uq,...,us; be the maximal set of non-zero or-
thogonal central idempotents adding up to 1 in F[G]; we will work with any
particular u;. From the formula (7.52) we have

Tui= Y xilg g (7.58)

geG

On the right we have an element of F[G] in which all coefficients are in the
ring Z[n]. The interesting observation here is that multiplication by n/d;
carries u;h into a linear combination of the elements u;g with coefficients in

Z[n):

n

_ .. _ -1
7 u;h = uld_zulh = Z Xi(g )uigh.

geG

Thus, on the Z-module F consisting of all linear combinations of the elements
u;g with coefficients in Z[n], multiplication by n/d; acts as a Z-linear map
F — F. Then (do Exercise 7.3 and find that) there is a monic polynomial
p(X) such that p(n/d;) = 0. Thus n/d; is an algebraic integer. But then, by
(ii) in the list above, it must be an integer in Z, which means that d; divides
"

Just a little extra work produces the following much sharper result:

Theorem 7.5.3 Suppose G is a finite group, and F an algebraically closed
field in which |G|1g # 0. Let x be the character of an irreducible representa-
tion of G on a vector space of dimension d over the field F. Then

%'X(C)

s an algebraic integer, for any conjugacy class C' in G.

Proof. Let uq, ..., us be the maximal set of non-zero orthogonal central idem-
potents adding up to 1 in F[G], and let 1, ..., Cs be all the distinct conjugacy

classes in GG. Let
2 = Ro; &= Z g.

Recall from (7.53) that
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from which we have

Zite = k(C)ug
Then
|d0;|xk(Ci)zjuk = z;Ziuy
s (7.59)
= Z Kim j 2m W
k=1

where the structure constants k; ,,; are integers specified by

Zikj = Z Rimj2m, (760)
m=1

and given more specifically by
kimj = |{(a,b) € C; x Cj : ab=h}| for any fixed h € C,,. (7.61)

(We have encountered these back in (3.14) and will work with them again
shortly.) The equality of the first term and the last term in (7.59) implies
that, for each fixed 7, k € [s], multiplication by %Xk(Ci) is a Z-linear map

of the Z-module spanned by the elements z,,u; with m running over [s]:

S S C/L
Z Lz — Z Zzpuy © T — | |xk(Ci)$ (7.62)
m=1 m=1 dk

Then, just as in the proof of Theorem 7.5.1, Exercise 7.3 implies that %Xk(Ci)

is an algebraic integer. | QED

We will return to a simpler proof in the next section which will give
an explicit monic polynomial (7.73), with integer coeffients, of which the
quantities ‘%'X(C) are solutions.

7.6 Computing Characters

In his classic work [9, Section 223] (2nd Edition) Burnside describes an im-
pressive method of working out all irreducible complex characters of a finite
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group directly from the multiplication table for the group, without ever hav-
ing to work out any irreducible representations! This is an amazing achieve-
ment, viewed from the logical pathway we have followed. However, from the
viewpoint of the historical pathway, this is only natural, for Frobenius [28,
eqn. (8)] effectively defined characters by this method using just the group
multiplication table.

We work with a finite group G and an algebraically closed field F in which
|G[1g # 0.

Under our hypotheses on I, the number of conjugacy classes in G is s,
the number of distinct irreducible representations of G. Let C1, ..., C be the
distinct elements of C. Let py, ..., ps be a maximal collection of inequivalent
irreducible representations of GG, and let x; be the character of p; and d; the
dimension of p;. Let z; be the sum of the elements in the conjugacy class C;:

2z = Zg fori e {1,...,s}

g€C;

Recall the basis change formula (7.63):

S C
5= S, (7.63)

i=1

S

for every j € {1,...,s}. For any z € Z, the center of F[G], let M(z) be the
linear map
M(z):Z —Z:w~— zw. (7.64)

This is the just the restriction of the regular representation to Z. The idea
is to extract information by looking at the matrix of M(z) first for the basis
21, ..., Zs, and then for the basis uq, ..., u,.

Now take a quick look back to Proposition 3.4.1: the structure constants
kjir € IF are specified by the requirement that

2R2; = Z kri;z forall j,k € [s]. (7.65)
=1
Another way to view the structure constants k;;; is given by
keij = |{(a,b) € Cx x C; : ab=c}|, (7.66)

for any fixed choice of ¢ in C;. Clearly, at least in principle, the structure
constants can worked out from the multiplication table for the group G.
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Then, relative to the basis z1,...,zs, the matric My of M(z) has (i,7)-th
entry gien by Ky j:

Rk11 Rg12 --- Rils
REg21 Rg22 .. KRg2s

ME)=| , . (7.67)
Rigs1t Rigs2 .. Kkgss

Now consider the action of M (z;) on u;:

1Ckl

M (zp)uj = zpu; = 7
j

X; (Cr)u; (7.68)

by using (7.63). Thus, the elements uy, ..., us, are eigenvectors for M (zy),
with u; having eigenvalue | ’“'XJ(C’k)
Recalling formula (7.52):

s d. »
uj =Y ’_(£1|Xj(ck )2k
k=1
we can display u; as a column vector, with respect to the basis 2, ..., 2, as
d; _
ﬁXj(CH Y
uj = : . (7.69)
d; _
GG
Then, in matrix form,

wyi; = 1%, (7.70)
j
Thus, for each fixed j € [s], the vector u; is a simultaneous eigenvector of
the s matrices M (1), ..., M(s).
A program which computes eigenvectors and eigenvalues can then be used
to work out the values uXZ(C’ ;). Next recall the character orthogonality
relation (7.24) which we can write as:

Z|Ck|xl Cr)xi(Cy, ) = |G, (7.71)
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and then as

—~ 1 |Gy Ci'l .y |G
G () e = (772
k=1 E ¢ g
Thus, once we have computed the eigenvalue %Xi(C) for each conjugacy

class C' and each i € [s], we can determine |G|/d? and hence the values
dy, ...,ds. Finally, we can compute the values y;(C) of the characters x; on
all the conjugacy classes C' as:

1, 1C]
ardi—xi(C).

xi(C) =

An unpleasant feature of this otherwise wonderful procedure is that the
eigenvalues will, in general, be complex numbers, which are therefore deter-
mined by a typical matrix algebra software only approximately. Dixon [23]
showed how character values can be computed exactly once they are known
up to close enough approximation (this was explored in Exercise 1.20). Dixon
also provides a methof of computing the characters exactly by using reduc-
tion mod p, for large enough prime p. These ideas have been coded up in
programs such as GAP which compute group characters.

There is one pleasant theoretical consequence of the exploration of the
matrices My; this is Frobenius’ simple proof of Theorem 7.5.3:
Simple proof of Theorem 7.5.3. As usual, let G be a finite group, F an alge-
braically closed field in which |G|1g # 0, C1, ..., Cs all the distinct conjugacy
classes in GG, and x4, ..., xs the distinct irreducible characters of G, over the
field F, and d; the dimension of the representation for the character x;. Then,
as we have seen above, the matrices M (k), with integer entries as given in
(7.67), have the eigenvalues g—’?'Xj(C’k). Thus, these eigenvalues are solutions
for A € F of the characteristic equation

det (M — M (k) =0, (7.73)

which is clearly a monic polynomial. All entries of the matrix M (k) being
integers, all coefficients in the polynomial in A on the left side of (7.73) are

also integers. Hence, each E—J’?'Xj(C’k) is an algebraic integer.

Here is a simple example, going back to Burnside [9, paragraph 222] and
Frobenius and Schur [35], of the interplay between properties of a group and
of its characters.
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Theorem 7.6.1 If G is a finite group such that every complex character is
real valued then |G| is even.

Proof. Suppose |G| is odd. Then, since the order of every element of G is
a divisor of |G/, there is no element of order 2 in G, and so g # ¢g~! for all
g # e. If x is a nontrivial irreducible character of G, over C, then

> x(9) =0,

geG

by orthogonality with the trivial character. Since y is, by hypothesis, real
valued, we have

x(g) = x(¢g7") for all g € G,
and then

0=> x(9)=x(e)+ > (x(9) +x(g™")) =d+2)_ x(9),

g geSs ges

where d is the dimension of the representation for x, and S'is a set containing
half the elements of G—{e}. But then d/2 is both a rational and an algebraic
integer and hence (see Proposition 12.7.1) it is actually an integer in Z. Thus
d is even.

For a restatement, with an elementary proof, do Exercise 7.10.

7.7 Return of the Group Determinant

Let G be a finite group with n elements, and F a field. Dedekind’s group
determinant, described in his letters [19] to Frobenius, is the determinant of
the |G| x |G| matrix

[Xab*l]a,bEG ’

where X, is a variable associated with each g € G. Let I be the matrix
formed in the case where the variables are chosen so that X, = X, when a
and b are in the same conjugacy class. The matrix F; was introduced by
Frobenius [34, eq. (11)]. For more history, aside from the original works of
Frobenius [28, 29, 30, 31, 32, 33, 34, 35] and Dedekind [19], see the books
of Hawkins [41, Chapter 10|, and Curtis [15] and the article of Lam [51];
Hawkins [42] also presents an enjoyable and enlightening analysis of letters
from Frobenius to Dedekind.
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Let F be a field, and R the regular representation of GG; thus, for g € G,
R(g) : FIG] = F[G] : y — gy.
Then, in the basis of F[G] given by the elements of G, the (a,b)-th entry of

1 if gb = a.
R@w=1. .~
0 if gb+# a,

which means R(g)q = 1 if ¢ = ab™!, and 0 otherwise. Then the matrix for
> gec B(9) Xy has (a,b)-th entry X,p-1. Thus,

Fe =Y R(9)X, (7.74)

geG

Since X, has a common value, call it X¢, for all g in a conjugacy class C,
we can rewrite Fg as
Fo =) R(zc)Xc, (7.75)
cec
where C is the set of conjugacy classes in GG, and z¢ is the conjugacy class

Sum
=g (7.76)

geC

Now suppose the field F is such that |G|1g # 0. Then there are simple left
ideals Ly, ..., L in F|G], such that every simple left ideal in F[G] is isomorphic,
as a left F[G]-module, to L; for exactly one i € [s], and the F-algebra F[G]
is isomorphic to the product of subalgebras Aq, ..., Ay, where A; is the sum
of all left ideals isomorphic to L;. Assume, moreover, that [ is a splitting
field for G in that Endgig)(L;) consists of just the constant maps x — cx for
c € F. For instance, F could be algebraically closed. Then A; is the direct
sum of d; simple left ideals, where d; = dimy L;. For any element z in the
center Z of F[G], the endomorphism R(z) acts as multiplication by a scalar
¢, € F on each L;. Denoting by y; the character of the regular representation
restricted to L;, we have

Yi(2) & Tr (R(2)|L) = Tr (c.11,) = cod;,

where [, is the identity mapping on L;. Hence,

1
C, = d—lxl(z)
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Taking z¢ for z shows that

€l
d;

R(zc)|Li = —xi(C)]; (7.77)

where x;(C') is the value of the character x; on any element in C' (and not
to be confused with y;(z¢) itself). Consequently,

C
Fg|L; = Z %Xi(C)XCIi- (7.78)
cec

Thus, Fg can be displayed as a giant block diagonal matrix, with each i € [s]
contributing d; blocks, each such block being the scalar matrix in (7.78).
Taking the determinant, we have

det FG = f[ (
cec

i=1

‘j’xxcr)Xc) B (7.79)

2

The entire universe of representation theory grew as a flower from Frobenius’
meditation on Dedekind’s determinant. The formula (7.79) (Frobenius [28,
eq.(22)] and [29]) shows how all the characters of G are encoded in the
determinant.

For S3, with conjugacy classes labeled by variables Y] (identity element),
Y, (transpositions), Y3 (three-cycles), equation (7.79) reads

Vi V3 V3 Yo Yo Yo
Y; Vi V3 Yo Yo Yo
; V3 i Yo Y2 Vs
> 2 Yo Vi Y3 V3 (7.80)
Y Vo Yo Y3 Y1 Y3
Y Vo Vo Y3 Y3 V)

= (Y1 — Y3)' (Y1 + 3Ya + 2Y3)(Y; — 3Ys + 2Y3),

which you can verify directly at your leisure/pleasure.

7.8 Orthogonality for Matrix Elements

A matriz element for a group G is a function on G of the form

G—F:g—(lp(g)le)
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where p is a representation of G on a vector space E over a field F, and
le) € E and (€/| is a vector in the dual space E'.

In this section we explore some straightforward extensions of the orthog-
onality relations from characters to matrix elements.

Theorem 7.8.1 If pg and pr are inequivalent irreducible representations of
a finite group G on vector spaces E and F', respectively, then the matrix
elements of p and p' are orthogonal in the sense that

> (Flor(@) )€ lpe(g)le) =0 (7.81)

geG

forall (f'| € F*, (¢| € E* and all |e) € E, |f) € F.

Proof. The linear map

Ti =Y pr(@)f)€lpp(g™) : E = F

geG

is F[G]-linear and hence is 0 by Schur’s Lemma.

Now assume that I is algebraically closed and has characteristic 0. Let £
be a fixed irreducible representation of G. Then Schur’s Lemma implies that
for any 7' € Endp(£) the symmetrized operator Tj on the left in (7.82) below
is a multiple of the identity. The value of this multiplier is easily obtained
by comparing traces:

1 _
@ZQTQ =Ty =
geG

1
dim]F E

To(T)]1, (7.82)
noting that both sides have trace equal to Tr(T").
Working with a basis {e; };e; of E, with dual basis {(e/|};c; satisfying
(e]ex) = 47,
we then have

(e Tyle;) = Tr(T)6) for alli,j € I. (7.83)

dim[g E
Taking for T the particular operator

T = pp(h)lec) (e,
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shows that
1 J ! -1 1 I 5j -
e 2 lee(ah)len(elon(o e = o—pom(hid] forallij el
geG

(7.84)
A look back at (7.41) provides an interpretation of this in terms of convolu-
tion.

We can summarize our observations in:

Theorem 7.8.2 Let Ey, ..., E, be a collection of irreducible representations
of a finite group G, over an algebraically closed field F in which |G|1p #
0, such that every irreducible F-representation of G is equivalent to E,. for
exactly one r € {1,...,s}. For each r € {1,...,s}, choose a basis {|e(r);) :
1 <i <d,}, where d, = dimgp E,, and let {{e(r)!| : i € {1,...,d,}} be the
corresponding dual basis in E!. Let p,;; be the matriz element:

prij G—=>C:g— (e(r)i|pET(g)\e(7’)j>.
Then the scaled matriz elements
" prij, (7.85)

with i,j € {1,...,d,}, and r running over {1, ..., s}, form an orthonormal ba-
sis of L*(G). Moreover, the convolution of matrix elements of an irreducible
representation E is a multiple of a matriz element for the same representa-
tion, the multiplier being 0 or 1/ dimy E.

Proof. From the orthogonality relation (7.81) and the identity (7.82), it
follows that the functions in (7.85) are orthonormal in L?(G). The total
number of these functions is

>

r=1

But this is precisely the number of elements in G, which is also the same as
dim L?*(G). Thus, the functions (7.85) form a basis of L?(G). The convolution

result follows from (7.84) on replacing g by gh™'.
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7.9 Solving Equations in Groups

We close our exploration of characters with an application with which Frobe-
nius [28] began his development of the notion of characters. This is the task
of counting the number of solutions of equations in a group.

Theorem 7.9.1 Let C4,...,C,, be distinct conjugacy classes in a finite group
G. Then

‘{<Cl7"'7cm) € Cl X ... X C'm‘cl. . Cyy = 6}’
ql. .. Cm s 1 7.86

i=1 i

where x1,..., Xs are all the distinct irreducible characters of G, over an al-
gebraically closed field F in which |G|1p # 0, d; is the dimension of the
representation for the character x;, and x;(C) is the constant value of x; on
C. Moreover,

|{(Cl,-..,6m) < Cl X ... X Om | Cl...Cqy = C}|

Ch|-|C) = 1 -
— | 1’\G|’ |de—lXi(Cl)---Xi(Cm>Xi(c )

i=1 "t

(7.87)

for any ¢ € G. The left sides of (7.86) and (7.87), integers as they stand,
are being viewed as elements of F, by multiplication with 1g.

As always, the algebraic closedness for F may be weakened to the requirement
that it is a splitting field for G.

Proof. Let 2; = 3 ., g be the element in the center Z of F[G] corresponding
to the conjugacy class C;. Recall the trace functional Tr, on F[G] given by
Tre(z) = ., the coefficient of e in x = 3 z,9 € F[G]. Clearly,

Tre(z1...2m) = [{(c1, .. cm) € C1 X ... X Oy | €1 .0 = €}, (7.88)

where the right side is being taken as an element in F. This is the key
observation; the rest of the argument is a matter of working out the trace on
the left from the trace of the regular representaion, decomposed into simple
submodules. Using the regular representation R, given by

R(z) : F|G] — F|G] : y — xy for all x € F[G],
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we have
Tr R(x) = |G| Tr.(x) for all z € F[G].
So )
Tre(21. . .2m) = @Tl“ R(z1...2m). (7.89)
Now recall the relation (7.77)
R = S, (7.90)
j T — dz Xi\Uj) g .

where [; is the identity map on L;, and Ly, ..., L, are distinct simple left ideals
in F[G] such that every simple left ideal in F[G] is isomorphic to exactly one
L;. As we know from the structure of F[G], this algebra is the direct sum

S

FIG] =@P(La @ ... ® Lia,),

=1

where each L;; is isomorphic, as a left F[G]-module, to L;. On each of the
d; subspaces L;,, each of dimension d;, the endomorphism R(z;) acts by

multiplication by the scalar % Xi(C}). Consequently,

Tr R(zy...2m) = idi (ﬁ %) d;. (7.91)

Combining this with the relationship between Tr. and Tr given in (7.89),
along with the counting formula (7.88) yields the number of (cy,...,¢,) €
Ciy x...xC,, with ¢;...c,, = e.

Now for any c € G, let

P(c)=A{(c1,..,cm) €CL X ... X Cyy & 1.0y = ¢}
Then for any h € G the map
(g1, ey Gm) = (hgrth™ . hgmh™)

gives a bijection between P(c) and P(hch™'). Moreover, the union of the
sets P(c’) with ¢’ running over the conjugacy class C. is in bijection with the

set
{(c1y-yem,d) €CL X ... X Cpy X Com1 2 ¢y, .cppd = €}
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Comparing the cardinalities, we have

Cil. . |CullCa1] = 1 B
C1P(e) = AEEnICl 5 (@) e
=1

|G i

Since |C,| equals |C,.-1], this establishes the formula (7.87) for |P(c)|.

Frobenius [28] also determined the number of solutions to commutator
equations in terms of characters:

Theorem 7.9.2 Let G be a finite group, and x the character of an irre-
ducible representation of G on a vector space, of dimension d, over an alge-
braically closed field F in which |G|1g # 0. Then

5 wtab~ ) = Sy @)y (7.92)

beG

for all a,h € G, and

Z x(aba= b7 te) = (%) x(c) (7.93)

a,beG

for all ¢ € G. Moreover,

{(a,b) € G* : aba™ bt =¢}| = Z g’xi@), (7.94)

for all c € G, where x4, ..., xs are all the distinct irreducible characters of G
over the field F, and the left side of (7.94) is being taken as an element of F
by multiplication with 1p.

Proof. For any a € G, let

za:Ec

ceCl,

where C, is the conjugacy class of a. Compare with the sum

> gag™".

geG
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Each term in this sum is repeated |Stab,| times, where Stab, is the set
{9 € G:gag™ = a}, and

G|
Stabg| = .
|Cal

Hence,

|O | Zgag (7.95)
gEG
Let R, denote an irreducible representation whose character is x. Then,
for any central element z in F[G], the endomorphism R(z) is multiplication
by the constant x(z)/d; moreover, if z¢ is the sum decg for a conjugacy
class C, then x(z¢) = |C|x(C), where x is the constant value of x on C.
Then

X(zaz) = T Ry (20) Ry (20)
~ 1 (1Sl Shn) (7.96)

= GG @y

Now observe that

c.l|C L
X(za2n) = <|| G|| || Gb|| S gag'bhb 1)

g9.beG
||CG|| ||gb| (Z Zgabhb g 1) (on replacing b by gb.)
9€G beG
_ |Gl |Gl
GIS " x(abhb~!
=T oy 91 2
(7.97)
Combining this with (7.96) we have
_ G
> x(abhb™") = %X(a)x(h). (7.98)

beG

Taking ca for a, and h = a~!, and adding up over a as well we have

> xl(aba~'b'c) ‘ZX at) (‘g') x(0),

a,beG
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upon using the character convolution formula in Theorem 7.2.6. Next, for
the count,

{(a,b) :aba b7 =c}| = Z Tr(aba b ™)

a,beG

— |_C1J| Z i dixi(abatbtc™h)

ab i=1

; (7.99)
1 G*
o1 )

To finish off, note that the replacement (a,b) ~ (b,a) changes ¢ to ¢~

QED

The previous results on commutator equations and product equations
lead to a count of solutions of equations which have topological significance,
as we will discuss shortly.

Theorem 7.9.3 Let G be a finite group, and X1, ..., xs all the distinct irre-
ducible characters of G over an algebraically closed field F in which |G|1r # 0.

For positive integers n and k, and any conjugacy classes C4,..., Cy in G, let
M(Cy,...,C
(G , ) (7.100)
={(a,c1,...,cr) EG" X Cy x ... x Cy : Kp(a)ey. . .cp = e}
where
Kn(ay, by, ... an,b,) = arbia; 'yt .. apbna, 't
Then
- nez [ 1C1xi(C1)  |Cklxi(Ch)
MGGl = 161 Yl (ORISR,
i=1 ' '

(7.101)

where the left side is taken as an element of F by multiplication with 1p.

The group G acts by conjugation on M (C1, ..., C}), and so it seems natural
to factor out one term |G| on the right in (7.101); the terms in the sum are
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algebraic integers. A special case of interest is when & = 1 and C} = {e};

then
= ~ (161"
el =161 (1 (7.102)
i=1 !

Proof. The key observation is that we can disintegrate M(CY,...,Cy) by
means of the projection maps

pj (@b, an, bny ey cr) = (ag,05) = ajbal b

Take any point h = (hy, ..., h,) € G™ and consider the preimage in G*" of h
under the map

p: G — G": (al,bl, .. .,an,bn) — (Kl(al,bl), .. .,Kl(an,bn)).

Then M(CY,...,C}) is the union of the ‘fibers’ p, (k) x {(c1,...,c)}, with
(c1,. .., cg) running over all solutions in C; x ... x Cy of

Ci...C, = hl. . hn

The idea of the calculation below is best understood by visualizing the set

M(C4,...,Cy) as a union of ‘fibers’ over the points (h, ¢q, . ..c;) and then by

viewing each fiber as essentially a product of sets of the form K '(c;).
From (7.94) we have

- n s aQ el
J=1 i1 7 . - g1 - Wiy

and then, on using the general character convolution formula (7.44), we have

Z p, " (ha, . Ty |_Z’Gf‘G’” xi(c) (7.103)

m—1
hi...hn=c d

Now we need to sum this up over all solutions of ¢;...c, = ¢ with (¢q, ..., ¢x)
running over C; X ... x Cy. Using the count formula (7.87), this brings us to

‘ 1” " k’z J l)dk 1] k ) Z‘ i ’di . 1(6) (7'104)

7j=1
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Lastly, this needs to be summed over ¢ € GG. Using the convolution formula
Zx] = G168,

we arrive at

M(Cy, ...l = |G (Gl \ckle C-xil) 7 405)

d2n+k 2

Next, we have what is perhaps an even more remarkable count, courtesy
of Frobenius and Schur [35, section §4]:

Theorem 7.9.4 Let G be a finite group, and x, the character of an ir-
reducible representation of G on a vector space of dimension d,, over an
algebraically closed field F in which |G|1g # 0. Let ¢, be the Frobenius-Schur
indicator of p, having value 0 if p is not isomorphic to the dual p’, having
value 1 if there is a nonzero G-invariant symmetric bilinear form on V', and
—1 f there is a nonzero G-invariant skew-symmetric bilinear form on V.

Then
@l Z (g (7.106)

geG

where I s the identity map on V', and so
@l pr — (b) (7.107)
geG

for all b € G. Moreover, if py, ..., ps are a mazximal set of inequivalent irre-
ducible representations of G over the field ¥, then

G
(100 €65t st =l = 161 (o DT oy
where ¢; = ¢,, and d; = d,,, and the equality in (7.108) is with both sides
taken as elements of F.

We have discussed the Frobenius-Schur indicator ¢, back in Theorem 3.3.2.
Now we have a formula for it:

Z Xo(9), (7.109)

g€G|
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where, recall, ¢, € {0,1, —1}. For the division by d, in (7.106), and elsewhere,
recall from Lemma 7.1.1 that d, # 0 in F.

Proof. Fix a basis uy, ..., uq of V. For any particular a,b € [d], let B be the
bilinear form on V' for which B(u;,u;) is 0 except for (i, 7) = (a, b), in which
case B(uq,up) = 1. Now let S be the corresponding G-invariant bilinear form
specified by

S(v,w) =>_ B(p(g)v, plg)w).

geG

By Theorem 3.3.2,
S(v,w) = c,S(w,v)

for all v,w € V. Taking v = u; and w = u; this spells out
2 P@)ar( @)y = ¢, ) p(9)a(9)si (7.110)
geG geG

This holds for all 4, j,a,b € [d]. Taking i = b and summing over i brings us

to
D 10(9)a = ¢ > Xp(9)P(9)as:

geG geG

which means

D 0 =0 > Xo(9)p(9)- (7.111)

geG geG

Taking the trace of this produces

D X)) = Y xol9)” (7.112)

geG geG

If p is isomorphic to p’ then

X(9) = xo(9) = X (9) = Xo(97") = x(97"):
for all g € G, and so the sum )°_x(g)? is the same as > x(g~')x(g) which,
in turn, is just |G|. Then (7.112) implies
1
TE] > X9 (7.113)
geG

If p is not isomorphic to its dual p’ then, by definition ¢, = 0, and so from
(7.112) we see that (7.113) still holds.
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Since ) ., g7 is in the center of F[G], and p is irreducible, Schur’s Lemma
implies that > gec Pl g%) is a scalar multiple &7 of the identity I, and the scalar
k is obtained by comparing traces:

> nlg®) = kI, (7.114)

geG

G
k:éTr Zp(g dz | |C”

geG geG
where we used the formula (7.113) for the Frobenius-Schur indicator c,. Re-
call from Theorem 7.5.1 that d is a divisor of |G|, and, in particular, is not
0 in F. This proves (7.106):
Z p(g (7.115)

gEG

where

Multiplying by p(h) and taking the trace produces (7.107):

geG

for all h € G.

Now we can count, using the now familiar ‘delta function’
1 1<
Tr, = T Xreg = T~ diXia
GI7 |G ;

where Xeg 1 the character of the regular representation of G on F|G]. Work-
ing in F, we have:

H{(g1, s gn) EG™ 1 g7 ... g2 =€} = Z Tr.(g7 ... 92)

which implies (7.108).
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7.10 Character References

Among many sights and sounds we have passed by in our exploration of char-
acter theory are: (i) Burnside’s p%q® theorem [9, Corollary 29, Chapter XVI],
a celebrated application of character theory to the structure of groups; (ii)
zero sets of characters; (iii) Galois-theoretic results for characters. Burnside’s
enormous work [9], especially Chapter XVI, contains a vast array of results,
from the curious to the deep, in character theory. The book of Isaacs [47] is
an excellent reference for a large body of results in character theory, cover-
ing (i)-(ili) and much more. The book of Hill [43] explains several pleasant
applications of character theory to the structure of groups. An encyclopedic
account of character theory is presented by Berkovic and Zhmud’ [3].

7.11 Afterthoughts: Connections

The fundamental group (%, 0) of a topological space X, with a chosen base
point o, is the set of homotopy classes of loops based at o, taken as a group
under composition/concatenation of paths. If ¥ is an orientable surface of
genus n with & disks cut out as holes on the surface, then (3, 0) is generated
by elements Ay, By, ..., A, By, S1, ..., Sk, subject to the following relation:

ABAYB . ALBL AT BS L S =1 (7.118)

where [ is the identity element. Here the loops S; go around the boundaries
of the deleted disks. If G is any group then a homomorphism

¢:m(3,0) =G
is completely specified by the values of ¢ on the A;, B;, S;:
(¢(A1)7 ¢(Bl)7 SEE) ¢(An)7 ¢H(Bn)7 ¢(Sl)7 ) an(sn))

which is a point in M(CY,...,Cy) if the boundary ‘holonomies’ ¢(S;) are
restricted to lie in the conjugacy classes C;. Thus, M(Ch, ..., Cy) has a topo-
logical meaning. The group G acts on M (CY, ..., C) by conjugation and the
quotient space M(C1,...,Cy)/G appears in many different incarnations, in-
cluding as the moduli space of flat connections on a surface and as the phase
space of a three dimensional gauge field theory called Chern-Simons theory.
In these contexts G is a compact Lie group. The space M(CY,...,Cy)/G is
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not generally a smooth manifold but is made up of strata, which are smooth
spaces. The physical context of a phase space provides a natural measure
of volume on M(CY,...,C%)/G. The volume of this space was computed by
Witten [76] (see also [68]). The volume formula is, remarkably or not, very
similar to Frobenius’ formula for |M(C,...,Cy)|. Witten also computed a
natural volume measure for the case where the surface is not orientable, and
this produces the analog of the Frobenius-Schur count formula (7.108). For
other related results and exploration see the paper of Mulase and Penkava
[59]). Zagier’s Appendix to the beautiful book of Lando and Zvonkin [52]
also contains many interesting results in this connection.

Exercises

1. Let u =73, s u(h)h be an idempotent in A = F[G], and let x,, be the
character of the regular representation of G restricted to Au:

Xu(x) = Trace of Au — Au:y— zy.
(i) Show that, for any = € G,

Xu(z) = Trace of A — A :y — xyu.

(ii) Check that for z,g € G,

rgu = Z u(g 'z h)h
hea

(iii) Conclude that:

Xu(2) = Zu(g’lx’lg), for all z € G. (7.119)

geG

Equivalently,

Z Yu(z™Hz = Z gug ™ (7.120)

zeG geG

(iv) Show that the dimension of the representation on Au is
dy = |Glu(1le)

where 14 is the unit element in G.
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2. (This exercise follows an argument in the Appendix in [52] by D. Za-
gier.) Let G be a finite group and F a field in which |G|1r # 0. For
(g,h) € G x G let T{y ) : F[G] — F[G] be specified by

Tigm(a) = gah™ for a € F[G] and g, h € G. (7.121)

Compute the trace of T{, ) using the basis of of F[G] given by the
elements of GG to show that

T T 0 if g and h are not in the same conjugacy class;
I =
(9:h) % if g and h both belong to the same conjugacy class C'.

(7.122)
Next recall that F|G] is the direct sum of maximal two sided ideals
F|G];, with j running over an index set R; then:

Tr Tigny = D, Tr (Tigm [FIG];) (7.123)

JER

Now assume that F is also algebraically closed; then we know that,
picking a simple left ideal L; C F[G];, there is an isomorphism

p; : FIG; = Endg(L;)

where p;(z)y = zy for all z € F[G]; and y € L;, and so

T (T |FIG];) = Tr (Pj ° T(g,m’]F[G]r ° (%)71)
Now use the identification
Endp(L;) ~ L; ® L;,
where L’ is the vector-space dual to L;, to show that

Tr (T(en)|FIG];) = Tr (p;(9)) Tr (p;(h~"))
= x;(9)x;(h71).

Combine this with (7.123) and (7.122) to obtain the orthogonality re-
lation (7.37).

(7.124)

3. Let M be finitely generated Z module, and A : M — M a Z-linear
map. Show that there is a monic polynomial p(X) such that p(A) = 0.
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. Let x1, ..., xs be all the distinct irreducible characters of a finite group G

over an algebraically closed field of characteristic 0, and let {C1, ..., Cs}
be the conjugacy classes in G. Then show that

xi(C Z X (O (CF ) g, (7.125)

1<] k<s

for all 7 € {1, ..., s}, where kj;, are the structure constants of G.

. Prove the Schur character orthogonality relations from the orthogonal-

ity of matrix elements.

. The character table of a finite group G which has s conjugacy classes

is the s x s matrix [x;(C})]i<ij<s, where C,...,Cy are the conjugacy
classes in G and x4, ..., X are the distinct irreducible complex characters
of GG. Show that the determinant of this matrix is nonzero.

Verify Dedekind’s factorization of the group determinant for Ss:

X1 Xo X3 Xy X5 Xs
X, X, Xo Xs Xg Xu
Xo Xz X1 X Xy Xj
Xy X5 Xo X1 Xo X3 (7.126)
Xs X Xu X3 X7 Xo
Xe X4 X5 Xo X3z Xy

= (u+v)(u—v)(uwuz — vivs)

where

U:X1+X2—|—X3, Uy :X1—|—OJX2—|—W2X3,U2:X1 +w2X2+wX3
U:X4+X5+X6, Uy :X4+WX5+W2X6,UQ :X4+W2X5+WX6,

where w is a primitive cube root of unity.

. Let G be a finite group, and x1, ..., xs all the distinct irreducible char-

acters of G over an algebraically closed field F in which |G|1y # 0.
Prove the following identity of Frobenius [28, sec. 5, eq. (6)]:

> X(arty.amty) = (%) " x(a1)..x(am)

{(tl ----- tm)EGm :tl...tm:e}
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10.

for all aq, ..., a,, € G. Use this to prove the counting formula:

‘{(tl, ,tm) eGm tltm = €, altl...amtm = €}|

()" weonton

(7.128)

for all aq,...,a,, € G.

Suppose a group G is represented irreducibly on a finite-dimensional
vector space V over an algebraically closed field F. Let B: V xV — F
be a non-zero bilinear function which is G-invariant in the sense that
B(gv, gw) = B(v,w) for all vectors v,w € V and g € G. Show that

(i) B is non-degenerate. [Hint: View B as a linear map V — V' and
use Schur’s lemma. |

(ii) if By is also a G-invariant bilinear form on V' then By = ¢B for
some ¢ € F.

(iii) If G is a finite group, and F = C, then either B or —B is positive-
definite, i.e. B(v,v) > 0 for all non-zero v € V.

Let py,...,ps be a maximal set of inequivalent irreducible representations
of a finite group G over an an algebraically closed field F in which
|G|l # 0. Let C be the set of all conjugacy classes in G. Let pf
denote the representation dual to p, so that for the characters we have
X (9) = x,(971), for all g € G. By computing both sides of the identity

C C
ZZ :G:sz sz ZZ :G:sz Xpi ((C_l)_l)
i=1 CeC ceC i=1

show that the number of irreducible representations which are isomor-

phic to their duals is equal to the number of conjugacy classes C for
which C~! = C:

Hicls]:p=p}={CeC:C=C}. (7.129)

(For a different, combinatorial proof of this, see the book of Hill [43].)
Now suppose n = |G| is odd. If C' = C~! is a conugacy class containing
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an element a, then gag™! = ! for some ¢ € G, and ¢"ag™ = a™ !,

since n is odd, and so @ = a~! which can only hold if @ = e. Thus, when
|G| is odd, there is exactly one conjugacy class which is equal to its
own inverse, and hence there is exactly one irreducible representation,
over IF, which is equivalent to its dual.

1

Let G be a finite group, F a field, and T the representation of G' on
F[G] given by

T(g)x = grg™* for all z € F[G] and g € G.

Compute the character yr of T. Next, for the character y of a repre-
sentation of G' over F, find a meaning for the sum ) ... x(C), where
C being the set of all conjugacy classes in G.



Chapter 8

Induced Representations

A representation of a group G restricts to produce a representation of a
subgroup H. Remarkably, there is a procedure which runs in the opposite
direction, producing a representation of G' from a representation of H. This
method, introduced by Frobenius [32], is called induction, and is a powerful
technique for constructing and analyzing the structure of representations.

8.1 Constructions

Consider a finite group G, a subgroup H, and a representation p of H on
a finite dimensional vector space E over some field F. Among all functions
on G with values in E we single out those which transform in a nice way in
relation to H; specifically, let E; be the set of all maps ¢ : G — E for which

Y(ah) = p(h 1)y (a) foralla € G and h € H. (8.1)

We say that such an ¢ is equivariant with respect to p and the action of H
on G by right multiplication: G x H — G : (g, h) — gh.

It is clear that F; is a subspace of the finite dimensional vector space
Map(G, E) of all maps G — E. Now the space Map(G, F) carries a natural
representation of G:

G x Map(G, E) — Map(G, E) : (a,¢) — L1,

where
Lop(b) = ¢(a™'b) forall a,b € G, (8.2)

231
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and this representation preserves the subspace E;. This representation of G
on E is the induced representation of p on G. We will denote it by i%p.

Good notation for the induced representation is a challenge, and it is best
to be flexible. If F is the original representation space of H, then sometimes
it is more convenient to denote the induced representation by E¢ (which is
why we are denoting the set of all functions G — E by Map(G, E)).

A function ¢ : G — E'is, at bottom, a set of ordered pairs (a,v) € G —
E, with a unique v paired with any given a. The condition (8.1) on 1) requires
that if (a,v) € ¢ then (ah, p(h~')v) is also in ¢. In physics there is a useful
notion of ‘a quantity which transforms’ according to a specified rule; here we
can think of ¢ as such a quantity which, when ‘realized’ by means of a is
‘measured’ as the vector v, but when the ‘frame of reference’ a is changed to
ah the measured vector is p(h™!)v.

It is useful to note that an element ¢y € F; is completely determined by
listing its values at elements ¢, ...,g,n € G, where g1 H, ..., g, H are all the
distinct left cosets of H in G. Moreover, we can arbitrarily assign the values
of 1 at the points g1, ..., g,n. In other words, the mapping

Er— E™ = (9(g1), s ¥(gm)) (8.3)

is an isomorphism of vector spaces (Exercise 8.1).
The isomorphism (8.3) makes it clear that the dimension of the induced
representation is given by

dimi%p = |G/H|(dim p). (8.4)
Think of a function ¢ : G — E as a formal sum

Y=Y v(g)g.

geG

More officially, we can identify the vector space Map(G, E') with the tensor
product £ ® F[G]:

Map(G,E) = E@F[G] : ¢ — Y (g) ®g.

geG

The subspace E; corresponds to the those elements 4 Vg ® g which satisfy

Z Vg ® g = Z p(h™ v, @ gh, for all h € H. (8.5)
g g



Representing Finite Groups 12/05/2010 233

The representation i% is then specified quite simply:

i%(9)(va ® @) = v, ® ga. (8.6)

The induced representation is meaningful even if the field F is replaced
by a commutative ring R. Let £ be an R[H|-module. View R[G] as a right
R[H]-module. Let E“ be the tensor product R[G] Qg E quotiented by
the submodule spanned by elements of the form (xb) ® v — x ® (bv) with
x,b € R[H], v € V; thus, in this framework,

E¢ = R[G] @i E. (8.7)

Now view this balanced tensor product as a left R|G]-module by specifying
the action of R[G] through

a(r ®v) = (ax) @ v for all z,a € RG], v € E. (8.8)

For more, consult the discussion following the definition (12.49). Notice the
mapping

j:E—=EY: v—e®u, (8.9)
where e, the identity in G, is viewed as le € R[G]. Then by the balanced
tensor product property, we have

j(hv) =h®v = h(e®v) = hj(v), (8.10)

forallh € H, v € E, and so j is R[H]-linear (with EY viewed, by restriction,
as a left R[H]-module for the moment).

Pick, as before, g1, ..., g, € G such that g H, ..., g, H are all the distinct
left cosets of H in G. Then you can check quickly that {gi,...,gm} is a
basis for R[G], viewed as a right R[H]-module (Exercise 8.3). A consequence
(details being outsourced to Theorem 12.9.1) is that

E¢ = RG] ®pim E & - g RG] @pim E (8.11)

In fact, every element of E“ can then be expressed as > 9 ®@u; withv; € B
uniquely determined. This shows the equivalence with the approach used
above in (8.5).

We have now several distinct definitions of E¢, all of which are identifiable
with each other. This is an expression of the essential universality of the
induction process which we explore later in section 8.4.



234 Ambar N. Sengupta

8.2 The Induced Character

We work with G, H, and E as in the preceding section: H is a subgroup of
the finite group G, and F is an F[H]-module. As before,

E€ =F|[G] ®wm E,

is an F[G]-module, and there is the F[H]-linear map

j:E—E: v~ le®w.
Set

EO = ](E)a

which is a sub-F[H]-module of E€. Pick g1, ..., gm € G for which g1 H, ..., g, H
are all the distinct left cosets of H in G. Then

EY = g1 By & ... & gmEo,
where ¢;Ey is i%p(g;) Eo. The map

L,: B¢ = EY v i%p(g)v

carries the subspace g; Fy bijectively onto gg; Fy. Thus, gg;Ey equals g; Ey if
and only if g; 'gg; is in H. Consequently, the map L, has zero trace if g is
not conjugate to any element in H. If g is conjugate to an element h of H

then
Tr (L,) = n,Tr(Ly| Eo) = ngx,(h), (8.12)
where n,, is the number of i for which g; 'gg; is in H.

We can summarize these observations in:

Theorem 8.2.1 Let H be a subgroup of a finite group G, and i%p the induced
representation of G from a representation p of H on a finite dimensional
vector space E over a field F. Let gq,...,9,m € G be such that g1H, ..., g, H
are all the distinct left cosets of H in G. Then the character of i%p is given

by
(@Gxo)(9) = > Xog;tg9;)  forallgeG, (8.13)
j=1

where Xg is equal to the character x, of p on H C G and is 0 outside H. If
|H| is not divisible by the charactertistic of the field F then

(i5x0)(9) = |%| > Xpla~'ga)  forallg € G, (8.14)

aeG
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The division by |H| in (8.14) is needed because each g; for which g; 'gg;
is in H is counted |g;H| (= |H]|) times in the sum on the right (8.14):

Xo((g:h) " glgih)) = x)(g; ' 99:)-

In the special case when H is a normal subgroup of GG, the element gj’lggj
lies in H if and only if ¢ is in H. Hence:

Proposition 8.2.1 For a subgroup H of a finite group G, and a finite di-
mensional representation p of G, the character of the induced representation
i%p is 0 outside the normal subgroup H.

8.3 Induction Workout

As usual, we work with a subgroup H of a finite group GG, and a representation
p of H on a finite dimensional vector space E over a field F. Fix g1, ...,¢9,, € G
such that ¢1H, ..., g, H are all the distinct left cosets of H in GG. For this
section we use the induced representation space E; which, recall, is the space
of all maps ¢ : G — E for which

Y(ah) = p(h"1)(a) foralla € G and h € H.

Then the induction process produces the representation p; of G on E; given
by
pr(a) b s p(ah).

and Fj is isomorphic to E™ via the map

Ey— E™: ¢ — (¢(gl), ,@D(gm))

Let us work out the representation p; as it appears in E™; we will denote
the representation on E; again by p;. For any g € G we have

(p1(9)(g1), - p1(9) 0 (gm)) = (Vg 1), s (9 gm)) (8.15)

Now for each i the element g~'g; falls into a unique coset g; H; that is, there
is a unique j for which gj’lg_lgl- = h € H. Note that

=g g9,
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Then, for such 7 and j, we have

D9~ g:) = ¥(gih) = p(h™)¥(g)-
Thus the action of p;(g) is
1 > 0091 995)
N s :
Um >, P (9" 995);

where p° is p on H and is 0 outside H. Note that in each of the sums > I
all except possibly one term is 0. The matrix of p;(g) is

p1(g) :

Plartga) P(91t992) -+ P°(91 " 99m)
pi9) = : : o : : (8.16)
P9 991) P°(9m'992) -+ P°(91'99m)
Note again in this big matrix, each row and each column has exactly one
nonzero entry. Moreover, if H is a normal subgroup and h € H, then the
matrix in (8.16) for p;(h) is a block diagonal matrix, with each diagonal
block being p evaluated on one of the G-conjugates of h lying inside H.

Let us see how this works out for S3 (which is the same as the dihedral
group Ds). The elements of S are:

,, c=(123), & =(132), r=(12), rc=(23), rc®=(13),

where ¢ is the identity element. Thus, » and ¢ generate S3 subject to the

relations

r?=c = L, rer~t = 2.

The subgroup C' = {t, ¢, c?} is normal. The group S3 decomposes into cosets
Sy =CUrC.

Consider the one dimensional representation p of C' on Q[w|, where w is a
primitive cube root of 1, specified by

plc) = w.
Let p; be the induced representation; by (8.4) its dimension is

dim p; = |93/C|(dim p) = 2.
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We can write out the matrices for p;(c) and py(r):
(8.17)

Looking all the way back to (2.7) we recognize this as an irreducible repre-
sentation of D3 given geometrically as follows: p;(c) arises from conjugation
of a rotation by 120° and r by reflection across a line. Note that restricting
p1 to C doesn’t simply give back p; in fact, p;|C decomposes as a direct
sum of two distinct irreducible representations of C. Lastly, let us note the
character of p;:

xi(t) =2, xile) = xa(c¢?) = -1, x1(r) = xa(re) = xa(re?) =0,
(8.18)
which agrees nicely with the last row in Table 2.2.

Now let us run through S3 again, but this time using the subgroup H =
{t,r} and the one-dimensional representation 7 specified by 7(r) = —1. The
underlying field F is now arbitrary. The coset decomposition is

Sy =HUcHUCH.
Then the induced representation 7 has dimension

For 7y (c) we have

Tl(C) =

(8.19)




238 Ambar N. Sengupta

and for 7 (r) we have

700 r) 00 re) T e?)
mi(r) = |7%c7tre) %c7tre) TO(circ?)
0(,.—2 0 .—2 0f.—2,. 2
:7' (c2re) 7°(c*re) TY(c*re?) (8.20)
-1 0 0
=10 0 -1
(0 -1 0

The character of 7 is given by
X1 (L) =3, Xn (C) = Xn (02) =0, Xn (T> = Xn (CT) = Xn (C2T) =-1
(8.21)
Referring back again to the character table for S3 in Table 2.2, we see that

Xr = X1+ 04— (8.22)

The induced representation 7y is the direct sum of two irreducible represen-
tations, at least when 3 # 0 in F (in which case x; comes from an irreducible
representation; see the solution of Exercise 2.4). In fact,

F* =F(1,1,1) @ {(21, 2, 23) € F* : 21 + 29 + 25 = 0}

decomposes F? into a direct sum of irreducible subspaces, provided 3 # 0 in
F.

8.4 Universality

At first it might seem that the induced representation is just another clever
construction which happened to work out. But there is a certain natural qual-
ity to the induced representation, which can be expressed through a ‘universal
property.” One way of viewing this universal property is that the induced
representation is the ‘minimal’ natural extension of an H-representation to
a G-representation.

Theorem 8.4.1 Let G be a finite group, H a subgroup, R a commutative
ring, and E a left R[H|-module. Let E€ = R[G] ®pu) E, viewed as a left
R[G]-module, and jgp : E — E% the map v — e @ v, which is linear over
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R[H]. Now suppose F is a left R[G]-module and f : E — F a map linear
over R[H|. Then there is a unique R[G]-linear map

Ty: B¢ - F
such that f =Ty o jg.

Proof. Pick g1, ...,9m € G such that ¢1H, ..., g,,H are all the distinct left
cosets of H in G. Every € E® has a unique expression as a sum > 0i®;
with v; € E; then define Ty : EY — F by setting

Ti(w) = gif(v1) + -+ gmf (V)

Now consider an element g € G; then gg; = gyh; for a unique ¢ € {1,...,m}
and h; € H, and so for x as above, we have

Tf(9$> = ZTf(gi' ® hiv;) = Z gir f (hiv;)
=D _grhif(vi) (8.23)
=g Zgif(vi) = gTy(x).

So T, which is clearly additive as well, is R[G]-linear. The relation f = Trojg
follows immediately from the definition of T;. Uniqueness of T then follows
from the fact that the elements jp(v) = 1 ® v, with v running over F, span

the left R[G]-module E€.

8.5 Universal Consequences

Universality is a powerful idea and produces some results with routine au-
tomatic proofs. It is often best to think not of E¢ by itself, but rather the
R[H]-linear map

jg: E — E%,

as a package, as the induced module
Let H be a subgroup of a finite group G, and E and F' left R[H]-modules,
where R is a commutative ring. For any left R-module L, denote by LE the
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left R[G]-module R[G] ®pim) L, and by jj, the map L — L : v — e ® v,
where e is the identity in G. Then the map

E®F = EY® FC: (v,w) = (jr(v),jr(w))

is R[H]-linear and so there is a unique R[G]-linear map T : (E @ F)¢ —
E¢ @ FY for which
for all v € E, w € F, where j = jpar. In the reverse direction, the R[H]-
linear mapping

E— (E®F): v~ jv,0)
gives rise to an R[G]-linear map E¢ — (E®F)%, and similarly for F'; adding,
we obtain an R[G]-linear map

S:EC@FY —» (Ea F)?: (jgv, jrw) = j(v,0) + j(0,w) = j(v,w).

Then T'S(jg, jr) = (jg,jr) and STj = j, which, by the uniqueness in uni-
versality, implies that ST and T'S are both the identity. To summarize:

Theorem 8.5.1 Suppose H is a subgroup of a finite group G, and E and
F are left R[H]|-modules, where R is a commutative ring. Then there is a
unique R[G]-linear isomorphism

T:(EeF) - EY® F°

satisfying Tjper = jr @© jr, were js : S — S denotes the canonical map
for the induced representation for any F[H]|-module S.

Proof. By Theorem 8.4.1 there is a unique R[G]-linear map Ty : E¢ — F
for which

Trje = .
Let
f¢ = jeTy.
Then
19 = jrlujr = jrf.

The next such result is functoriality of the induced representation; it is
an immediate consequence of the universal property of induced modules.
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Theorem 8.5.2 Suppose H is a subgroup of a finite group G, E and F
left R[H]-modules, where R is a commutative ring, and f : E — F an R[H]-
linear map. Let jp: E — E% and jp : F — FY be the induced modules. Then
there is a unique R[G]-linear map f¢: B¢ — FY such that f°jr = jrf.

8.6 Reciprocity

The most remarkable consequence of universality is a fundamental ‘reci-
procity’ result of Frobenius [32]. Asusual, let H be a subgroup of a finite grop
G, E aleft R[H]-module, and F' an R[G]-module, where R is a commutative
ring.

Recall that, with usual notation, if f : £ — F'is R[H]-linear then there
is a unique R[G]-linear map T} : EY — F for which Tyjr = f. Thus, we
have a map

Homp(s(E, Fir) — Hompg (EC, F) : f — Ty

The domain and codomain here are left R-modules in the obvious way, keep-
ing in mind that R is commutative by assumption. With this bit of prepa-
ration, we have a formulation of Frobenius reciprocity:

Theorem 8.6.1 Let H be a subgroup of a finite group G, E a left R[H|-
module, where R is a commutative ring, and F' a left R|G]-module. Let Fy
denote F viewed as a left R{H|-module. Then

Homp(s)(E, Fir) — Hompg (EC, F) : f — Ty (8.24)

is an isomorphism of R-modules, where Ty is specified by the requirement
Tije= 1.

Proof. 1If f € Hompgpy (£, Fy) then, by universality, there is a unique
Ty € Homgg (EG,F) such that Ty o jp = f. Clearly, f — T} is injec-
tive. Uniqueness of Ty implies that T .y, equals T}, + T%,, because both
compose with jg to produce fi + fo, for any fi, fo € Hompu(E, Fr). Next,
for any r € R, and f € Hompy)(E, Fy), the map rTy is in Hompgg (EG, F)
and satisfies (r1y)jg = rf, which, again by uniqueness, implies that r7} is
T,s. Now consider any A € Hompg (EG,F), and let f = Ajg, which is
an element of Hompg(p)(E, Fg). Then uniqueness of T implies that Ty = A;

thus f — T} is surjective.
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A semisimple module N over a ring A decomposes as a direct sum

N=N,
i€l
where each N; is a simple A-module. For a simple left A-module E, the
number of ¢ € I for which N; is isomorphic to F, as left A-modules, is called
the multiplicity of E in N. If A is the group algebra F[G], for a field F and
a finite group G, then the multiplicity is equal to

dimp Homp(E, N),

if F is algebraically closed (by Schur’s Lemma).

We bring the reciprocity result Theorem 8.6.1 down to ground now, by
specializing to the case where R is a field F. Then we have the following
concrete consequence:

Theorem 8.6.2 Let H be a subgroup of a finite group G, E a simple left
F[H]-module, where I is an algebraically closed field in which |G|1g # 0, and
F a simple F[G]-module. Let Fy denote F viewed as a left F[H]|-module.
Then the multiplicity of F in EC is equal to the multiplicity of E in Fy.

There is one more way to say it. Looking all the way back to Proposition
7.2.3, we recognize the dimensions of the Hom spaces in (8.24) as the kind of
character convolutions which appear in character orthogonality. This at once
produces the following Frobenius reciprocity result in terms of characters:

Theorem 8.6.3 Let H be a subgroup of a finite group G, E a representation
of H, and F a representation of G, where E and F are finite dimensional
vector spaces over a field F in which |G|1g # 0. Let Fy denote F viewed as
a representation of H, and E® the induced representation of G. Then

geG heH

We have seen that on a finite group K there is a useful hermitian inner
product on the vector space of function K — C given by

(o = 177 Z fi(k) f2(k)

keK
In this notation, (8.25) reads

(XEo, XF)r = (XFy: XE)G- (8.26)
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8.7 Afterthoughts: Numbers

In Euclid’s Elements, ratios of segments are defined by an equivalence class
procedure: segments AB, C'D, A; By, C1D; correspond to the same ratio

AB :CD = AlBl : ClDl

if for any positive integers m and n the inequality m - C'D > n - AB holds if
and only if m - C1 Dy > n - Ay By, where whole multiples of segments and the
comparison relation > are defined geometrically. Then it is shown, through
considerations of similar triangles, that there are well-defined operations of
addition and multiplication on ratios of segments. Fast forwarding through
history, and throwing in both 0 and negatives, shows how the axioms of
Euclidean geometry lead to number fields. This is also reflected in the tra-
ditional ruler and compasses constructions, which show how a number field
emerges from the axioms of geometry. A more subtle process leads to con-
structions of division rings and fields from the sparser axiom set of projective
geometry. Turning now to groups, a finite group is, per definition, quite a
minimal abstract structure, having just one operation defined on a nonempty
set with no other structure. Yet geometric representations of such a group
single out certain number fields corresponding to these geometries. Very con-
cretely put, here is a natural question which was addressed from the earliest
explorations of group representation theory: for a given finite group, is there
a subfield F of, say, C, such that every irreducible complex represenation of
G can be realized with matrices having elements all in the subfield F? The
following magnificent result of Brauer [7], following up on many intermediate
results from the time of Frobenius on, answers this question:

Theorem 8.7.1 Let G be a finite group, and m € {1,2,...} be such that
g" =e forall g € G. For any irreducible complex representation p of G on a
vector space V', there is a basis of V' relative to which all entries of the matrix
p(g) lie in the field Q((), for all g € G, with (, = €2™/™ is a primitive m-th
root of unity.

Here Q(7,,) is the smallest subfield of C containing the integers and 7,,.
Weintraub [74] provides a thorough treatment of this result, as well as im-
portant other related results. Lang [53] also contains a readable account.
Induced representations are key to Brauer’s theorem: the general complex
irreducible representation of GG is constructed by the induction process from
one dimensional representations of cyclic subgroups of G.
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Exercises
1. Show that (8.3) is an isomorphism of vector spaces. Work out the
representation on E™ which corresponds to i%p via this isomorphism.
2. For the dihedral group

Dy={c,r:ct=r*=e, rert=ct)

and the cyclic subgroup C' = {e, ¢, ¢?, 3}, work out the induced repre-
sentations for

(i) the one dimensional representation p of C' specified by p(c) = i,
and

(ii) the two dimensional representation 7 of C' specified by
0 —1
T(c) = [1 0 } :
3. Let G be a finite group, H a subgroup, R a commutative ring with 1.
Choose ¢, ..., gm € G such that g1 H, ..., g, H are all the distinct left

cosets of H in G. Show that gi,..., g, € R[G] form a basis of R[G],
viewed as a right R[H]-module.



Chapter 9

Commutant Duality

Consider an abelian group F, written additively, and a set S of homomor-
phisms, addition-preserving mappings, ¥ — E. The commutant Scom of S is
the set of all maps f : F — E which preserve addition and for which

fos=so fforall ses.

We are interested in the case where F is a module over a ring A, and
S is the set of all maps £ — E : x — ax with a running over A. In this
case, Seom 1S the ring C' = End4(E), and E is a module over both the ring A
and the ring C. Our task in this chapter is to study how these two module
structures on F interweave with each other.

We return to territory we have traveled before in Chapter 5, but on this
second pass we have a special focus on the commutant. We pursue three
distinct pathways, beginning with a quick, but abstract, approach. The
second aproach is a more concrete one, in terms of matrices and bases. The
third approach focuses more on the relationship between simple left ideals in
a ring A and simple C-submodules of an A-module.

9.1 The Commutant

Consider a module E over a ring A. An endomorphism
f € Ends(FE)
is, by definition, a map f : F — E which is additive
flu+v) = f(u) + f(v) for all u,v € F, (9.1)

245
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and commutes with the action of A:
flau) = af(u) foralla € A, and u € E. (9.2)

The case of most interest to us is A = F[G], where G is a finite group and
F a field, and FE is a finite dimensional vector space over F, with a given
representation of G on E. In this case, the conditions (9.1) and (9.2) are
equivalent to f € Endp(E) commuting with all the elements of G represented
on E. Thus, Endgig(E) is the commutant for the representation of G on E.
Sometimes the notation
Endg(FE)

is used instead of Endgg)(£), but there is potential for confusion; the mini-
malist interpretation of Endg(£) is Endzjg(£), and at the other end it could
mean Endgig(E) where F is some relevant field.

Here is a consequence of Schur’s Lemma 3.3.1 rephrased in commutant
language:

Theorem 9.1.1 Let G be a finite group represented on a finite dimensional
vector space V' over an algebraically closed field F. Then the commutant of
this representation consists of multiples of the identily operator on V' if and
only if the representation is irreducible.

(Instant exercise: check the ‘only if” part.)
Suppose now that A is a semisimple ring, E is an A-module, decomposing

as
E=E"®..0E" (9.3)

where each E; is a simple submodule, each n; € {1,2,3, ...}, and E; % E; as
A-modules when ¢ # j. By Schur’s lemma, the only A-linear map E; — Ej,
for i # 7, is 0. Consequently, any element in the commutant End4(F) can
be displayed as a block-diagonal matrix

¢, 00 ... 0

0 Co 0 ... 0 0.4)
R '
0 0 0 ...0C

where each C; is in End4(E]"). Moreover, any element of

End(E;")



Representing Finite Groups 12/05/2010 247

is itself an n; X n; matrix, with entries from
D; = Enda(E)), (9.5)

which, by Schur’s lemma, is a division ring. Conversely, any such matrix
clearly specifies an element of the endomorphism ring End 4 (E]").
To summarize:

Theorem 9.1.2 If E is a semisimple module over a ring A, and E is the
direct sum of finitely many simple modules:

E~EM"®...0E™

then the ring End(FE) is isomorphic to a product of matrixz rings:
Endu(E) ~ [ [ Matr,, (D;) (9.6)
i=1

where Matr,,, (D;) is the ring of m; X m; matrices over the division ring

9.2 The Double Commutant

Recall that a ring B is simple if it is the sum of simple left ideals, all isomor-
phic to each other as B-modules. In this case any two simple left ideals in B
are isomorphic, and B is the internal direct sum of a finite number of simple
left ideals.

Consider a left ideal L in a simple ring B, viewed as a B-module. The
commutant of the action of B on L is the ring

C = Endp(L).

The double commutant is
D = End¢e(L).

Every element b € B gives a multiplication map
[(b): L — L:a ba,

which, of course, commutes with every f € Endg(L). Thus, each [(b) is in
Ende(L). We can now recall Theorem 5.7.1 in this language:
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Theorem 9.2.1 Let B be a simple ring, L a non-zero left ideal in B, and
C = Endg(L), D = End¢(L), (9.7)

the commutant and double commutant of the action of B on L. Then the
double commutant D is essentially the original ring B, in the sense that the
natural map | B — D, specified by

[(b): L — L:aw ba, foralla€ L and b € B, (9.8)
1 an isomorphism.

Stepping up from simplicity, the Jacobson density theorem explains how
big I(A) is inside D when L is replaced by a semisimple A-module:

Theorem 9.2.2 Let E be a semisimple module over a ring A, and let C
be the commutant Ends(F). Then for any f € D = Ende¢(F), and any
X1,...,x, € E, there exists an a € A such that

f(x;) = ax;, fori=1,..,n. (9.9)

In particular, if A is an algebra over a field F, and E is finite dimensional
as a vector space over F, then D = [(A); in other words, every element of D
is given by multiplication by an element of A.

Proof. View E" first as a left A-module is the usual way:
a<y17 L3} yn> = (ayl, sy ayn)

for all a € A, and (y1,...,yn) € E™. Any element of

C, < End(E™)

is given by an n x n matrix with entries in C. To see this in more detail, let
t; be the inclusion in the j-th factor

i E—E":y~—(0,..,0, v ,0,...,0)

and m; the projection on the j-th factor:

T E" = E: (3/1, ayn) — Yj.
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Then

F( Lj(yj)> = > mFi(y;)

j=1 jk=1
7T1FL1 c. 7T1FLn Y1 (910)
T Fe oo Ty | yn

shows how to associate to F' € C,, = End4(E™) an n X n matrix with entries
miF1; € C'=Endy(E).

Moreover, E™ is also a module over the ring C), in the natural way. Let
f € D =Endc(F). The map

fo i E" = E" (Y1, s Yn) — (f(yl), ,f(yn))

is readily checked to be C),-linear; thus,
fn € Endg, (E™).

Now E", being semisimple, can be split as

E":Ax@F,

where x = (21, ...,2,) is any given element of E", and F' is an A-submodule
of E". Let
p: E"— Az C E"

be the corresponding projection. This is, of course, A-linear and is therefore
an element of C,,. Consequently, f,p = pf,, and so

Fa(p(@)) = p(ful@)) € Ax.
Since p(x) = x, we have reached our destination (9.9).

9.3 Commutant Decomposition of a Module

Suppose F is a left module over a semisimple ring A, L; is a simple left ideal in
A, and D; is the division ring End 4(L;). The elements of D, are A-linear maps
L; — L; and so L; is, naturally, a left D;-module. On the other hand, D; acts
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naturally on the right on Homy(L;, E') by taking (f,d) € Homyu(L;, E') x D;
to the element fd = fod € Homyu(L;, A). Thus, Homu(L;, E') is a right
D;-module. Hence there is the balanced tensor product

Homu(L;, E) ®p, L;

which, for starters, is just a Z-module. However, the left A-module structure
on L;, which commutes with the D;-module structure naturally induces a
left A-module structure on Homy(L;, E) ®p, L; with multiplications on the
second factor. We use this in the following result.

Theorem 9.3.1 If E is a left module over a semisimple ring A, and L,...,
L, a maximal set of non-isomorphic simple left-ideals in A, then the mapping

P Homa(Li, E) ®p, Li = E: (fi @ @1, .00y fr @) = Y fila). (9.11)
=1

i=1

is an isomorphism of A-modules. Here D; is the division ring Enda(L;), and
the left side in (9.11) has an A-module structure from that on the second
factors L.

Proof. The module E is a direct sum of simple submodules, each isomorphic

to some L;:
E=P P E; (9.12)

where E;; ~ L;, as A-modules, for each i and j € R;). In the following we
will, as we may, simply assume that R; # (), since Homy(L;, E) is 0 for all
other i. Because L; is simple, Schur’s Lemma implies that Homy4(L;, E;;) is
a one dimensional (right) vector space over the division ring D;, and a basis
is given by any fixed non-zero element ¢;;. For any f; € Homa(L;, E) let

fij  Li = Ejj
be the composition of f; with the projection of E onto E;;. Then
fij = Giidij,
for some d;; € D;. Any element of Homy(L;, F) ®p, L; is uniquely of the

form
Z Pij ® Tij

JER;
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with z;; € L; (see Theorem 12.9.1). Consider now the A-linear map

J : @ Homa(Li, E) ®p, Li —+ E

i=1

specified by

J (Z S oy x9> = Z > i (di(x)),

i=1 jER; i=1 jER;

where (;; : E;; — E is the canonical injection into the direct sum (9.12).
If this value is O then each ¢;;(z;;) € E;; is 0 and then, since ¢;; is an
isomorphism, z;; is 0. Thus, J is injective. The decomposition of £ into the
simple submodules F;; shows that J is also surjective.

Even though Homy(L;, E') is not, naturally, an A-module, it is a left
C-module, where

C = End,(E)

is the commutant of the action of A on E: if ¢ € C and f € Homu(L;, E)

then
def

ef Yeof
is also in Homy(L;, ). This makes Hom(L;, E) a left C-module.

Theorem 9.3.2 Let E be a left module over a semisimple ring A, and let
C' be the ring End4(E), the commutant of A acting on E. Let L be a simple
left ideal in A, and assume that Homy (L, E) # 0, or, equivalently, that E
contains a submodule isomorphic to L. Then the C-module Hom(L, E) is
simple.

Proof. Let f,h € Homa(L, E), with h # 0. We will show that f = ch, for
some ¢ € C. Consequently, any non-zero C-submodule of Hom (L, F) is all
of Homy (L, E).

If u is any non-zero element in L then L = Au, and so it will suffice to
show that f(u) = ch(u).

We decompose E as the internal direct sum

E=FoPE,

1€S
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where each F; is a submodule isomorphic with L, and F' is a submodule
containing no submodule isomorphic to L. For each i € S the projection
E — F;, composed with the inclusion F; C E, then gives an element

piGC.

Since h # 0, and F' contains no submodule isomorphic to L, there is some
j € S such that pjh(u) # 0. Then pjh : L — E; is an isomorphism.
Moreover, for any ¢ € S, the map

E; — E; :p;h(y) — pif(y) for all y € L,
is well-defined, and extends to an A-linear map
¢ F—F

which is 0 on F' and on Fj, for k # j. Note that there are only finitely many
¢ for which pi( f (u)) is not 0, and so there are only finitely many ¢ for which
¢; isnot 0. Let " ={i € S :¢; # 0}. Then, piecing together f from its
components p; f = ¢;p;h, we have

Z Cipjh = f

ies’

C = Zcipj

€S’

is an element of End4(F) for which f = ch.
We have seen that any left ideal L in A is of the form Ay with y? = y;

the element y € L is called a generator of L.

Here is another interesting observation about Hom (L, E), for a simple
left ideal L in A:

Thus

Theorem 9.3.3 If L = Ay is a left ideal in a semisimple ring A, with y an
idempotent, and E is a left A-module, then the map

J:Homu(L,E) = yE : f — f()

is an isomorphism of C'-modules, where C' is the commutant C = End4(E).
In particular, yE is either 0 or a simple C'-module if y is an indecomposable
idempotent in A.



Representing Finite Groups 12/05/2010 253

Proof. To start with, note that yF is indeed a left C-module.
For any f € Homa(L, E) we have

fly) = flyy) =yfly) € yE.

The map
J :Homu(L,E) = yE : f— f(y) (9.13)

is manifestly C-linear.
The kernel of J is clearly 0.
To prove that J is surjective, consider any v € yFE; define a map

fo: L — FE:zw— xv.

This is clearly A-linear, and J(f,) = yv = v, because v € yF and y* = y.
Thus, J is surjective.

Finally, if y is an indecomposable idempotent then L = Ay is a simple
left ideal in A and then, by Theorem 9.3.2, Hom(E), which as we have just
proved is C-isomorphic to yFE, is either 0 or a simple C-module.

The role of the idempotent y in the preceding result is clarified in the
following result.

Proposition 9.3.1 If u,v are idempotents in a ring A which generate the
same left ideal, and if E is an A-module, then uE and vE are isomorphic

C-submodules of E, where C' = End4(E).

Proof. Since Au = Av, we have then
u=2zv, ©v=uyu, forsomex,yec A
Then the maps
fiuE = vE w— yw, and h:vE —ul:ww— xw

act by
f(ue) = ve and h(ve) = ue

for all e € E. This shows that f and h are inverses to each other. They are
also, clearly, both C-linear. | QED

Let E be a left A-module, where A is a semisimple ring, and L, ..., L,
are a maximal collection of non-isomorphic simple left ideals in A. Let y; be
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a generating idempotent for L;; thus, L; = Ay;. We are going to prove that
there is an isomorphism

T

@(%E ®p, Li) ~ E

=1

where both sides have commuting A-module and C-module structures, with
C' being the commutant End4(FE), and D; the division ring End4(L;). Before
looking at a formal statement and proof, let us understand the structures
involved here. Easiest is the joint module sructure on E: this is simply a
consequence of the fact that the actions of A and C' on F commute with each
other:

(a,c)x = a(c(x)) = c(a(z)) forallz € E,a € A, c € C =Enda(F).
Next, consider the action of the division ring D; on L; = Ay;:
d(ay;) = d(ay:y;) = ayid(y:)
which is thus v — vd(y;) for all v € L;. The mapping
D; — A:dw— d(y;)
is an anti-homomorphism:
dvds(ys) = di (do(yi)) = da(yi)dr (yi)-

The set y; E is closed under addition and is thus, for starters, just a Z-module.
But clearly it is also a C-module, since

c(yiE) = yic(E) C y, E.

To make matters even more twisted, the mapping D; — A°PP : d — d(y;)
makes y; E a right module over the division ring D; with multiplication given
by:
I : yiE x D; = y:E : (v, d) = vd & d(y;)v. (9.14)
Thus the mapping
yiE X L — E: (v, z;) = 20 (9.15)

induces first an Z-linear map

yill @z L; - E
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and this quotients to a Z-linear map

because
I (vd,z) — I« (v,dx) = zd(y;)v — xd(y;)v = 0.

One more thing: y;F ®p, L; is both an A-module and a C-module, with
commuting module structures, multiplication being given by

a-v@r—uv®ar and  crv@r e cv) @ (9.17)

which, as you can check, are well-defined on y; F ®p, L; and surely have all
the usual necessary properties. This takes us a last step up the spiral: the
mapping [ is both A- and C-linear:

Ia-v®@zr)=1(v®ar)=arv=al(v® )
(9.18)

I(c-v®z)=1I(c(v)®z)=1rxc(v) =clzv) =cl(v® x).
At last we are at the end, even if a bit out of breath, of the spiral of tensor
product identifications:

Theorem 9.3.4 Suppose E is a left module over a semismple ring A, let C
be the commutant Enda(F), and let Ly = Ay, ..., L, = Ay, be a maximal
collection of non-isomorphic simple left ideals in A, with each y; being an
tdempotent. Then the mapping

éyiE ®p, Li = E: ivi ® x; ixivi (9.19)
i=1 i=1 i=1

is an isomorphism both for A-modules and for C'-modules. Fach y;E is a
simple C'-module, and, of course, each L; is a simple A-module.

Proof. On identifying y; £ with Hom4(L;, E) by Theorem 9.3.3, the result
becomes equivalent to Theorem 9.3.1. For a bit more detail do Exercise 9. 7.
The awkwardness of phrasing the joint module structures relative to the
rings A and C' could be eased by bringing in a tensor product ring A ® C,
but let us leave that as a trail unexplored.
Here is another version:
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Theorem 9.3.5 Let A be a finite dimensional semisimple algebra over a field
F. Suppose E is a left module over A, and let C' be the commutant Enda(E).
Then E, viewed as a C'-module, is the direct sum of simple submodules of the
form yE, with y running over a set of indecomposable idempotents in A.

We will explore this in matrix formulation in the next section. But you
can also pursue it in Exercise 9.8. The relationship between C-submodules
and right ideals in A is explored in greater detail in Exercise 9.6 (which
loosely follows Weyl [75]).

9.4 The Matrix Version

In this section we dispell the ethereal elegance of Theorem 9.3.4 by working
through the decomposition in terms of matrices. We will proceed entirely
independent of the previous section.

We work with an algebraically closed field F of characteristic 0, a finite
dimensional vector space V over F, and a subalgebra A of Endy(V'). Thus,
V is an A-module. Let C' be the commutant:

C = EndA(V)

Our objective is to establish Schur’s decomposition of V' into simple C-
modules e;;V:

Theorem 9.4.1 Let A be a subalgebra of Endp(V), where V # 0 is a finite-
dimensional vector space over an algebraically closed field F of charactertistic
0. Let

C == EndA(V)
be the commutant of A. Then there exist primitive idempotents {e;; : 1 <

i <r, 1<j<mn}in A which generate a decomposition of A into simple left

1deals:
A= @ Aeij, (920)

Sexhl>) >

and also decompose V', viewed as a C'-module, into a direct sum

V= P eV (9.21)

Sexhl>) >

where each non-zero e;;V is a simple C-submodule of V.
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Most of the remainder of this section is devoted to proving this result. We
follow Dieudonné and Carrell [22] in examining the detailed matrix structure
of A, to generate the decomposition of V.

Because A is semisimple, and finite dimensional as a vector space over F,
we can decompose it as a direct sum of simple left ideals Ae;:

N
A =P Ae;
j=1
where the e; are primitive idempotents with
er+---+ev=1 and ee; =0 foralli##j.
Then V' decomposes as a direct sum
V=eV&... ©eyV. (9.22)

(Instant exercise: Why is it a direct sum?) The commutant C' maps each
subspace e;V into itself. Thus, the e;V" give a decomposition of V' as a direct
sum of C-submodules. What is, however, not clear is that each non-zero e;V/
is a simple C-module; the hard part of Theorem 9.4.1 provides the simplicity
of the submodules in the decomposition (9.21).

We decompose V into a direct sum

V=PV, with V'=Vi®.. 0V, (9.23)
1=1

where V1, ..., Vi,, are isomorphic simple A-submodules of V| and V, is not
isomorphic to Vjg when i # j. By Schur’s lemma, elements of C' map each
V% into itself. To simplify the notation greatly, we can then just work within
a particular V. Thus let us take for now

V= évj,
j=1

where each Vj is a simple A-module and the V; are isomorphic to each other
as A-modules. Let
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Fix a basis

Uity oy Uim
of the F-vector space V; and, using fixed A-linear isomorphisms V; — V;,
construct a basis

Wil --ey Uim
in each V;. Then the matrices of elements in A are block diagonal, with n
blocks, each block being an arbitrary m x m matrix T" with entries in the

field IF:

T 0
o (9.24)
0 T

Thus, the algebra A is isomorphic to the matrix algebra Matr,, ., (F) by

T 0
T [0 (9.25)
0 T

(Why ‘arbitrary’ you might wonder; see Exercise 9.10.] The typical matrix
in C'= End4 (V) then has the form

sid sl - - syl
sl saol (9.26)
Spad - - Sl
where [ is the m x m identity matrix. Reordering the basis in V' as
UL, ULy ooy U]y, U1y Uy wvvy Up2y +eey Ulpny +-vs Unims
displays the matrix (9.26) as the block diagonal matrix
[sy] 0 - 0
Dokl (9.27)
0 - [sy]

where s;; are arbitrary elements of the field F. Thus C is isomorphic to
the algebra of n x n matrices [s;;] over F. Now the algebra Matr,,y,, (IF) is
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decomposed into a sum of n simple ideals, each consisting of the matrices
which have all entries zero except possibly those in one particular column.
Thus,

each simple left ideal in C' is n-dimensional over IF.

Let M]’:h be the matrix for the linear map V' — V which takes u;, to w;;
and is 0 on all the other basis vectors. Then, from (9.24), the matrices

M, = My, + -+ M}, (9.28)
form a basis of A, as a vector space over F. Let
ej = Mj;,
for 1 < 7 < m. This corresponds, in Matr,, s, (IF), to the matrix with 1 at
the jj entry and 0 elsewhere. Then A is the direct sum of the simple left
ideals Ae;.

The subspace e;V has the vectors
ulj, Ugj, ceey ’un]‘

as a basis, and so e;V is n-dimensional. Moreover, e;V" is mapped into itself
by C"-
C(@jV) = ejCV - ejV.

Consequently, e;V is a C-module. Since it has the same dimension as any
simple C-module, it follows that e;VV cannot have a non-zero proper C-
submodule; hence e;V is a simple C-module.

We have completed the proof of Theorem 9.4.1.

Exercises

1. Let A be a ring, and A°PP the ring formed by the set A with addition
same as the ring A but multiplication in the opposite order: aoqp,b = ba
for all a,b € A. For any a € Alet r, : A - A : x — wxa. Show that
a — 1, gives an isomorphism of A°PP with End4(A).

2. Let A be a semisimple ring. Show that :(i) A is also ‘right semisimple’
in the sense that A is the sum of simple right ideals; (ii) every right
ideal in A has a complementary right ideal; (iii) every right ideal in A
is of the form uA with v an idempotent.
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3. Let G be a finite group and F a field. Denote by F[G], the additive

abelian group F[G] viewed, in the standard way, as a left F[G]-module.
Denote by F[G]r the additive abelian group F[G] viewed as a left F[G]-
module through the multiplication given by

r-a = azx,

for z,a € F[G], with & = 37 __;x(g9)g~" € F[G]. Show that the com-
mutant Endp¢F[G];, is isomorphic to F[G].

. Suppose E is a left module over a semisimple ring A. Then E =

Homy(E, A) is a right A-module in the natural way via the right-
multiplication in A: if f € Fand a € Athen f.a: F— A:y— f(y)a.
Show that the map

E — Homy (Homyu(E, A), A) : x — ev,

where ev,(f) = f(x) for all f € F, is injective.

. Let E be aleft A-module, where A = F[G], with G being a finite group

and F a field. Assume that E is finite dimensional as a vector space
over F. Let £ = Homy(FE, A), E' the vector space dual Homp(F,F),
and Tr. : F[G] — F :  — z, the functional which evaluates a general
element * = > _, 7,9 € A at the identity e € G. Show that the

mapping

geG

I:E—>E’:gbr—>¢e§fTreoqb

is an isomorphism of vector spaces over .

. Let E be a left A-module, where A is a semisimple ring, C' = End(E),

and £ = Homy(FE, A). We view E as a left C-module in the natural
way, and view Easa right A-module For any nonempty subset S of £
define the subset S4 of A to be all finite sums of elements ¢(w) with ¢
running over £ and w over S.

(i) Show that Sy is a right ideal in A.

(ii) Show that (aE)y = aFEy for all a € A.

(iii) If W is a C-submodule of E then W = W4E.
)

(iv) Suppose U and W are C-submodules of £ with Uy C Wy. Show
that U C W. In particular, Uy = Wy if and only if U = W.
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10.

11.

v) A C-submodule W of E is simple if W is a simple right ideal.
#

(vi) If W is a simple C-submodule of E, and if £, = A, then W is a
simple right ideal in A.

(vii) If w is an indecomposable idempotent in A and the right ideal uA
lies inside E4 then wE is a simple C-module.

With E an A-module, where A is a semisimple ring, and L = Ay a
simple left ideal in A with idempotent generator y, use the the map
J :Homu(L,E) — yE : f — f(y) to transfer the action of the division
ring D = End4 (L) from L to yFE.

Prove Theorem 9.3.5.

Prove Burnside’s theorem: If G is a group of endomorphisms of a finite
dimensional vector space E over an algebraically closed field F, and E
is simple as a G-module, then FG, the linear span of G inside Endp(E),
is equal to the whole of Endp(F).

Prove Wedderburn’s theorem: Let E be a simple module over a ring
A, and suppose that it is faithful in the sense that if a is non-zero in
A then the map l(a) : E — E : x — ax is also non-zero. If E is
finite dimensional over the division ring C = Ends(F) thenl : A —
Ende(E) is an isomorphism. Specialize this to the case where A is a
finite dimensional algebra over an algebraically closed field F.

Let F be a semisimple module over a ring A.

(a) Show that if the commutant End4(F) is a commutative ring then
E' is the direct sum of simple sub-A-modules no two of which are
isomorphic.

(b) Suppose E is the direct sum of simple submodules E,, no two
of which are isomorphic to each other and assume also that each
commutant End4(E,) is a field (that is, it is commutative); show
that the ring End4(F) is commutative.

(Exercise 5.5 shows that when FE is a direct sum of a set of non-
isomorphic simple submodules then every simple submodule of F is one
of these submodules.) Here is a case which is useful in the Okounkov-
Vershik theory for representations of S,,: view S,,_; as a subgroup of
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Sy, in the natural way; then it turns out that C[S,,_;] has commutative
centralizer in C[S,]. This then implies that in the decomposition of
a simple C[S,]-module as a direct sum of simple C[S,,—1] modules, no
two of the latter are isomorphic to each other.



Chapter 10

Character Duality

In the chapter we carry out a specific implementation of the dual decomposi-
tion theory explored in the preceding chapter. The symmetric group S, has
a natural action on V®" for any vector space V, as in (10.1) below. Our
first goal in this chapter is to identify, under some simple conditions, the
commutant Endgig)V®" as the linear span of the operators 7" on V®" with
T running over the group GLy(V') of all invertible linear endomorphisms of
V. The commutant duality theory of the previous chapter then produces
an interlinking of the representations, and hence also of the characters, of
S,, and those of GLp(V'). Following this, we will go through a fast proof of
the duality formula connecting characters of S,, and that of GLp(V'), using
the commutant duality theory. In the last section we will prove this duality
formula again, but by more explicit computation.

10.1 The Commutant for S, on V&"

For any vector space V, the permutation group S,, has a natural left action
on V&

o - (1)1®...®’Un) = VUo-1(1) ® ... @ Us—1(n)- (10.1)
The set of all invertible endomorphisms in Endg(V') forms the general linear

group
GLg(V)

of the vector space V. Here is a fundamental result from Schur [67]:

263
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Theorem 10.1.1 Suppose V is a finite dimensional vector space over a field
F, and n € {1,2,...} is such that n! is not divisible by the characteristic of
F and, moreover, the number of elements in F exceeds (dimg V)%, Then the
commutant of the action of S,, on V™ is the linear span of all endomorphisms
T . Ve — Ve with T running over GLy(V).

Proof. Fix a basis |e1), ..., |eg) of V, and let (eq], .., {(e4] be the dual basis in
1%
(eiles) = dij.
Any
X € End]F(V®")

is then described in coordinates by the quantities
Xlljl ----- injn <€'Ll ® R ® 6'Ln|‘)(|€.71 ® te ® 6]71) (102)

Relabel the m = N? pairs (i,7) with numbers from 1,...,m. Denote
{1, ..., k} by [k] for all positive integers k; thus, an element a in [m]l" expands
out to (ay,...,a,) with each a; € {1,...,m}, and encodes an n-tuple of pairs
(i,7) € {1,...,N}%

The condition that X commutes with the action of S, translates in co-
ordinate language to the condition that the quantities X, j,. ... in (10.2)
remain invariant when 7, j € [N]I" are replaced by oo and joo, respectively,
for any o € S,,.

We will show that if F' € Endp(V®") satisfies

> Fuas(T®)aya, =0 forall T € GLg(V) (10.3)

acm]lnl

then

Z ay...an a1 an 0 (104)

a€lm [n]
for all X in the commutant of Sn. This means that any element in the dual of
Endg(V®") which vanishes on the elements 7", with T' € G Ly(V'), vanishes
on the entire subspace which is the commutant of S,,. This clearly implies
that the commutant is spanned by the elements 7%,
Consider the polynomial in the m = N? indeterminates T, given by

p(T) = Z Fal---anTal"’Tan det [E]]
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The hypothesis (10.3) says that this polynomial is equal to 0 for all choices
of values of T, in the field F. If the field F isn’t very small, a polynomial p(7")
all of whose evaluations are 0 is identically 0 as a polynomial. Let us work
through an argument for this. Evaluating the T} at arbitrary fixed values
in [F for all except one k = k., the polynomial p(7") turns into a polynomial
q(Ty., ), of degree < m, in the one variable T}, which vanishes on all the |F|
elements of F; the hypothesis [F| > N? = m then implies that ¢(7T},) is the
zero polynomial. This means the the polynomials in the variables T,, for
a # ki, given by the coefficients of powers of T}, in p(T'), evaluate to 0 at all
values in F. Reducing the number of variables in this way, we reach all the
way to the conclusion that the polynomial p(7T") is 0. Since the polynomial
det[T};] is certainly not 0, it follows that

> FapasTay T, =0 (10.5)

as a polynomial. Keep in mind that

Fa1...an

U (1)-Ag(n)

for all a,...,a, € {1,...,m} and ¢ € S,. Then from (10.5) we see that
n!Fy, . 4, is 0, for all subscripts a;. Since n!is not 0 on F, it follows that each

F, is 0, and hence we have (10.4).

10.2 Schur-Weyl Duality

We can now apply the commutant duality theory of the previous chapter to
obtain Schur’s decomposition of the representation of S, on V®". Assume
that F is a field of characteristic 0 (in particular, F is infinite) which is
algebraically closed; then

Ve o~ EB L; @ y: V", (10.6)

i=1

where Ly, ..., L, is a maximal string of simple left ideals in F[S,] which are
not isomorphic as left F[S,]-modules, and y; is a generating idempotent in
L; for each i € {1,...,r}. The subspace y;V®", when non-zero, is a simple
Cp-module, where C,, is the commutant Endgg,j(V®"). In view of Theorem
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10.1.1, the tensor product representation of GLg(V) on V& restricts to an
irreducible representation on y;V®", when this is nonzero.

The duality between .S,, acting on the n-dimensional space V' and the
general linear group GLp(V) is often called Schur-Weyl duality. For far
more on commutants and Schur-Weyl duality see the book of Goodman and
Wallach [39].

10.3 Character Duality, the High Road

As before let F be an algebraically closed field of characteristic 0. If A is
a finite dimensional semisimple algebra over F, and F an A-module with
dimp F < oo, and C'is the commutant End4(£) then E decomposes through

the map
I: @yiEQ@FLi — FE Zvi@)xi — Zxﬂ)i
i=1 i=1 i=1

which is both A-linear and C-linear, where ¥, ..., y, are idempotents in A
such that any simple A-module is isomorphic to L; = Ay; for exactly one 1.
For any (a,c) € Ax C, we have the product ac first as an element of Endg(FE)
and then, by 1!, acting on @@;_, v; E ®r Ay;. Comparing traces, we have

Tr(ac) = > Tr(a|Li)Tr(cly; E), (10.7)

=1

where a|L; is the element in Endg(L;) given by = — az.
We specialize now to
A =TF[S,]

acting on V®", where V is a finite dimensional vector space over F. Then,
as we know, C' is spanned by elements of the form B®", with B running over
GLr(V). Non-isomorphic simple left ideals in A correspond to inequivalent
irreducible representations of S,,. Let the set R label these representations;
thus there is a maximal set of non-isomorphic simple left ideals L., with «
running over R. Then we have, for any o € S, and any B € GLg(V), the
character duality formula

Tr(B®" - 0) =} ser Xal0)X"(B) (10.8)
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where x, is the characteristic of the representation of S,, on L, = F[S,|ya,
and x® that of GLrp(V) on y,V®™.
Recall the character orthogonality relation

1
n! Z Xa(o)xs(0™") =6,p foralla,B €R.

oESy

Using this with (10.8), we have

(B) = = 3 xalo ) (B)
" 0ES,
where
°(B) = Te(B®" - o). (10.9)

Note that s7 depends only on the conjugacy class of o, rather than on the
specific choice of 0. Denoting by K a typical conjugacy class, we then have

X*(B) = Y kee Blxa(K)s¥(B) (10.10)

where C is the set of all conjugacy classes in S, xo(K) is the value of x, on
any element in K, and s¥ is s7 for any o € K.

In the following section we will prove the character duality formulas (10.8)
and (10.10) again, by a more explicit method.

10.4 Character Duality by Calculations

We will now work through a proof of the Schur-Weyl duality formulas by more
explicit computations. This section is entirely independent of the preceding,
and is close to the method of Weyl [75].

All through this section F is an algebraically closed field of characteristic
0.

Let V =FY, on which the group GL(N,TF) acts in the natural way. Let

€1,...,EN

be the standard basis of V = FV.
We know that V®" decomposes as a direct sum of subspaces of the form

Yo V",
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with y, running over a set of indecomposable idempotents in F[S,], such
that the left ideals F[S,]y, form a decomposition of F[S,] into simple left
submodules.

Let

(67

X

be the character of the irreducible representation p, of GL(N,F) on the
subspace 1,V %", and

Xa

be the character of the representation of S,, on F[S,]ya.

Our goal is to establish the relation between these two characters.

If a matrix ¢ € GL(N,F) has all eigenvalues distinct, then the corre-
sponding eigenvectors are linearly independent and hence form a basis of V.
Changing basis, ¢ is conjugate to a diagonal matrix

(A, 0 0 -~ 0 0
0 X O 0 0
DX) =D(A1, . dy)= |0 0 A 0 0
0 0 0 - 0 My

Then x*(g) equals x* (D(X)) We will evaluate the latter.
The tensor product
eil ® Ce ® ein

-

is an eigenvector of D(\) with eigenvalue \;,...\;,, and these form a basis of
FN as (i1, ...,i,) runs over [N]. Hence every eigenvalue of D(X) is of the
form \;,...\;,. Moreover, the eigensubspace for \;,...\;, is the same for all
XeFN,

Fix a partition of n given by

f: (fla"')fN) € ZIZVO

with

[fl=Ff+ -+ fn=n,
and let

N
—»f—.’_ f
N =11»

7=1
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and
V(f)={veV®™ : DX)v=Xv forallXeF"}

Thus every eigenvalue of D(X) is of the form X/. From the observation in
the previous paragraph, it follows that F” is the direct sum of the subspaces
V( f ), with f running over all partitions of n.

Since the action of GL(N,F) on V®" commutes with that of S, the

-

action of D()\) on the vector
Yol ® ... ®e;)

is also multiplication by A;,...\;,. The subspaces y,V( f), for fixed f and
Yo Tunning over the string of indecomposable idempotents adding up to 1,

—

direct sum to V(f). Consequently,

(D)) = Y X dim (yaV (). (10.11)

fezd,
The space V(f) has a basis given by the set

{0 @ . 0N oes,)

Note that .
é®f:€(1®fl®®e%flv
is indeed in V", because |f] = n.
The dimension of y,V (f) is
. - 1
dim(yV(f) = 55 D Xal0) (10.12)
il SN }
a€Sn(f)
where .
Sn(f)

is the subgroup of 5, consisting of elements which preserve the sets

{17 "'7f1}7 {fl + 1a ) f2}a ) {fN—l + 17 s fN}

and we have used the fact that x, equals the character of the representation
of S, on F[S,|ya. (If you have a short proof of (10.12) write it on the margins
here, or else work through Exercise 10.2.)
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Thus, .
m Z Xa(0) (10.13)

fGZéVO o€Sn(f)

The character x, is constant on conjugacy classes. So the second sum on
the right here should be reduced to a sum over conjugacy classes. Note that,
with obvious notation,

—

Sn(f) = Sp x ... x Sy

The conjugacy class of a permutation is completely determined by its
cycle structure: 7; 1-cycles, io 2-cycles,... . For a given sequence

i = (i1,102, ..., 1) € ZZ,
the number of such permutations in S, is

m!
(4111%0) (4912%2) (9313%)... (4, I

(10.14)

because, in distributing 1,...,m among such cycles, the 7, k-cycles can be
arranged in 7! ways and each such k-cycle can be expressed in k& ways.
Alternatively, the denominator in (10.14) is the size of the isotropy group of
any element of the conjugacy class.

The cycle structure of an element of

(0'1,...,0']\/) S Sf1 X oo X SfN

is described by a sequence

[11, oo IN] = (0115012, oo Ty oms N1y ooy TN )
NG / NG /

-~ ~~

i1 IN

with 7, being the number of k-cycles in the permutation o;. Let us denote
by
Xa([i1, -y in])

the value of x, on the corresponding conjugacy class in S,,. Then

—

c€Sn(f) [i1,in]€lf] J=1

. Ly |
Z Xa(o-): Z XOK([h’7ZN])H(1]1'1%1)({22'2@2)
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—

Here the sum is over the set [f] of all [iy, ..., iy] for which
ijl + 2ij2 + -+ Tl?:jn = fj for all] c {1, ,N}

(Of course, ij, is 0 when n > f;.)
Returning to the expression for x* in (10.13) we have:

N
o . 1
=) X Xol[is - ix) [ 751 ——
fezz;!o [a,...,szv:]e[ﬂ ]1_[1 (1511091) (i5212%52) .. (i It
2 - - 1
Z )\f Z Xa<[21,...,ZN]> H m
fezdy  Frinlelf] 1<j<N,1<k<n IV

Now y, is constant on conjugacy classes in S,. The conjugacy class in
S x -+ x Sg, specified by the cycle structure

— —

i1, .y in]
corresponds to the conjugacy class in S,, specified by the cycle structure
i = (i1, .y in)
with
> g =iy forall k€ {1,..,n}. (10.15)

Jj=1

Recall again that
> ki = f;. (10.16)
k=1
Note that then .
V=TI

Combining these observations we have

)\khk )\kZNk

Z XO‘ 121212 nin Z

ZGZN ijk

10.17
- Gulion! ( )
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where the inner sum on the right is over all [Zl, s ZN] corresponding to the
cycle structure i = (iy, ..., 4,) in S, hence satisfying (10.15). We observe now
that this sum simplifies:

S

tjk k=1

)\lﬂlk )\k’lNk

SR ,
Z_ TN+ A% (10.18)
" g=1

T1gliog!.

This produces

X (D) = Yz, XoO) Grrmymmsy gy et 6™ | (10.19)

where s1, ..., s, are the symmetric polynomials given by
Sm( Xy, oy, X)) = X"+ -+ X0 (10.20)
We can also conveniently define
Sm(B) = Tr(B™) (10.21)

Then

XQ(B) = Zfezgo Xa(i) (z‘1!1i1)(i2!2112)_..(in!nin) HZ:l Sk(B)ik (10-22)

for all B € GL(N,F) with distinct eigenvalues, and hence for all B €
GL(N,F). (All right, so there is a leap of logic which you should explore.)
The beautiful formula (10.22) for the character x* of the GL(V') in terms of
characters of S,, was obtained by Schur [67].

The sum on the right in (10.22) is over all conjugacy classes in S, each
labeled by its cycle structure

Z: (il, ,Zn)

Note that the number of elements in this conjugacy class is exactly n! divided
by the denominator which appears on the right inside the sum. Thus, we
can also write the Schur-Weyl duality formula as

X (B) = 3 ke Bixa(K)s% (B) (10.23)
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where C is the set of all conjugacy classes in S,,, and
5 ] st (10.24)

if K has the cycle structure 7 = (iy, ..., in).

Up to this point we have not needed to assume that o labels an irreducible
representation of S,. We have merely used the character yx, corresponding
to some left ideal F[S,,|y, in F[S,], and the corresponding G L(n,F)-module
Yo V.

We will now assume that y, indeed labels the irreducible characters of
Sp. Then we have the Schur orthogonality relations

1 N
m Z Xa(O')Xﬁ(O' 1) = 5045‘
" o0€Sy
These can be rewritten as
K _
> Xa(K)‘n—,‘XB(K ") = Gag. (10.25)
KeC ’

Thus, the |C| X |C| square matrix [xo(K~')] has the inverse & [|K| xq(K)].
Therefore also:

K
D XalK 1)' “XQ(K') = Oxxr, (10.26)
aER n'
where R labels a maximal set of inequivalent irreducible representations of
S,. Consequently, multiplying (10.23) by xo(K ') and summing over a, we
obtain:

2 aer X (B)xa(K) = s*(B) (10.27)

for every conjugacy class K in S,, where we used the fact that K—! = K.
Observe that

s¥(B) = Tr(B®" - o) (10.28)

where o, any element of the conjugacy class K, appears on the right here by
its representation as an endomorphism of V®". The identity (10.28) is readily
checked (Exercise 10. 3) if o is the cycle (12...n), and then the general case
follows by observing (and verifying in Exercise 10.3) that

Tr(B¥ ® B¥ - ¢6) = Tr(B®)Tr(B®) (10.29)
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if ¢ and 6 are the disjoint cycles (12...5) and (7 +1...n).
Thus the duality formula (10.27) coincides exactly with the formula (10.8)
we proved in the previous section.

Exercises

1. Let E be a left module over a ring A, € an element of F, and N the
left ideal in A consisting of all n € A for which ne = 0. Assume
that A decomposes as N @& N., where N, is also a left ideal, and let
P.: A — A be the projection map onto N.; thus, every a € A splits as
a =ay + P.(a), with ay € N and P.(a) € N.. Show that for any right
ideal R in A:

(i) P.(R) C R;
(ii) there is a well-defined map given by
f:Ré— P.(R):xzé— P
(iii) the map
P.(R) — Ré: x — x€
is the inverse of f.

2. Let G be a finite group, represented on a finite-dimensional vector space
E over a field F characteristic 0. Suppose € € E is such that the set Ge
is a basis of E. Denote by H the isotropy subgroup {h € G : he'= €},
and N = {n € F[G] : né=0}.

(i) Show that
F|G] = N @ F|G/H],

where F[G/ H| is the left ideal in F[G] consisting of all « for which
xh = z for every h € H, and that the projection map onto F|G/H]
is given by

1
F[GHF[G];Q;HEZM

(ii) Let y be an idempotent, and L = F[G]y. Show that

Lé={E, (10.30)
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where F[G] — F[G] : x — Z is the F-linear map carrying g to g~!
for every g € G C F[G]. Then, using Exercise 10.1, obtain the

dimension formula

dimg (§) = ’—;I’ S xah), (10.31)

where x1,(a) is the trace of the map L — L : y — ay.

3. Verify the identity (10.28) in the case o is the cycle (12...n). Next verify
the identity (10.29).
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Chapter 11

Representations of U(V)

The unitary group U(N) consists of all N x N complex matrices U which
satisfy the unitarity condition:

UU =1

It is a group under matrix multiplication, and, being a subset of the linear
space of all N x N complex matrices, it is a topological space as well. Multipli-
cation of matrices is, clearly, continuous. The inversion map U + U1 = U*
is continuous as well. This makes U(N) a topological group. It has much
more structure, but we will have need for no more.

By a representation p of U(N) we will mean a continuous mapping

p:U(N)— Endc(V),

for some finite dimensional complex vector space V. Notice the additional
condition of continuity required of p. The character of p is the function

Xp : UN) = C:U = tr(pl)) (11.1)

The representation p is said to be irreducible if the only subspaces of V'

invariant under the action of U(N) are 0 and V', and V' # 0.
Representations p; and py of U(N), on finite dimensional vector space V;

and V5, respectively, are said to be equivalent if there is a linear isomorphism

0:Vi—=1
which intertwines p; and ps in the sense that

Op ()0~ = py(U) for all U € U(N).

277
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If there is no such © then the representations are inequivalent. As for finite
groups (Proposition 1.8.1), if p; and py are equivalent then they have the
same character.

In this chapter we will explore the representations of U(N). Though
U(N) is definitely not a finite group, Schur-Weyl duality interweaves the
representation theories of U(N) and of the permutation group .S,,, making the
exploration of U(N) a natural digression from our main journey through finite
groups. For an interesting application of this duality, and duality between
other compact groups and discrete groups, see the paper of Lévy|[54].

11.1 The Haar Integral

For our exploration of U(N) there is one essential piece of equipment we
cannot do without: the Haar integral. Its construction would take as far off
the main route, and so we will accept its existence and one basic formula for
it which we will see in the next section. Now on to what it is. A readable
exposition of the construction of Haar measure on a general topological group
is given by Cohn [14, Chapter 9]; an account specific to compact Lie groups,
such as U(N), is in the book by Brocker and tom Dieck [8].

On the space of complex-valued continuous functions on U(N) there is a
unique linear functional, the normalized Haar integral

fos (f) = /U o

satisfying the following conditions:

e it is non-negative, in the sense that
(fy =0 if f >0,
and, moreover, (f) is 0 if and only if f equals 0;

e it is invariant under left and right translations in the sense that
/ F(@Uy) dU = / FUYU  for all 2,y € U(N)
U(N) U(N)

and all continuous functions f on U(N);
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e Finally, the integral is normalized:

(1) = 1.

In more standard notation, the Haar integral of f is denoted

/U G2

Let T denote the subgroup of U(N) consisting of all diagonal matrices.
A typical element of T" has the form

(A, 0 0 0 0]
0 X O 0 0
D(\, ,AN)d:ef 0 0 X 0 0
(0 0 0 -+ 0 Ay

with A1, ..., Ay are complex numbers of unit modulus.
Thus T is the product of N copies of the circle group U(1) of unit modulus
complex numbers:

T~ UV,

This makes it, geometrically, a torus, and hence the choice of notation. There
is a natural Haar integral over T', specified by:

/Th(t) dt = (2m)N /0%.../O%h(D(e“’l,...,e”’N))d@l...dGN (11.2)

for any continuous function h on 7.

11.2 The Weyl Integration Formula

Recall that a function f on a group is central if

flayz™) = f(y)

for all elements z and y of the group.
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For every continuous central function f on U(N) the following integration
formula (Weyl [75, Section 17]) holds:

Jony FU) AU = 35 [ FOIA®) dt (11.3)
where
D EAEE D VAR PR SV D Y
A(D(Ar, o Ay)) = det | ST :
A Az Aol Aw (11.4)
i 1 1 1 1 |
- H (/\J - )\k)7
1<j<k<N

the last step being a famed identity. This Vandermonde determinant, written
out as an alternating sum, is:

A(D(A1, - An)) = Y sgn(o)Ay "W Ay (11.5)

oeSN

The diagonal term is

AN AL
Observe that among all the monomial terms A\J* ... AV, where @ = (wy, ..., wy) €
ZN , which appear in the determinant, this is the ‘highest’ in the sense that
all such w are < (N —1, N —2,...,0) in lexicographic order (check dominance
in the first component, then the second, and so on).

11.3 Character Orthogonality

As with finite groups, every representation is a direct sum of irreducible
representations. Hence every character is a sum of irreducible representation
characters with positive integer coefficients. (The details of this are farmed
out to Exercise 11.1.)

Just as for finite groups, the character orthogonality relations hold for
representations of U(N): If p; and py are inequivalent irreducible represen-
tations of U(N) then

/ X (U)X (U™1) dU = 0 (11.6)
U(N)
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and
/ O U= (11.7)

for any irreducible representation p. (You can work through the proofs in
Exercise 11.3.

Analogously to the case of finite groups, each p(U) is diagonal in some
basis, with diagonal entries being of unit modulus.

It follows then that

Xo(U™) = x,(U) (11.8)

The Haar integral specifies a hermitian inner product on the space of
continuous functions on U(N) by

(f.h) = / SR @ (11.9)

In terms of this inner product the character orthogonality relations say that
the characters x, of irreducible representations form an orthonormal set of
functions on U(N).

11.4 Weights

Consider an irreducible representation p of U(N) on a finite dimensional
vector space V.
The linear maps
pt): V=V

with ¢ running over the abelian subgroup 7T, commute with each other:
p(t)p(t') = p(tt') = p(t't) = p(t')p(t)

and so there is a basis {v;}1<;j<a, of V with respect to which the matrices of
p(t), for all t € T', are diagonal:

pi(t) 0 0
0 2 0
=] 0
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where
pr: T —U(1)CC
are continuous homomorphisms. Thus,
Pr (-D()\17 B )\N)) - prl(Al)'-'prN(/\N>

where p,(A) is p, evaluated on the diagonal matrix which has A at the k-
th diagonal entry and all other diagonal entries are 1. Since each p,; is a
continuous homomorphism

U(l) - U(1)

it necessarily has the form
Pric(A) = A¥rF (11.10)

for some integer w,,. We will refer to
wr = (wrla '--awrN) € ZN

as a weight for the representation p.

11.5 Unitarian Characters

Continuing with the framework as above, we have

Pr (D()\l, ceey /\N)) = )\'ivrl...)\%TN.

Thus,
dy
Xo (DO, s Aw)) = D AT AR, (11.11)
r=1
It will be convenient to write
X - ()\1, ceey )\N)

and analogously for .

Two diagonal matrices in U(N) whose diagonal entries are permutations
of each other are conjugate within U(N) (permutation of the basis vectors
implements the conjugation transformation). Consequently, a character will
have the same value on two such diagonal matrices. Thus,

X, (D()\l, ey )\N)) is invariant under permutations of the \;.
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Then, by gathering similar terms, we can rewrite the character as a sum of
symmetric sums

D ALy (11.12)

ocESN

with @ = (wy,...,wy) Tunning over a certain set of elements in Z. (If
‘gathering similar terms’ bothers you, wade through Theorem 12.6.1.)

Thus we can express each character as a Fourier sum (with only finitely
many non-zero terms)

X (DY) = > casa(X) (11.13)

EzGZiV

where each coefficient ¢z is a non-negative integer, and sz is the symmetric
function given by:

N
sa(N) = Y [ ety (11.14)
oceSy j=1

The subscript | in Ziv signifies that it consists of integer strings

w1 ngz ZQUN
Now p is irreducible if and only if
/ Ix,(U)|?dU = 1. (11.15)
U(N)

(Verify this as Exercise 11.4.) Using the Weyl integration formula, and our
expression for x,, this is equivalent to

= 512
/ ‘Xp()\)A()\)‘ dAr...d\y = N! (11.16)
UL)N

Now the product
Xp(MAN)

is skew-symmetric in Ay, ..., Ay, and is an integer linear combination of terms
of the form
mi my
ATHLCAGY.
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-

So, collecting similar terms together, Xp()\)A(X) can be expressed as an in-
teger linear combination of the elementary skew-symmetric sums

ap(A) = Z sgn(a))\f(l)...)\f(VN)

cESN

= Z sgn(o))\{”(l)...)\{\}“m

ceSN

11.17

AN AR (1L17)
)\fz )\fz )\fz

=det |© 7 TV
YA A

with f = (fi, ..., fn) € ZN. (Again, the ‘collecting terms’ argument is put
on more serious foundations by Theorem 12.6.1.) Therefore,

/U(l)N

is an integer linear combination of inner-products

= 12
Xp(NAN)| dAy...d\y

/ ap(Nap(X)dA ... dAy. (11.18)
U(1)N

Now we use the simple, yet crucial, fact that on U(1) there is the orthogo-

nality relation
/ AN AN = .
U(1)

Consequently, distinct monomials such as A{*..\3, with @ € ZY, are or-
thonormal. Hence, if f; > fo > --- > fn, then the first two expressions in
(11.17) for ag(\) are sums of orthogonal terms, each of norm 1.

If f and f’ are distinct elements of Ziv , each a strictly decreasing sequence,

then no permutation of the entries of f could be equal to f’ , and so

/ ap(Nas(X)dA; .. dAy =0 (11.19)
Uy

On the other hand,

/ apf(Nap(X)dA; ... dAy = N! (11.20)
U(1)N
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because a f(X) is a sum of N! orthogonal terms each of norm 1.

Putting all these observations, especially the norms (11.16) and (11.20),
together we see that an expression of Xp(X)A(X) as an integer linear com-
bination of the elementary skew-symmetric functions a 7 will involve exactly
one of the latter, and with coefficient +1:

Xo(MAX) = +az(X) (11.21)

for some h € Ziv . To determine the sign here, it is useful to use the lexi-
cographic ordering on Z~, with v € Z~ being > than v € Z if the first
non-zero entry in v — v’ is positive. With this ordering, let w be the highest
of the weights.

Then the ‘highest’ term in Xp(X) is

w1 wWN
AT LAY

appearing with some positive integer coefficient, and the ‘highest’ term in
A(A) is the diagonal term
/\N—l /\0
1 e N

Thus, the highest term in the product Xp(X)A(X) is

wi+N—-1 wy_1+1\wy
A\ LRyt

appearing with coefficient +1.
We conclude that

XP()\)A()\) = a(’w1+N*1,..,wN_1+1,wN)()\) (1122)
and also that the highest weight term
AP AV

appears with coefficient 1 in the expression for x, (D(X)) This gives a re-
markable consequence:

Theorem 11.5.1 In the decomposition of the representation of T" given by p
on V', the representation corresponding to the highest weight appears exactly
once.
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The orthogonality relations (11.19) imply that

/ Xo (M) xr AN 2 dAy...dAy =0 (11.23)
U@y

for irreducible representations p and p’ corresponding to distinct highest
weights w and w'.
Thus:

Theorem 11.5.2 Representations corresponding to different highest weights
are inequivalent.

Finally, we also have an explicit expression, Weyl’s formula [75, Eq (16.9)],
for the character x, of an irreducible representation p, as a ratio of determi-
nants:

Theorem 11.5.3 The character x, of an irreducible representation p of
U(N) is the unique central function on U(N) whose value on diagonal ma-
trices is given by

Y A(w -1, wn_ ;2w )(X)
Xp(D(N)) = = et (11.24)

where (w1, ...,wy) s the highest weight for p. The division on the right in
(11.24) is to be understood as division of polynomials, treating the )\;u as
indeterminates.

Note that in (11.24) the denominator is A(X) from (11.4).

11.6 Weyl Dimension Formula

The dimension of the representation p is equal to x,(/), but (11.24) reads

0/0 on putting X = (1,1,...,1) into numerator and denominator. L’Hopital’s
rule may be applied, but it is simplified by a trick borrowed from Weyl. Take
an indeterminate ¢, and evaluate the ratio in (11.24) at

X= (VN2 )
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Then aﬁ(X) becomes a Vandermonde determinant

thl(N_l) thl(N_2) o thl 1
tha(N=1)  4ha(N=2)  4ha 1

a(h1,...,hN)(tN_17 ceey tv 1) = det : : :
thN(N—l) 2th(N—Q) o thN 1

= H (thj _ thk)
1<j<k<N
Consequently,
a(h1,-~~7hN)(tN_1> st 1) . H thi — the
a(h&,..,,h;v)(tN_l, ceey t, 1) L <i<k<N thj o th;ﬂ

Evaluating of the rational function in ¢ on the right at t = 1 gives us

h; —h;,  VD(hi,....hy)
B, — k. VDR, ... hy)

1<j<k<N ' J

where V' D denotes the Vandermonde determinant.
Applying this to the Weyl character formula yields the wonderful Weyl
dimension formula:

Theorem 11.6.1 If p is an irreducible representation of U(N) then the di-
mension of the corresponding representation space is

. wi—wi+k—7j
dim(p) = H1§j<k§N%}r] (11.25)

where (wy, ..., wy) s the highest weight for p.

11.7 From Weights to Representations

Our next goal is to construct an irreducible representation of U(N) with a
given weight w € Ziv . We will produce such a representation inside a tensor
product of exterior powers of CV.

It will be convenient to work first with a vector f € Ziv all of whose

components are > 0. We can take f to be simply w, in case all w; are
non-negative. If, on the other hand, some w; < 0, then we set

fi=w;—wy  forall je{l,.. N}
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Display f as a tableau of empty boxes, with the first row having f; boxes, fol-
lowed beneath by a row of f5 boxes, and so on, with the N-th row containing
fn boxes. (We ignore the trivial case where all f; are 0.) For example

—

f=(7,5,4,2,1) <«

Let f{ be the number of boxes in column 1; this is the largest i for which
fi > 1. In this way, let f; be the number of boxes in column j (the largest i
for which f; > j). Now consider

I 7 fie
Vi=AC"e ACVe...e ACY, (11.26)

where the 0-th exterior power is, by definition, just C, and thus effectively
dropped. (If f=0 then V;=C.)

The group U(NN) acts on Vin the obvious way through tensor powers, and
we have thus a representation p of U(N). The appropriate tensor products
of the standard basis vectors ey, ...,ex of CV form a basis of V7 and these
basis vectors are eigenvectors of the diagonal matrix

D(\) eT,

acting on V. Indeed, a basis is formed by the vectors

N
o ®(ea1,j Ao Nea, ),
i=1 ’

with each string a, ;, ..., agj being strictly increasing and drawn from {1, ..., N}.
We can visualize e, as being obtained by placing the number q; ; in the box
in the i-th row at the j-th column, and then taking the wedge-product of the
vectors e, . down each column and then taking the tensor product across all
the columns. For example:

3[4]8]
416
7

— (erNeaNesNes)®@ (esNegNer) ® (eqg N eg) R es.

‘OOOT[\'J»—*
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Clearly,

p(D(V))e, = (H Xars ) €a- (11.27)

The highest weight term corresponds to precisely e,~, where a* has the entry
1 in all boxes in row 1, then the entry 2 in all boxes in row 2, and so on. The
eigenvalue corresponding to e, is

MY

The corresponding subspace inside Vf is one dimensional, spanned by egx.
Decomposing V into a direct sum of irreducible subspaces under the repre-
sentation p, it follows that e,« lies inside (exactly) one of these subspaces.
This subspace Vi must then be the irreducible representation of U (N) cor-
responding to the highest weight f

We took f = w if wy > 0, and so we are done with that case. Now
suppose wy < 0. We have to make an adjustment to Vf to produce an
irreducible representation corresponding to the original highest weight w €
zy,

Consider then
-N

V(@) = Ve (A\CY) (11.28)
where a negative exterior power is defined as a dual
N "V =(N"V) form>1.
The representation of U(N) on A~V (CN) is given by
U-¢=(detU) "¢ forall U e U(N)and ¢ € A~V (CV).
This is a one dimensionqal representation with weight (—1,..., —1), because
the diagonal matrix D()) acts by multiplication by A~L.. A

For the representation of U(N) on Vg, we have a basis of Vi consisting
of eigenvectors of p(D()\)); the highest weight is

F4(mwn) (=1, ., =1) = (fi + W, ooy [ + wy) = (w1, ..., wy),

by our choice of f Thus, V(W) contains an irreducible representation with
highest weight w. But

dim V() = dim V7,
and, on using Weyl’s dimension formula, this is equal to the dimension of the
irreducible representation of highest weight @. Thus, V () is the irreducible
representation with highest weight .
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11.8 Characters of S, from Characters of U(N)

We will now see how Schur-Weyl duality leads to a way of determining the
characters of S, from the characters of U(N).

Let N,n € {1,2,...}, and consider the vector space (CV)®". The permu-
tation group S,, acts on this by

o - (U1®...®Un) = Us-1(1) @ ... & Vs—1()- (11.29)

The group GL(N, C) of invertible linear maps on CV also acts on (CV)®" in
the natural way:

B-(1®...0v,) =B (11®...Qv,) = Bv; ®...® Bu,.

Back in Theorem 10.1.1, these actions are dual in the sense that the com-
mutant of the action of C[S,] on (C¥)®" is the linear span of the operators
B®" with B running over GL(N,C). We can leverage this to the following
duality for the unitary group:

Theorem 11.8.1 Let N,n € {1,2,...}, and consider (CN)*" as a C[S,]-
module by means of the multiplication specified in (11.29). Then the commu-
tant Endcg,,) (CMY@n s spanned by the elements U™, with U running over
U(N).

For a vector complex vector space W let us, for our purposes here only,
declare the elements A, B € End(W) to be orthogonal if Tr (AB) = 0. For
any subspace L C End(W) let L+ be the set of all A € End(W) orthogonal
to all elements of L. We will use the fact that L — L+ is injective. Note also
that if A and UBU ™! are orthogonal then U1 AU and B are orthogonal for
any U € End(WW). You can work these out as Exercise 11. 5.

Proof. In Theorem 10.1.1 we showed that Endggs,)(CY)®" is the linear span
of the operators B®" with B running over GL(N,C). Suppose now that
S € Ende(CV)® is orthogonal to D®" for all D € U(N). Then for any fixed
T € U(N), the element S; = T®"S(T~1)®" is also orthogonal to D®" for all
D € U(N). From this it follows that S; is orthogonal to D®™ for all diagonal
matrices D € GL(N,C), because Tr (S;D®"), viewed as a polynomial in
every particular diagonal entry of D, is zero on the infinite set U(1) C C and
hence is 0 on all elements of C. Now for any N x N hermitian matrix H
there is a unitary matrix Ty € U(N) such that T, 'HT; = D is a diagonal



Representing Finite Groups 12/05/2010 291

matrix. Hence S is orthogonal to H®™ for every hermitian matrix H. If H,
and H, are hermitian then

Tr (S(Hy + tH)®") =0 (11.30)

for all real t, and hence the left side in (11.30), viewed as a polynomial
in the variable ¢, is identically 0. Therefore (11.30) holds for all t € C.
Now for a general B € GL(N,C) we have B = H; + iH,, where H; and
H, are hermitian. Hence S is orthogonal to B®" for all N x N matrices
B € GL(N,C). Thus, the linear span of {U®" : U € U(N)} is equal to the

linear span of {B®": B € GL(N,C)}.

From the Schur-Weyl duality formula it follows that:

Te(B®" o) = > xalo)x*(B) (11.31)

a€ER

where, on the left, o represents the action of ¢ € S, on (CY)®" and
B € U(N), and, on the right, R is a maximal set of inequivalent repre-
sentations of .S,,. For the representation a of S,, given by the regular repre-
sentation restricted on a simple left ideal L, in C[S,], x* is the character of
the representation of U(N) on

Yo (CV)E™, (11.32)

where 3, is a non-zero idempotent in L.
Now the simple left ideals in C[S,,] correspond to

—

f= 1, fn) €75, (11.33)
(the subscript | signifying that f; > ... > f,) which are partitions of n:
i+t +fa=n

Recall that associated to this partition we have a Young tableau T of the
numbers 1, ...,n in r rows of boxes:
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1_|_f1 f2_|_f1

n

If r < nthen f; = 0 for r < j < n. Associated to Tf there is the
idempotent

yr= Y (-1 (11.34)

eCr..,pERT ..
q Tfp Tf

where CTf is the subgroup of S,, which, acting on the tableau Tf, maps the
entries of each column into the same column, and RTJ; preserves rows. Let

a;; € {1, ,n}
be the entry in the box in row ¢ column j in the tableau T’ For example,
93 = f1 + 3.

Let ey, ...,en be the standard basis of CV. Place e; in each of the boxes
in the first row, then e, in each of the boxes in the second row, and so on till
the r-th row. Let B

e = PN g @l

be the tensor product of these vectors (recall that if r < j < n then f; =0

and the corresponding terms are simply absent from ¢®/). Then

re

is a positive integral multiple of

Z (—1)%" (q)qe®f_

eCr..
q Tf
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Let 6 be the permutation that rearranges the entries in the tableau such that
as one reads the new tableau book-style (row 1 left to right, then row 2 left
to right, and so on) the numbers are as in Tf~ read down column 1 first, then
down column 2, and so on:

g : Qjj > Qj;

Then y f€®f is a non-zero multiple of 6 applied to
®j>1 Ni>1 €ayy-

In particular,
y(CY)®" #0
if the columns in the tableau Tf have at most N entries each.
Under the action of a diagonal matrix

D(X) € U(N)
with diagonal entries given by
X = ()\1, ) )\N),
on (CM)®" the vector y fe‘g)f is an eigenvector with eigenvalue
MY

Clearly, the highest weight for the representation of U(N) on y f(CN )on s f.
Returning to the Schur-Weyl character duality formula and using in it
the character formula for U(N) we have

N w — w w X
T (D) - ) = 3 vl Attt (g )
& a(Nfl,,.,l,O)()\)

where the sum is over all W € Zgo, | satisfying || = n.
Multiplying through in (11.35) by the Vandermonde determinant in the
denominator on the right, we have

Tr (D(X)m : 0) an-1.100) = D Xa(0)Aw N1y + 100w (V)

w62g07¢,|1ﬁ|:n

(11.36)
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To obtain the character value yz(o) view
Tr (D(X)@n - 0) av-1..10/(N) (11.37)

as a polynomial in Aq,...,A\y. Examining the right side in (11.36), we see
that
wi+N—-1>we+N-—-2>...>wy_1+1>wy

and the coefficient of

AN\
is precisely xg(c). This provides a way of reading off the character value
Xa(0) as a coefficient in Tr (D(X)‘@" : O’) a(N—l,.‘,l,O)(X), treated as a polyno-

mial in Ay, ..., Ay.
We can work out the trace in (11.37) by using the identity (10.28) taking
o to be a product of cycles of lengths [y, ..., l,,; this leads to

Tr (D(X)®" : 0) - ﬁ(/\lf 4o AR (11.38)

J=1

Back in (11.4) we saw that
G(N—l,..,l,o)(x) = H (Aj — k).

1<j<k<N

Thus, for the partition @ = (wy, ..., wy) of n, the value of the character yz
on a permutation with cycle structure given by the partition (l4,...,1,,) of n
is the coefficient of A¥* V=1 A% in

m

[TOF ++x%) TI v = (11.39)
j=1 1<j<k<N
Even if not explicit, this formula, due to Frobenius, is a wonderful concrete
specification of the irreducible characters of the symmetric group.

Exercises

1. Prove that any finite dimensional representation of U(N) is a direct
sum of irreducible representations. Conclude that every character of
U(N) is a linear combination, with non-negative integer coeflicients, of
irreducible characters. [Hint: If p : U(N) — Endc(V) is a representa-
tion, consider p(U(N)) as a subset of the algebra End¢(V).]
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2. Prove Schur’s Lemma for U(N): if p; : U(N) — End¢(Vj), for j €
{1,2}, are irreducible representations of U(N) then the vector space
Homgny(V1, Va) of all linear maps 1" : V; — V5 which satisfy T'pi(g) =
p2(g)T for all g € U(N), is {0} if p; is not equivalent to py, and is one
dimensional if p; is equivalent to ps. [Hint: As with the case of finite
groups, see what irreducibility implies for the kernel and range of any

T € Homyw)(V4, Va) ]

3. For continuous functions f; and f, on U(N), the convolution f * f is
defined to be the function on U(N) whose value at any g € U(N) is
given by

(f1= f2)(9) =/ fo(gh) fr(R™") dh. (11.40)
U(N)
(More honestly, thisis fo* f; by standard convention.) Let p; : U(N) —

Endc(V)) and py : U(N) — Ende(Va) be irreducible representations of
U(N). Show first that

Yo %Xy — 4 TT Xp1 1 p1 and p, are equiva e.n ; (11.41)
0 if p; and p, are not equivalent.
Then deduce the character orthogonality relation
| X @™y = dime Homuy (5,12), (1142
U(N

holding for any finite dimensional representations p; and py on spaces V}
and V3, respectively. [Hint: Imitate the case of finite groups, replacing
the average over the group with the Haar integral.]

4. Show that a representation p of U(N) is irreducible if and only if

/ X, (U)]?dU = 1.
U(N)

[Hint: Use Exercise 11.3.]

5. Let V be a finite dimensional vector space over a field F, and for A, B €
E = Endg(V) define

(A, B)1y = ¢a(B) = Tr (AB).
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(i) Show that the map ¢4 : E — E’, where E’ is the dual of F, is an
isomorphism.

(ii) For L any subspace of E, let L+ = Nacrpa. Show that (L)t = L.

(iii) Forany A, B,T € E, with T invertible, show that (A, TBT ')y, =
(T_lAT, B)Tr .



Chapter 12

PS: Algebra

This lengthy postscript summarizes definitions, results, and proofs from alge-
bra, some of it used earlier in the book and some providing a broader cultural
background. The self-contained account here is strongly steered towards uses
we make in representation theory. We have left Galois theory as a field too
vast, ein zu weites Feld, for us to explore.

12.1 Groups and Less

A group is a set G along with an operation
GxG—G:(a,b)—~a-b

satisfying the following conditions:

(i) the operation is associative:
a-(b-c)=(a-b)-c  forall a,bceG,
(ii) there is an element e € G, called the identity element, for which

a-e=e-a=a for all a € G; (12.1)

(iii) for each element a € G there is an element a~! € G, called the inverse

of a, for which
a-at=a'ta=e (12.2)
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If ¢ € G is an element with the same property (12.1) as e then

and so the identity element is unique. If a,a; € G are such that ay - a is e,

then

-1 1 -1

ap=ap-e=ag-(a-a)=(ag-a)-at =e-at=a"",

! Thus, the inverse of an

and, similarly, if a - ag is e then ag is equal to a~
element is unique.

Usually, we drop the - in the operation and simply write ab for a - b:
ab=a-b.

If ab = ba we say that a and b commute. The number of elements in G is
called the order of G and denoted |G|. The order of an element g € G is
min{n > 1:¢" = e}.

If Gy and G4 are groups, and f : G; — G5 a mapping satisfying

f(ab) = f(a)f(b) for all a,b € G1, (12.3)

then f is a homomorphism of groups. Such a homomorphism carries the
identity of Gy to the identity of Gy, and f(a™') = f(a)™! for all a € G;. A
homomorphism which is a bijection is an isomorphism. The identity map
G — G, for any group G, is clearly an isomorphism. The composite of
homomorphisms is a homomorphism, and the inverse of an isomorphism is
an isomorphism.

The symmetric group S, is the set of all bijections [n] — [n], under the
operation of composition. Every permutation can be decomposed into a
product of disjoint cycles. The length of a cycle is its order; for example, the
length of (123) is 3, and the length of any transposition t = (ab) is 2. The
sum of the lengths of cycles whose poduct is a given permutation s is the
length [(s) of s .. Multiplying a permutation s by a transposition ¢t = (a b)
either splits a cycle into a product of two disjoint cycles or combines two
disjoint cycles into one; in either case

I(st) =1(s) £ 1. (12.4)
The signature map

€15, = {+1, =1} : s e(s) & (1)} (12.5)
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is then a homomorphism, viewing {+1, —1} as a group under multiplication.
A subgroup of a group G is a nonempty subset H for which ab € H and
a~! € H for all a,b € H; this means that H is a group when the group
operation of G is restricted to H. A left coset of H in GG is a subset of the
form «H = {zh : h € H} for some x € G. The set of all left cosets form the

quotient G/ H:
G/H ={zH : z € G}. (12.6)

The fact that H is a subgroup ensures that distinct cosets are disjoint, and
this implies
|H| is a divisor of |G|, (12.7)

an observation Lagrange made (for the symmetric groups S,). A subgroup
H of G is normal if gH = Hg for all g € G; for a normal subgroup H, there
is a natural operation on G/H given by

(aH)(bH) = (ab)H for all a,b € G, (12.8)

which is well-defined and makes G/H also a group. In this case the natural
projection map G — G/H : g — gH is a homomorphism.

The subset of even permutations in .5, is a subgroup, called the alternating
group and denoted A,,.

Elements a,b in a group are conjugate if b = gag™' for some g € G.
Conjugacy is an equivalence relation and partitions G into a union of disjoint
conjugacy classes. The conjugacy class of a is the set {gag™ : g € G}.

The center Z¢ of a group G is the set of all elements ¢ € G which commute
with all elements of G:

Zg={ce G : cg=gc forall ge G} (12.9)
An action of a group GG on a nonempty set S is a mapping
GxS—=S:(g,8) —gs
such that es = s for all s € S, where e is the identity element of G, and
(gh)s = g(hs) for all g,h € G and all s € S.
The set Gs = {gs : g € G} is called the orbit of s € S, and

Stab(s) ={g € G : gs = s} (12.10)
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is a subgroup of G called the stabilizer or isotropy subgroup for s € S. The
map
G—Gs:grgs

I whose

is surjective and the pre-image of any gs is the subgroup gStab(s)g~
cardinality is

|G/IStab(s)]

if G is finite. Since S is the union of all the distinct (and disjoint) orbits, we
have

G
S1=2_ Stab(s)) (12.11)
Jj=1

where s1, ..., S,, € S are such that Gsq, ..., Gs,, are all the distinct orbits. As
a typical application of this formula, suppose |G| = p™, where p is prime and
n is a positive integer, and |S| is divisible by p; then (12.11) implies that the
number of j for which G's; = {s;} is divisible by p and hence greater than 1
if positive. The solution of Exercise 4.13 uses this.

If f: Gy — Gy is a homomorphism then the kernel

ker f ={g € G : f(g9) = ea}, (12.12)

where e, is the identity in G5, is a subgroup of Gi; moreover, the image
Im(f) = f(Gy) is a subgroup of G5. Writing K for ker f, there is a well-
defined induced mapping

f:G/K = Gy: gK — f(g) (12.13)

which is an injective homomorphism.
A group A is abelian or commutative if

ab = ba for all a,b € A.
For many abelian groups, the group operation is written additively:
GxG—G:(a,b)—a+Db,

the identity element denoted 0, and the inverse of a then denoted —a.

A group C is cyclic if there is an element ¢ € C' such that C' consists
precisely of all the powers ¢” with n running over Z. Such an element c is
called a generator of C.
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A semigroup is a non-empty set T' with a binary operation 7' x T — T :
(a,b) — ab which is associative. A monoid is a semigroup with an identity
element; as with groups, this element is necessarily unique.

If S is a nonempty set, and n € {0, 1,2, ...}, we have the set S” = S{l--n}
of all maps {1,...,n} — S, where S° is taken to be the one-element set
1 = {0}. Display an element x € S™, for now, as a string x....z,, where
x; = x(j) for each j. Then let

<S> - Unzosn,
and define the product of z,y € (S) to be

TY = T1...TplY1---Ym,

if z € S™ and y € S™. This makes (S) a semigroup, with 1 € SY as identity
element. This is the free monoid over the set S. If S = () we take (S) to be
the one-element group {1}.

12.2 Rings and More

A ring A is a set with two operations

addition: Ax A — A: (a,b) »a+0b
multiplication : A x A — R: (a,b) — ab,

such that addition makes A an abelian group, multiplication is associative,
multiplication distributes over addition:

a(b+c¢) =ab+ ac

12.14
(b+ ¢)a = ba + ca, ( )

and A contains a multiplicative identity element 14 (or, simply, 1). Since
not everyone requires a ring to have 1, we will often restate the existence of
1 explicitly when discussing a ring.
If Ais aring then on the set A we can define addition as for A but reverse
multiplication to
a0qpp = ba,

for all a,b € A. These operations make the set A again a ring, called the
opposite ring of A and denoted A°PP.
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The set Z of all integers, with usual addition and multiplication, is a ring.

A division ring is a ring in which 1 # 0 and every nonzero element has
a multiplicative inverse. A field is a division ring in which multiplication is
commutative.

A left ideal L in a ring A is a non-empty subset of A for which

ale Lforallae Aand z € L.

A right ideal J is a nonempty subset of A for which za € J for all x € J and
a € A. A subset of A is a two sided ideal if it is both a left ideal and a right
ideal.

A left (or right) ideal in A is principal if it is of the form Ac (or cA) for
some ¢ € A. Note that Az C Ay is equivalent to y being a right divisor of x
in the sense that x = ay for some a € A.

In Z every ideal is principal and has a unique non-negative generator.
Proof: If I is a nonzero ideal in Z, choose m € I for which |m| is least; then
for any a € I, dividing by m produces a quotient ¢ € Z and a remainder
r € {0,...,|m|—1}, and then a —¢gm = r is a non-negative element of I which
is < |m| and is therefore 0, and so a = gm € mZ; thus I C mZ C I and so
I =mZ. If m and m; both generate I then each is a divisor of the other and
so m = +my, and nonnegativity picks out a unique generator.

If Ais aring, and I a two sided ideal in A, then the quotient

AT (e 41 :zeA} (12.15)

is a ring under the operations
@+ D+ y+D=@+y)+I, (+)y+I)=zy+I.

The multiplicative identity in A/ is 1 + A (which is 0 if and only if I = A).
If S is a subset of a ring A then the set of all finite sums of elements of
the form xsy, with x, y running over A, is a two sided ideal; clearly, it is the
smallest two sided ideal of A containing S as a subset, and is called the two
sided ideal generated by S.
If a € Aand m € {1,2,3,..} the sum of m copies of a is denoted ma;
more officially, define inductively:

la = a and (m+ 1)a = ma + a.

Further, setting
Oa = 0,
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wherein 0 on the left is the integer 0, and for m € {1,2,..}, setting
(=m)a = m(=a),

gives a map
ZxA—A:(n,a)— na

which is additive in n and in a, and also satisfies
m(na) = (mn)a for all m,n € Z and a € A.

The non-negative generator of the ideal Iy = {m € Z : mA = 0} in Z is
the characteristic of A. The term is generally used only when A is a field.
Suppose 1 # 0 in A and also that whenever ab = 0, with a,b € A, a or b
is 0; then the characteristic p of A is either 0 or prime. Proof: If m and n
are integers such that mn is divisible by p then mn € 4, that is mnls =0,
and so m14nly = 0 which then implies m € I4 or n € I so that m or n is
divisible by p.

Theorem 12.2.1 Let A be a ring, p any positive integer, and C the two
sided ideal generated by the set of elements of the form ab — ba with a,b
running over A. Then the map ¢, : © — P maps C into itself. Assume now
that p is prime and pa = 0 for alla € A. Then there is induced a well-defined
map

apiA/C%A/C:x+Cr—>¢p(x)+C (12.16)

1s a homomorphism of rings. Equivalently,

Op(r +y) — dp(x) — Bp(y) € C

dp(2y) — Pp(x)p(y) € C (12.17)

forallz,y € C.

The map ¢, is called the Frobenius map [30].
Proof. Observe that, for any z;,y,,a;,b; € A for j € [n] with n any positive

integer,
n p
(Z j(ajb; — bﬂj)@h)
j=1

is a sum of n terms each of the form z(ab — ba)y for some z,a,b € A. This
means ¢, maps C'into itself. The definition of C' implies that abcda—acbd € C
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for all a,b,c,d € A. Then, by the binomial theorem, for any =,y € A, and
any positive integer ¢, we have

(x+y)?— i (j) Iyt e C.

J=0

If p is prime then (?) = p!/[j!(p—j)!] is divisible by p when j € {1,....p—1},
because the denominator j!(p—j)! contains no factor p whereas the numerator
p! does. Thus, if pA = 0 then all terms in y*_, (?):cjyp_j are 0 except the
terms for j € {0, p}; so

(x4 y)P —aP —y? € C. (12.18)

In particular,
(x—y)’ — (@ =y e,

for all z,y € A, which is clear from (12.18) if p is odd, while if p = 2
then —a = a for all @ € A and so again we are back to (12.18). Thus, if
x+ C =y + C, which means x —y € C, then

¢p(m) - ¢p(y) € ¢p($ —y)+CCC.

Hence, the mapping ¢, : A/C' — A/C in (12.16) is well-defined. From (12.18)
it follows that ap preserves addition. Next, (xy)?—zPy? € C because, as noted
above, every time we commute two elements in A their difference is in C.
Hence, 52, also preserves multiplication. Lastly, 5;, maps 1 to 1, because so
does ¢,.

Suppose A; and A, are rings, and f : A; — Ay a mapping for which

fla+b) = fla)+ f(b)
f(ab) = f(a)f(b)

for all a,b € Ay, and f maps the multiplicative identity in A; to that in A,.
Then we say that f is a homomorphism, or simply morphism, of rings. A
morphism which is a bijection is an isomorphism. The identity map A — A,
for any ring A, is clearly an isomorphism. The composite of morphisms is a
morphism, and the inverse of an isomorphism is an isomorphism.

A subring of a ring A is a non-empty subset B for which x +y € B and
xy € B for all x,y € B, and B contains a multiplicative identity; this means

(12.19)
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that B is a ring when the ring operations of A are restricted to B. Note that
14 might not be in B, in which case, of course, 1z # 14. The terminology
here is a bit awkward.

If f: Ay — A, preserves addition and multiplication then the kernel

ker f = f7(0)

is a two sided ideal in A;. The image Im(f) = f(Ay) is a subring of As,.
Writing J for ker f, there is a well-defined induced mapping

7:A1/J—>AQIG+J'—>.]C<CL) (1220)

which is injective, preserves addition and multiplication, and is a morphism
if f is a morphism of rings.
Now let A; be a ring for each 7 in a non-empty set Z. Consider the product

set
P=]J4
ieT
which is the set of all maps x : T — U;e7A; @ i — x; for which x; € A; for
all © € Z. We call x; the i-th component of x. On P define addition and
multiplication componentwise:

(x+y)i =x; +v;
(ry)i = 23y

for all ¢ € Z. This makes P a ring, called the product of the family of rings
A;. For each 7, the projection map P — A; : x — x; is a morphism of rings.

For each ¢ € 7 we have an injective mapping j; : A; — P where, for
any a € A;, the element j;(a) has i-th component equal to a and all other
components are 0. Note that j; preserves addition and multiplication, but
doesn’t generally carry 1 to 1. Identifying A; with j;(A;) we can view A; as
a subring of of R.

If A is a ring and m and n positive integers, an m x n matrix Mwith
entries in A is a mapping

M :[m] x[n] = A:(i,7)— M,;.

(12.21)

This is best displayed as

M11 M12 P Ml’l’b
[Mi] = | Do
M1 Mpys ... My,
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The value Mij is the (7, j)-th entry of M, and is a diagonal entry of i = j.
The transpose M is the n x m matrix with entries specified by

(M")y; = My

for all i € [n], j € [m]. The sum of m x n matrices M and N is defined
pointwise

If M is an m x n matrix and N an n X r matrix then M N is the m X r matrix
with entries specified by

(MN)y; = ZMikaj (12.22)
k=1

for all ¢ € [m] and j € [r]. The set of all m x m matrices is a ring, denoted
Matr,, xm(A), under this multiplication, with the multiplicative identity be-
ing the matrix I whose diagonal entries are all 1 and all other entries are
0.

A commutative ring is a ring in which multiplication is commutative.

An element a in a commutative ring R is a divisor of b € R if b = ac, for
some ¢ € R. A divisor of 1 is called a unat.

The determinant of a matrix M = [M;]; jefn, with entries M;; in a com-
mutative ring R, is defined to be

det M = > Mig(1) ... Mug(n). (12.23)

UESn

If M, N € Matr,,xm(R), then
det(MN) = det(M) det(N). (12.24)

An ideal I in a commutative ring R is a prime ideal if it is not R and has
the property that if a,b € R have their product ab in I then a or bisin I. In
the ring Z a nonzero ideal is prime if and only if it consists of all multiples
of some prime number.

An ideal I in a commutative ring R is maximal if I # R and if J is any
ideal containing I then either J = R or J = I. Applying Zorn’s Lemma to
increasing chains of ideals not containing 1 shows that every commutative
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ring with 1 # 0 has a maximal ideal. (In the annoying distraction R = {0}
there is, of course, no maximal ideal.)

Every maximal ideal in a commutative ring with 1 is prime Proof: If
x,y € R have product zy lying in a maximal ideal M, and y ¢ M then
M + Ry, being an ideal properly containing M, is all of R and hence contains
1 which is then of the form m+ry; multiplying by x shows that x = am+rxy
which is in the ideal M.

A commutative ring R with multiplicative identity 1 # 0 is an integral
domain if whenever ab = 0 for some a,b € R at least one of a and b is 0.
Thus, an ideal I in a commutative ring R with 1 is prime if and only if
R # I and R/I is an integral domain. The most basic example of an integral
domain is Z.

A narrower generalization of 7Z is the notion of a principal ideal domain:
this is an integral domain in which every ideal is principal.

In a principal ideal domain every nonzero prime ideal is maximal. Proof:
Suppose pR # 0 is prime and cR is an ideal properly containing pR; then
p = ac for some a € R and so a € pR or ¢ € pR; proper containment rules
out ¢ € pR, and we have a = pu for some u € R. Then p = pcu and then,
since p # 0 and R is an integral domain we conclude that cu = 1 which
implies 1 € ¢cR and hence cR = R. Hence pR is maximal.

The argument above also shows that a generating element p of a nonzero
prime ideal in a principal ideal domain is a prime or irreducible element in
the sense that its only divisors are units and multiples of itself by units.

The essential idea of the following result on greatest common divisors
goes back to Euclid’s Flements:

Theorem 12.2.2 Ifay,...,a, € R, where R is a principal ideal domain, then
there is a ¢ € R of the form ¢ = a1by + - - - + a,b,, with by,....,b, € R, such
that d € R is a common divisor of ay, ..., a, if and only if it is a divisor of c.
If ay,...,a, are coprime in the sense that their only common divisors are the
units in R, then a1dy + - -+ + a,d, = 1 for some dy,...,d, € R.

Proof. Let ¢ be a generator of the ideal Y | Ra;, hence of the form " | a;b;
for some b; € R. Now d € R is a common divisor of the a; if and only if
ai, ..., a, € Rd, and this holds if and only if Rc C Rd, which is equivalent to d
being a divisor of ¢. If a4, ..., a,, are coprime then ¢, being a common divisor,
is a unit; multiplying ¢ = ) a;b; by an inverse of ¢ produces 1 = ). a,d; for
some d; € R.

Returning to general rings, here is a useful little stepping stone:
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Proposition 12.2.1 Let Ay, ..., A, be two sided ideals in a ring A, withn >
2, such that A;+A; = A for all pairsi,j withi # j. Let By, be the intersection
of the A;’s except for i =k:

By =A1N...NA, = Npep]— k) Am, for all i € [n],
—_———

drop k—th term
with [n] being {1,...,n}. Then
Ay +Br,=A  forallk € [n], (12.25)

and
By +---+ B, =A. (12.26)

Proof. Fix any k € [n], and, for j # k, pick a; € A; and a} € Ay, such that
1 =a; +a;. Then

1= (ay+a))...(an+ a,) = terms involving a; + a1...a, € A+ By,
. J W—/

~
drop k—th term drop k—th term

because each A; is a two sided ideal. Hence Ay, + By, = A. We prove (12.26)
inductively. It is clearly true when n is 2. Assuming its validity for smaller
values of n > 2, let B! be defined as B; except for the collection Ay, ..., A,_1.
Then

Bi+--+B, =4,

Picking b} € B summing up to 1, and a,, € A,, b, € B, adding to 1, we have
L= (by+-+b,_1)(a,+byn)

=bla,+---+b,_ja,+1-by,, (12.27)
~ —_—— =~
€B; €B, €By

which is just (12.26).

This brings us to the ever-useful Chinese Remainder Theorem :
Theorem 12.2.3 Suppose Aq, ..., A, are two sided ideals in a ring A, such
that A; + Ay = A for every j.k € [n] = {1,...,n} with j # k, and let
C=AN...NA,. Then, for any y1,...,y, € A there exists an elementy € A
such that y € y; + A; for all j € [n]. More precisely, the mapping

fAIC = T]A/A a+C s (a+ A jem (12.28)

Jj=1

is a well-defined isomorphism of rings.



Representing Finite Groups 12/05/2010 309

For variations on this using only the lattice structure of sets of ideals in A,
see Exercise 5.18.

Proof. The map f is well-defined and injective since a + C = b+ C is
equivalent to a — b € C' C A;, for each j, and this is equivalent to a + A; =
b+ Aj for all j € [n]. Clearly f preserves addition and multiplication, and
maps 1 to 1. Surjectivity will be proved by induction. To start off the
induction, take n = 2; since y; —ys € A = A1+ As, we have y; —yo = by — bo,
for some b; € A; and by € Ay, and so y = y; — by = ys — by satisfies
y+ A = y1 + A and y + Ay = yo + As. Next, assuming n > 2, let
B=AN...NA,_1. By Proposition 12.2.1, A, + B = A. Let y1, ..., y, € A;
inductively we can assume that there exists x € A such that

for all j € [n —1]. Then by the case of two ideals, it follows that there exists
y € A such that y+ A, =y, + A, and y + B = x + B, with the latter being
equivalent to y + A; = x + A; for all j € [n — 1]. Together with (12.29), this

shows that there exists y € A for which f(y) = (y1 + A1, ..., Yn + An).

12.3 Fields

Recall that a field is a ring, with 1 # 0, in which multiplication is commuta-
tive and every nonzero element has a multiplicative inverse. Thus, in a field,
the nonzero elements form a group under multiplication.

Suppose R is a commutative ring with a multiplicative identity element
1 # 0; then an ideal M in R is maximal if and only if the quotient ring R/M
is a field. Proof: Suppose M is maximal; if z € R\ M then M + Rx, being
an ideal containing M, is all of R, which implies that 1 = m + yx, for some
y € R, and so (y + M)(x + M) = 1+ M, thus producing a multiplicative
inverse for x + M in R/M. Conversely, if R/M is a field then, first M # R,
and if x € J\ M, where J is an ideal containing M, then there is y € R with
xy € 1+ M and so 1 = xy — m for some m € M, which implies 1 € J and
so J = R.

Applying the construction above to the ring Z, and a prime number p,
produces the finite field

L, =Z]pZ. (12.30)

Let R be an integral domain and S = R — {0}. On the set S x R define
the relation ~ by (s1,71) =~ (sq2,r2) if and only if semy = s179. You check
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easily that this is an equivalence relation. The set of equivalence classes is
denoted S'R and the image of (s,r) in S™'R denoted by r/s. Then S7'R
is a ring with operations

/81 4 12/S9 = (1152 + 1251)/(5152), (r1/s1)(1r2/82) = 1172/ (5152),

with 0/1 as zero element, and 1 = 1/1 as multiplicative identity, which is
# 0. Inside S™!' R we have a copy of R sitting in through the elements a/1. A
crucial fact is that each element s of S is a unit element in S~ R, because s/1
clearly has 1/s has multiplicative inverse. Elements r/s are called fractions
and ST1R is the ring of fractions of R.

Suppose F; is a field, and F C FF; is a subset which is a field under the
operations inherited from IF;. Then I is called an extension of F.

12.4 Modules over Rings

In this section A is a ring with a multiplicative identity element 14. A left A-
module M is a set M which is an abelian group under an addition operation
+, and there is an operation of scalar multiplication

AX M — M : (a,v) — av
for which the following hold:

(a+b)v=av+bv
a(v+w) = av + aw
a(bv) = (ab)v
lyv=wv
for all v,w € M, and a,b € A. Note that 0 = 0+ 0 in A implies, on

multiplying with v,
Ov=20 for all v € M,

where 0 on the left is the zero in A, and 0 on the right is 0 in M.
A right A-module is defined analogously, except that the multiplication
by scalars is on the right:

MxA— M: (v,a) — va
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and so the ‘associative law’ reads
(va)b = v(ab).

By leftist bias, the party line rule is that an A-module means a left A-module.
A wector space over a division ring is a module over the division ring.
Any abelian group A is automatically a Z-module, using the multiplica-

tion

ZxA— A:(n,a)— na.

If M and N are left A-modules, a map f: M — N is linear if

flo+w) = fv)+ f(w)
flav) = af(v)

for all v,w € M and all a € A. The set of all linear maps M — N is denoted

(12.31)

Hom (M, N)
and is an abelian group under addition. When M = N we use the notation
EndA(M),

for Hom4 (M, M), and the elements of End4 (M) are endomorphisms of M.
If M and N are modules over a commutative ring R, then Homg(M, N) is an
R-module, with multiplication of an element f € Hompg(M, N) by a scalar
r € R defined to be the map

rf: M — N:ve—rf(v).

Note that rf is linear only on using the commutativity of R.
The ring Matr,,»,(A) of m x n matrices over the ring A is both a left
A-module and a right A-module under the natural multiplications:

a[M;;] = [aM;;] and [M;;]la = [M;;al. (12.32)

A subset N C M of a left A-module M is a submodule of M if it is
a module under the restrictions of addition and scalar multiplication, or,
equivalently, if N + N C N and AN C N. In this case, the quotient

M/N ={v+ N :ve M}
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is a left A-module with the natural operations
(v+N)+(w+N)d§f(v+w)+N, and a(v—l—N)défav%—N

for all v,w € M and a € A. Thus, it is the unique A-module structure on
M /N which makes the quotient map

M — M/N:v—v+N

linear.
Let I be a nonempty set and for each ¢ € I, suppose we have a set M.
Let U = U;er M;; then there is the Cartesian product set

HMZ' & {m e U :m(i) € M;, foreveryi e I} (12.33)
iel
and a projection map
T HM’ — My, - m — my, = m(k) (12.34)
iel
for each k € I. For m € [[,.; M;, the element 7(m) is the k-th component
of m. If each M; is an A-module then the product HZ.G ; M; is an A-module
in a natural way which makes each 7; an A-linear map. This module, along
with these canonical projection maps, is called the product of the family of
modules { M, };er. Inside it consider the subset @;c;M; consisting of all m for
which {i € I : m;(m) # 0} is a finite set. For each k € I and any x € M,
there is a unique element () € @;c;M; for which the k-th component is

x and all other components are 0. Then @;c;M; is a submodule of [],, M;,
and, along with the A-linear canonical injections

te 2 My, — ®icr M, (12.35)

is called the direct sum of the family of modules {M;};c;. For the moment
let us write M for the direct sum ) ., M;. The linear maps

pr =t 0 k| Dier My : M — M (12.36)
are projections onto the subspaces 1 (M) of M and are orthogonal idempo-
tents:

pP=pi  pipr=0 ifikelandi+k;
sz(x) =z forallz € M, (12.37)

iel
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on observing that in the sum above, only finitely many p;(z) are nonzero.
Conversely, if M is an A-module and {p;};c; is any family of elements in
End (M) satisfying (12.37) then M is isomorphic to the direct sum of the
subspaces p;(M) via the addition map

EBPz(M) = M:r— sz(iv)

el el

The following Chinese Remainder flavored result will be useful later in
establishing the uniqueness of the Jordan decomposition:

Proposition 12.4.1 Let Ay, ..., A, be two sided ideals in a ring A, such
that A; + Ap = A for all pairs j # k. Suppose E is an A-module, such
that CE = 0, where C = A1 N ...NA,. Then E is the direct sum of the
submodules E; = {v € E : Ajv = 0}. Moreover, if ci,...,c, € A then there
exists s € A such that sv = cjv for allv € E; and j € [n].

Proof. Let B; be the intersection of all A; except for j = i. Then by
Proposition 12.2.1 there exist b; € By,...,b, € B,,, for which b +---+b, = 1.
So then for any v € F,

v=bwv+---+ by

and A;bju C Cv = 0, because A;b; C A; N B; = C, and so each b;v lies in
E;. Next, suppose
wy+ -+ w, =0 (12.38)

where w; € Ej; for each j € [n]. By Proposition 12.2.1, there exist a; € A;
and b; € Bj such that a; + b, = 1 for each j € [n]. Then, since a;w; = 0, we
have

w; = lw; = a;w; + bjw; = bjw;,

and, for ¢ # j we have

Thus, multiplying (12.38) by b produces w; = 0. Thus, E is the direct sum
of the F;. Note that £ is indeed a submodule, because if y € F; and a € A
then Ajay C Ajy = {0} and so ay € E;. Finally, consider ci,...,c, € A.
By the Chinese Remainder Theorem 12.2.3 there exists s € A such that
s —cj € A; for each j € [n], and so sv = (¢; + s — ¢j)v = cjv for all v € E;.
QED



314 Ambar N. Sengupta

An algebra A over a ring R is an R-module equipped with a binary oper-
ation of ‘multiplication’

AxA— A:(a,b) — ab

which is bilinear:
(ra)b = r(ab) = a(rb)

for all r € R and all a,b € A. Then
(rs — sr)(ab) = (ra)(sb) — (ra)(sb) =0 for any r,s € R and a,b € A,

and we work only with algebras over commutative rings. If A; and A, are al-
gebras, a mapping f : A — Ay is a morphism of algebras if f preserves both
addition and multiplication: f(a+b) = f(a)+ f(b) and f(ab) = f(a)f(b) for
all a,b € A;. In this book we use only algebras for which multiplication is
associative. If we are working with algebras which have multiplicative iden-
tities, a morphism is required to take the identity for A; to that for A,. A
morphism of algebras which is a bijection is an isomorphism of algebras. The
identity map A; — A; is clearly an isomorphism. The composition of mor-
phisms is a morphism and the inverse of an isomorphism is an isomorphism.

Subalgebras and products of algebras are defined exactly as for rings,
except that we note that subalgebras and product algebras also have R-
module structures.

12.5 Free Modules and Bases

For a module M over a ring A, the span of a subset T of an A-module is
the set of all elements of M which are linear combinations of elements of T
this is, of course, a submodule of M. The module M is said to be finitely
generated if it is the span of a finite subset. (Take the span of the empty set
to be {0}.)

A set I C M is linearly independent if for any n € {1,2,...}, vy, ...,v, € [
and aq, ...,a, € A with ayv; + - - - a,v, = 0 the elements aq, ..., a, are all 0. A
subset of M which is linearly independent and whose span is M is called a
basis of M. If M has a basis it is said to be a free module. (The zero module
is free if you accept the empty set as its basis.)

From the general results of Theorem 5.2.1 and Theorem 5.3.3 it follows
that any vector space V' over a division ring D has a basis whose cardinality is
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uniquely determined. The cardinality of a basis of V' is called the dimension
of V and denoted dimp V. Theorem 5.2.1 also shows that if I is a linearly
independent subset of V', and S a subset of V' which spans V', then there is
a basis of V' consisting of all the vectors in I and some of the vectors in S.

Theorem 12.5.1 Let R be a principal ideal domain. Any submodule of a
finitely generated R-module is finitely generated. Any submodule of a finitely
generated free R-module is again a finitely generated free R-module. Any two
bases of a free R-module have the same cardinality.

Proof. Leaving aside the trivial case of zero modules, let M be an R-module
which is the linear span of a set S = {ay, ..., a,} of n elements, and let N be
a submodule of M. To produce a spanning set for N, the only immediate
idea is to somehow pick a ‘smallest’ element among the linear combinations
ria, +- - -+rya, which lie in N; a reasonable first step in making this precise
is to pick the one for which the coefficient r; is the ‘least’. To fill this out to
something sensible, observe that the set I consisting of all r; € R for which
ria, + -+ + rpa, € N for some ry,...,7, € R, is an ideal in R and hence is
of the form riR for some rj € R; in particular, there is an element of N of
the form b, = rja; + --- + ra, for some 73, ...,77 € R. Then every element
of N can be expressed as an R-multiple of b; plus an element of N which
is a linear combination of as, ..., a,. Working our way down the induction
ladder with n being the rung-count, we touch the ground level n = 0 where
the claimed result is obviously valid. Thus, NN is the linear span of a subset
containing at most n elements.

Next we turn to the case of free modules and assume that the spanning
set S is a basis of M; let b; be as constructed above. Inductively, we can
assume that there exists a basis B’ of the submodule N’ of N spanned by
a2,..., Ap:

N'=NN>_ Ra,.
=2

If by € N’ then N’ = N and B = B’ is a basis of N. If by ¢ N’ and
t1b1, with t; € R, plus an element in the span of B’ is 0 then, expressing
everything in terms of the linearly independent a;, it follows that ¢;7] = 0
and so, since 17 # 0 as by ¢ N, we have t; = 0 and this, coupled with the
linear independence of B’, implies that B = {b;} U B’ is linearly independent.

Finally, consider a free R-module M # 0, and let B be a basis of M, and
J a maximal ideal in R. There is the quotient map M — M/JM : x —
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T=ux+JM,and M/JM is a vector space over the field R/J. If by, ..., b,
are distinct elements in the basis B then, for any rq,...,r, € R for which the
linear combination r1b; +- - -+7,b, is in J M, the fact that B is a basis implies
that ry,...,7, are in .JJ. Thus b+ b is an injection on B and the image B is
a basis for the vector space M/JM. The uniqueness of dimension for vector
spaces then implies that the cardinality of B is dimpg,; M/JM, independent
of the choice of B.

An element m in an R-module M is a torsion element if it is not 0 and if
rm = 0 for some nonzero r € R. The module M is said to be torsion free if
it contains no torsion elements. Thus, M is torsion free if for each nonzero
r € R, the mapping M — M : m — rm is injective.

A set B C M is a basis of M if and only if M is the direct sum of the
sumodules Rb, with b running over B, and the mapping R — Rb:r — rb is
injective.

Theorem 12.5.2 A finitely generated torsion free module over a principal
ideal domain is free.

Notice that QQ, as a Z-module, is torsion free but is not free because no subset
of Q containing at least two elements is linearly independent and nor is any
one-element set a basis of Q over Z.

Proof. Let M be a torsion free module over a principal ideal domain R,
and, focusing on M # {0}, let by,....,b, span M. Assume, without loss
of generality, that by, ...,b; are linearly independent for some k < r, and
every b;, with kK + 1 < i < r, has a nonzero multiple, say r;b;, in the span

of by, ...,b,. Hence, with r being the product of these nonzero r;, we have
def

rb; € N = Rby + --- + Rby. Thus, the mapping M — M : x — rz has
image in N, and so, since M is torsion free, A\, : M — N : x + rx is an
isomorphism. Being isomorphic to the free module N (which has by, ..., by as

a basis), M is also free.

If S is a non-empty set, and R a ring with identity 1g, then the set R[S],
of all maps f : S — R for which f~*(R — {0}) is finite, is a left R-module

with the natural operations of addition and multiplication induced from R:
(f+9)(x) = f(z) +g(x),  (f)(z)=rflz),

forallz € S, r € R, and f,g € R[S]. The R-module R[S] is called the free
R-module over S. It is convenient to write an element f € R[S] in the form

F=> fx)z.

zeSs
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For z € S, let j(x) be the element of R[S| equal to 1z on x and 0 elsewhere.
Then j : S — R[S] is an injection which can be used to identify S with
the subset j(S) of R[S]. Note that j(S) is a basis of R[S]; that is, every
element of R[S] can be expressed in a unique way as a linear combination of
the elements of j(.5):
f=Y f@)j)
zes

wherein all but finitely many elements are 0. If M is a left R-module and
¢ : S — M amap then ¢ = ¢ 07, where ¢; : R[S] — M is uniquely specified
by requiring that it be linear and equal to ¢(z) on j(z). (For S = () take

R[S] ={0}.)
Let A be a ring, and F and F' free A-modules with an n-element basis
bi,...,b, of E and an m-element basis c¢,...,¢, of F. Then for any f €

Homy(E, F) we have
f (Z ajbj> =2 aif(by) =3 (Z ajfij> (12.39)

with f;; being the ¢;-th component of f(b;). This relation is best displayed
in matrix form:

fu fa oo fm
(a1, ...;a,]) — a1, ...;a,] | oo (12.40)

o fon eer fom

Note that in the absence of commutativity of A, the matrix operation appears
more naturally on the right, and clearly the matrix on the right here is not
[fi;] itself but the transpose [f;;]*. A further significance of (12.40) is that,
working with one fixed basis of E, for f,g € End4(F),

(gf)zk = Z fjkgij = Zgu Oopp fjk7
j=1 j=1

so that the mapping
End4(E) — Matr,,xm(A%P) : f— [fi;]', (12.41)

is an isomorphism of rings, where A°PP is the opposite ring.
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12.6 Power Series and Polynomials

In this section R is a commutative ring with multiplicative identity 1, and F
is a field.

A power series in a variable X with coefficients in R is, formally, an
expression of the form

a0+a1X+a2X2+-~-,

where the coefficients a; are all drawn from R.
For an official definition, consider an abstract element X, called a variable
or indeterminate, and let, (X) be the free monoid over {X}. Then let R[[X]]
be the set of all maps
a:(X)—R.

Denote by a; the image of X7 under a. Define addition in R[[X]] pointwise
(a+b);=a;+b; forall je{0,1,2,...}.

Define multiplication by

n

(ab), = Zajbn_j for all j € {0,1,2,...}.

J=0

These operations make R[[X]] a ring, called the ring of power series in X
with coefficients in R. An element a € R[[X]] is best written in the form

a(X) = Zanj,

with the understanding that j runs over {0,1,2,...}. With this notation,
both multiplication and addition make notational sense; for example, the
product of the power series 7X7 with the power series sX* is indeed the
power series rsX7T* and

where

J
¢j =Y abjy  forall j€{0,1,2,..}.
k=0
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If 1 #0in R then 1 # 0 in R[[X]] as well.

More generally, if S is a non-empty set then we have first the set R[[S]]c
of power series in noncommuting indeterminates X € S, defined to be the
set of all maps

a:(S)— R,

where (S) is the free monoid over S. Such a map is more conveniently

displayed as
a= Z arf.
fe(s)
An element a for which ay = 0 except for exactly one f € S", for some
n € {1,2,...}, is a monomial. Addition is defined on R[[S]],. pointwise and
multiplication by

ab=>_ > ab | f (12.42)

fE(S) \hke(S)hk=f

where the inner sum on the right is necessarily a sum of a finite number of
terms. This makes R[[S]],c a ring.

Quotienting by the two sided ideal generated by all elements of the form
XY —YX with X, Y € S produces the ring R[[S]] of power series in the set
S of variables, with coefficients in R. If S consists of the distinct variables
X1, ..., Xpn, then R[[S]] is written as R[[ X7, ..., X,]].

Inside the ring R[[ X1, ..., X,,]] is the polynomial ring R[X1, ..., X,] which
consists of all elements a; X3'... X, with j running over {0,1,...}", for

which the set {j : a; # 0} is finite. Thus, the monomials X{'...XJ» form a
basis of the free R-module R[Xj, ..., X,].

Quotienting R[X1, Y], ..., X,,, Y,] by the ideal generated by the elements
XY —1,....X,Y, — 1 produces a ring which we will denote

RIX1, X4 o X, XN, (12.43)

This is a free R-module with basis {X7'... X" : j;. ... j, € Z}, with X° being
1. An element of this ring is called a Laurent polynomial.

For a non-zero polynomial p(X) € R[X], the largest j for which the
coefficient of X7 is not zero is called the degree of the polynomial. We take
the degree of 0 to be 0 by convention.

A polynomial p(X) € R[X] is monic if it is of the form > " p; X7 with
pp=1andn > 1.
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If a(X),b(X) € F[X], and the degree of b(X) is > 1, then there are
polynomials ¢(X),r(X) € F[X], with the degree of 7(X) being less than the
degree of b(X), such that

a(X) = ¢(X)b(X) + r(X).

This is the division algorithm in F[X]. Inductive proof: If a(X) has degree
< the degree of b(X) simply set ¢(X) = 0 and r(X) = a(X). If a(X) has
degree n > m, the degree of b(X), then a(X) — (a,b, ') X" ™b(X) has degree
< n and so by induction there exist ¢;(X),r1(X) € F[X], with degree of
r1(X) being < degree b(X), such that

a(X) = (@b, )X "B(X) = qu(X)b(X) +71(X)

and so we obtain the desired result with ¢(X) = ¢1(X) + (a,b;,) X" ™.

The polynomial ring F[X], for any field F, is clearly an integral domain;
it is, moreover, a principal ideal domain. Proof: For an ideal I # {0} which
is not all of F[.X], let b(X) be a nonzero element of lowest degree; then for
any p(X) € I, we have p(X) = ¢(X)b(X) + r(X) with r(X) of lower degree
than b(X), but, on the other hand r(X) = p(X) — ¢(X)b(X) € I and so
r(X) must be 0, and hence I = b(X)F[X].

If ¢(X) € F[X] has no polynomial divisors other than constants (elements
of IF) and constant multiples of ¢(X), then ¢(X) is said to be irreducible. The
ideal ¢(X)F[X] is maximal if and only if ¢(X) is irreducible. Thus, ¢(X) is
irreducible if and only if F[X]/q(X)F[X] is a field.

If p(X) = Z?Zl a; X’ € R[X], where R is a commutative ring, and a € R
then the evaluation of p(X) at (or on) « is

d
pla) = Zajozj € R.
j=1

The element « is called a root of p(X) if p(«) is 0.

For a field F and polynomial p(X) € F[X] of positive degree, let p;(X) be
a divisor of p(X) of positive degree, and F; the field F[.X]/pi(X)F[X]. Since
p1(X) is of positive degree, the map ¢ — ¢+ pi (X)F[X] maps F injectively
into F, and so we can view I as being a subset of F;. Let

a =X+ p(X)F[X] € Fy;
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then py(a) = 0, and so p(«) is also 0. Thus, in the field F; the polynomial
p(X) has a root.

A field F is algebraically closed if each polynomial p(X) € F of degree
> 1, has a root in . In this case, a polynomial p(X) of degree d > 1, splits
into a product of d terms each of the form X — «, for a € F, and a constant.

An algebraic closure of a field F is an algebraically closed field F which
contains a subfield isomorphic to F. Every field has an algebraic closure (for
a proof, see Lang [53]).

Let Z} be the subset of Z" consisting of all strings (ji, ..., jn) with ji >

. 2 Jn- Inside Z]" is the subset Z]| of all strictly decreasing sequences.

Let R be a commutative ring with 1 # 0. Denote a typical element of
R[X1, XY . X, XY as f(X1,..., X,), or simply f. It can be expressed
uniquely as a linear combination of monomials X7 = X{l...Xj;”, where j =
(Ji, s dn) € Z, with coefficients f; € R all but finitely many of which are
0. If Ry is any commutative R-algebra and aq,...,a, € R; then denote by
f(ay, ..., a,) the evaluation of f at Xy = aq,.., X,, = ay:

flay, oan) = fral'.alr. (12.44)

JEZ”

Note that, in particular, the a; could be drawn from R[X;, X; ', ..., X,,, X, 1]
itself. If o € S, denote by f,(X1,..., X;,) the element f(X,qy,..., Xom))-

For the following result we say that f is symmetric if f, = f for all
o € S,. The set of all such symmetric f forms a subring Reym[Xi, ..., X;]
of R[X1,X; !, ..., X,,, X!]. We say that f is alternating if f(Y1,....Y,) =0
whenever {Y7, ..., Y, } is a strictly proper subset of {Xj, ..., X,,}.

Theorem 12.6.1 Let F be a field which contains m distinct m-th roots of 1
for every m € {1,2,...}, and R a subring of F.

(G) If f € R[X1, X7, X, XY s such that f(M\,...,\,) = 0 for all
roots of unity A1, ..., A\, € F then f =0.

(i) Reym[X1, X7,y X0, X, Y] is a free R-module with basis given by the
symmetric sums
= > XX (12.45)
0ESH

with @ = (w1, ..., w,) running over Z7, and s; defined to be 1.
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(iii) Rae[X1, X; ', ., X, XY is a free R-module with basis given by the
alternating sums
a() = Y (—1)° X4 X0 (12.46)

(1) o(n)
O'ESn

with W = (wy, ..., w,) running over Z,.

Proof. (i) First suppose n = 1, and ¢ € R[X, X '] is 0 when X is evaluated
at any root of unity in F. Suppose ¢ = >, , ¢r X", with ¢, = 0 for k not
between integers [ and u, with [ < u, and let a = max{0, —{}. Then X*¢(X)
is a polynomial which vanishes on infinitely many elements (all roots of unity)
in the field F and so X%¢(X) = 0, whence ¢ = 0. Next, consider n > 2, and
suppose f € R[X1, X; ', ..., Xy, X!] satisfies the condition given. Write f as
an element of R[Xy, X5, ..., X,,, X; V][ X1, X;!], with X7 having coefficient
fi € R[ X2, X5, ..., Xy, X;7Y]. Then by the n = 1 case, each f;()\a, ..., \,) =0
for each j and all roots A; of unity. Then, inductively, each f; is 0.

(ii) Consider a nonzero f € R[X1, X; ', ..., X,,, X, 1], let W; be the finite
set {w € Z7 : fg # 0}, and let Wf = max Wy in the lexicographic order.
Then

9=1f—lwsw

is symmetric and if it is not 0 then Wg < W; working down the induc-
tion ladder of the finite set Wy, we see that the symmetric sums span
R[X1,X;', ..., X,,, X;!]. The linear independence follows from observing
that if «/, w/ are distinct elements of Z then sz and sy are sums over disjoint
sets of monomials.

(ili) The argument is virtually the same as (ii) except substitute a; for

12.7 Algebraic Integers

If R is a subring of a commutative ring R; with multiplicative identity 1 # 0
lying in R, then an element a € R, is said to be integral over R if p(a) =0
for some monic polynomial p(X) € R[X]. All elements r of R are integral
over R (think X —r).

With R and R; as above, if b, ..., b,, € R; then by Rlby, ..., b,,] is meant
the subring of R; consisting of all elements of the form p(b, ..., b,) with
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p(X1, ..., Xin) running over all elements of the polynomial ring R[ X7, ..., X,,].
Note that R[by,...,by,| is a subalgebra of R;, when both are also equipped
with the obvious left R-module structures.

Theorem 12.7.1 Suppose R is a subring of a commutative ring Ry with
1 # 0 lying in R, and assume that R is a principal ideal domain. Then an
element a € Ry is integral over R if and only if the R-module R[a] is finitely
generated. If a,b € Ry are integral over R then so are a + b and ab. Thus,
the subset of Ry consisting of all elements integral over R is a subring of R;.

Proof. Suppose a is integral over R. Then a™ 4 p,_1a™ ' 4---+pra+py = 0
for some positive integer n and pq,...,p,—1 € R. Thus, a” lies in the R-
linear span of 1,a,....,a" !, and hence by an induction argument all powers
of a lie in the R-linear span of 1,...,a""!. Consequently, the R-module R[]
is finitely generated. Conversely, suppose R|[a] is finitely generated as an R-
module. Then there exist polynomials ¢;(X), ..., ¢, (X) € R[X] such that the
R-linear span of ¢ (a), ..., ¢ (a) is all of R[a]. Let n be 1 more than the degree
of ¢1(X)...qm(X); then a” is an R-linear combination of ¢ (a), ..., gm(a), and
so this produces a monic polynomial, of degree n, which vanishes on a.

Suppose a,b € R; are integral over R. Then, by the first part, the
R-modules R[a] and R[b] are finitely generated, and then R[a] + R[b] and
Rla]R[b] (consisting of all sums of products of elements from R[a| and R[b])
are also finitely generated. Since R[a+b] C R[a]+ R[b] and R[ab] C R[a]R[b]
it follows from Theorem 12.5.1 that these are also finitely generated and so,
by the first part, a + b and ab are integral over R.

Elements of C (or, if you prefer, Q) which are integral over Z are called
algebraic integers. Firmly setting aside the temptation to explore the vast
and deep terrain of algebraic number theory let us mention only one simple
observation:

Proposition 12.7.1 If a,b € Z are such that a/b is an algebraic integer
then a/b € Z.

Proof. Let p(X) = >>"_; p;X? € Z[X] be a monic polynomial which vanishes
on a/b. Assume, without loss of generality, that a and b are coprime. From
p(a/b) = 0 and p, = 1 we have a" = —Z}:& p;b"7a?, but the latter is
clearly divisible by b, which, since a and b are coprime, implies that b = +1.
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12.8 Linear Algebra

Let V' be a vector space over a field F. In this section we will prove some
useful results in linear algebra on decompositions of elements of Endr(V') into
convenient standard forms. Many of the arguments below would be much
simpler if we were to assume that F is algebraically closed and V is finite
dimensional.

We will say that a linear map S : V — V is semisimple if there is a basis
of V' with respect to which the matrix of S is diagonal and there are only
finitely many distinct diagonal entries. For such S there is then a nonzero
polynomial p(X) for which p(S) = 0. Compare this with the definition of a
semisimple element in the algebra Endp(V') given in Exercise 5.12.

An n x n matrix M is said to be upper triangular if M;; = 0 whenever
@ > j. It is strictly upper triangular if M;; = 0 whenever 7 > j.

An element N € Endg(V) is nilpotent if N* = 0 for some positive integer
k. Clearly, a nilpotent which is also semisimple is 0. Moreover, the sum of
two commuting nilpotents is nilpotent.

Here is a concrete picture of nilpotent elements in terms of ordered bases:

Proposition 12.8.1 Let V # 0 be a finite dimensional vector space, and
N a nonempty set of nilpotent elements in Endp(V). Then V has a basis
relative to which all matrices in N are strictly upper triangular.

Proof. First we show that there is a nonzero vector on which all N € N
vanish. Choose Ni,..., N, in N/, which span the linear span of N'. We show,
by induction on r, that there is a nonzero b € N;_, ker V;. Observe that if v
is the smallest positive integer for which N;* = 0 then there is a vector by
for which

NY'"'by # 0 and Ny'b; = 0.

So Ny 1719, is a nonzero vector in ker Nj. Inductively, there is a nonzero
v € ker Ny on which Ny,..., N, vanish. Hence, by € N_; ker Nj.

Now we use induction on n = dimg V' > 1. The result that there is a basis
making all N € N strictly upper triangular is valid in a trivial way for one
dimensional spaces because in this case 0 is the only nilpotent endomorphism.
Assume that n > 1 and that the result holds for dimension < n. Pick nonzero
by € Mj_; ker ;. Let

V = V/Fby,
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and o
Nj € El’ld]}?(‘/l)

the map given by
w + Fbl — Njw -+ Fbl

Note that dimg V = n—1 < n, and each N is nilpotent. So, by the induction
hypothesis, V has a basis b,,..., b, such that

Njbe = > (N)ub
2<i<k

for some (N;);x € F, and all j € [r] and k € {2,...,n}. Then the matrix for
cach Nj; relative to the basis by,..., b, is strictly upper triangular.

The ladder of consequences of the Chinese Remainder Theorem we have
built is tall enough to pluck a pleasant prize, the Chevalley-Jordan decom-
position:

Theorem 12.8.1 Let V' be a vector space over a field F, and T € Endg(V')
satisfy p(T') = 0 where p(X) € F[X] is of the form [[}_,(X — ¢;)"7, where
m, vy, ..., Uy are positive integers and ci, ...,c,, are distinct elements of F.
Then there exist S,N € Endp(V) satisfying: (i) S is semisimple and N is
nilpotent; (ii) T = S + N; and (iii) SN = NS. Moreover, S and N are
polynomials in T'. There is a basis of V relative to which the matriz of S
is diagonal and the matriz of N is strictly upper triangular. If each v; =1,
that is the roots of p(X) are all distinct, then there is a basis of V' relative
to which the matrix of T is diagonal; the set of diagonal entries is exactly
{c1, .., e} if p is a polynomial of minimum positive degree which vanishes
onT.

We will prove below in Proposition 12.8.3 that the decomposition of T as
S + N here is unique. The last statement in the theorem above has been
used in the proof of Proposition 1.9.1; however, you can check this special
case more simply, without having to establish the decomposition theorem in
full.

Proof. Apply Proposition 12.4.1 with A; being the ideal in A = F[X] gener-
ated by (X —c¢;)". Then, viewing V' as an A-module by a(X)v = a(T")v for all
a(X) € A, we see that V' is the direct sum of the subspaces V; = ker(T'—¢;)"7,
and, moreover, there is a polynomial s(X) € A such that S = s(T') agrees
with ¢;I on V; for each j € [m]. Then S is semisimple. Taking N =7 — S,
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we have N* equal to 0 on Vj for all j € [m], and so N is nilpotent. Since
both S and N are polynomials in 7" they commute with each other (which is
clear anyway on each V; separately).

Choose, by Proposition 12.8.1 applied to just the one nipotent N|V;, an
ordered basis in each V; with respect to which the matrix for N|V; is strictly
upper triangular. Stringing together all theses bases, suitably ordered, pro-
duces a basis for V relative to whch S is diagonal and N strictly upper
triangular.

If each v; = 1 then the construction of S show that 7" = S on each V; and
hence on all of V. If p is a polynomial of minimum positive degree for which
p(T) is 0, then each V; # {0} (for otherwise T'— ¢; is injective and hence has
a left inverse which implies that p(X)/(X — ¢;) vanishes on T') and so every
c¢; appears among the diagonal matrix entries of S. | QED

The definition of a semisimple element S is awkward in that it relies
on a basis for the vector space. One simple consequence, easily seen by
writing everything in terms of a basis of eigenvectors, is that ker(S — ¢)” =
ker(S — ¢) for any ¢ € F and positive integer v. If p(S) = 0 for some positive
degree polynomial p(X) € F[X]| then every eigenvalue of S is a zero of p(X)
and so there are only finitely many distinct eigenvalues of S. If W is a
subspace of V' which is mapped into itself by S, then p(S|W) = p(S)|W = 0.
Suppose p(X) = [[;_; (X — ¢;)", with ci,...,¢,, are distinct elements of F
and v; are positive integers. Then W is the direct sum of the subspaces
ker(S — ¢;)"|W = V; N W, where V; = ker(S — ¢;)" = ker(S — ¢;). This
means that W is the direct sum of the subspaces W; = ker(S —¢;)|W. Thus,
S|W is semisimple: if S € Endp(V') maps a subspace W into itself then the
restriction of S to W is also semisimple.

Proposition 12.8.2 Let V' be a vector space over a field F and C a finite
subset of Endp(V') consisting of semisimple elements which commute with
each other. Then there is a basis of V' with respect to which every T € C
has diagonal matriz. There exists a semisimple S € Endg(V') such that every
element of C is a polynomial in S. In particular, the sum of finitely many
commuting semisimple elements is semisimple and all elements.

For another, more abstract, take on this result, see Exercises 5.11, 5.12,
5.13.
Proof. We prove this by induction on |C|, the case where this is 1 being
clearly valid. Let n = |C] > 1 and assume that the result is valid for lower
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values of |C|. Pick a nonzero S; € C'; V is the direct sum of the subspaces
V. = ker(Sy — ¢l ) with ¢ running over F. Let Ss, ..., S, be the other elements
of C. Since each S; commutes with S, it maps each V. into itself and
its restriction to V, is, as observed before, also semisimple. But then by the
induction hypothesis each nonzero V, has a basis of simultaneous eigenvectors
of Sy, ..., S,. Putting these bases together yields a basis of V' which consists
of simultaneous eigenvectors of 51, ..., S,. Thus, V =W; & ...®d W,,, where
each S; is constant on each W, say S;|W; = cijlw,;. Now choose, for each
i € [n], a polynomial p;(X) € F[X] such that p;(j) = ¢;; for j € [m]. Then
pi(J) = S;, where J is the linear map equal to the constant j on W;.

Now we can prove the uniqueness of the Chevalley-Jordan decomposition:

Proposition 12.8.3 Let V be a vector space over a field F. If T € Endp(V)
satisfies p(T) = 0 for a polynomial p(X) € F[X| which splits as a product
of linear terms X — «, then in a decomposition of T as S + N, with S
semisimple and N nilpotent, and SN = NS, the elements S and N are
uniquely determined by T'.

Proof. Remarkably, this uniqueness follows from the existence of the decom-
position constructed in Theorem 12.8.1. If T'= S} + N; with S; semisimple,
Nj nilpotent, and S N; = NSy, then S; and N; commute with 7" and hence
with S and N because these are polynomials in 7. Then S —S; = Ny — N
with the left side semisimple and the right side nilpotent, and hence both are
0. Hence S =S; and T = T3.

This leads to the following sharper form of Proposition 12.8.2:

Proposition 12.8.4 Let V # 0 be a finite dimensional vector space over
a field F and C a finite subset of Endp(V') consisting of elements which
commute with each other. Assume also that every T € C' satisfies p(T) = 0
for some positive degree polynomial p(X) € F[X] which is a product of linear
factors of the form X — a with o drawn from F. Then there is an ordered
basis by, ..., b, of V such that every T' € C' has upper triangular matriz.

Proof. We prove this by induction on |C], the case where this is 1 following
from Theorem 12.8.1. Let n = |C| > 1 and assume that the result is valid
for lower values of |C|. Then V is the direct sum of the subspaces V; =
ker(Ty — ¢;1)"7, where p,(Ty) = 0 for a polynomial p,(X) = [[jL, (X — ¢;)",
with ¢; € F distinct and v; € {1,2,...}. Let T5...., T}, be the other elements of
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C'. Since each T commutes with 71, all elements of C' map each Vj into itself.
But then by the induction hypothesis each nonzero V; has an ordered basis
relative to which the matrices of Ty, ..., T,, are upper triangular. Stringing
these bases together (ordered, say, with basis elements of V; appearing before
the basis elements of V; when ¢ < j) yields an ordered basis of V' relative to

which all the matrices of C' are upper triangular.

12.9 Tensor Products

In this section R is a commutative ring with multiplicative identity element
1r. We will also use, later in the section, a possibly non-commutative ring
D.

Consider left R-modules M, ..., M,. If N is also an R-module, a map

f:Myx---M,— N:(v1,...,05) — f(v1,...,0,)
is called multilinear if it is linear in each v;, with the other v; held fixed:

fv1, ey avg + bug, oy v,) = af (1, oy 0) + bf (V1 0, Uy ooy V)

for all k € {1,...,n}, vi € My, ..., v, v, € My, ...,v, € M, and a,b € R.

Consider the set S = M; x ... x M,, and the free R-module R[S], with
the canonical injection j : S — R[S]. Inside R[S] consider the submodule J
spanned by all elements of the form

(01, ey avg + 00, vn) — ag(ve, e, ) — bF (V1 2, VL 0p)

with k € {1,...,n}, vy € My, ..., v, v}, € My, ...,v, € M, and a,b € R. The
quotient R-module
My ®...® M, = R[S]/J (12.47)

is called the tensor product of the modules My, ..., M,,. Let 7 be the composite
map
M1 X oo, XMn—>M1®®Mn,

obtained by composing j with the quotient map R[S] — R[S]/J. The image
of (v1,...,v,) € My X -+ X M, under 7 is denoted v ® - -+ ® v,:

V1R @y =T(V1, ., Uy). (12.48)
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The tensor product construction has the following ‘universal property’: if
f:M; x---x M, — N is a multilinear map then there is a unique linear
map f1 : M1 ® ---® M, — N such that f = f; o7, specified simply by
requiring that

for,.yvn) = filv @ ... @ vy),

for all vy,...,v, € M. Occasionally, the ring R needs to be stressed, and we
then write the tensor product as

M, ®pg - Qr M,.

A word of caution: tensor products can be treacherous; an infamous simple
example is the tensor product of the Z-modules Q and Zy = Z/27Z which is
0 (because 1®1=1/2®2=0) but Z® Zg ~ Zs (induced by Z x Zy — 7 :
(m,n) — mn) even though Z is a submodule of Q.

There is a tensor product construction for two modules over a possibly
non-commutative ring. We use this in two cases: (i) tensor products over
division rings which arise in commutant duality; and (ii) the induced repre-
sentation. Let D be a ring (not necessarily commutative) with multiplicative
identity element 1p, and suppose M is a right D-module and N a left D-
module. Let J be the submodule of the Z-module M ®; N spanned by all
elements of the form (md) @n —m® (dn), withm € M, n € N,d € D. The
quotient is the Z-module

M &p N =7Z[M x N]/J. (12.49)

This is sometimes called the balanced tensor product. Denote the image of
(m,n) € M x Nin M ®p N by m®n. The key feature now is that

(md) @ n=m® (dn), (12.50)

for all (m,n) € M x N and d € D. The universal property for the balanced
tensor product

t:MxN—-M®pN:(mmn)—men (12.51)

is that if f : M x N — L is a Z-bilinear map to a Z-module L which is
balanced, in the sense that f(md,n) = f(m,dn) forallm € M,d € D,n € N,
then there is a unique Z-linear map f; : M ®p N — L such that f = f; ot.



330 Ambar N. Sengupta

Now suppose M is also a left R-module, for some commutative ring R
with 1, such that (am)d = a(md) for all (a,m,d) € R x M x D. Then, for
any a € R,

MxN—M®pN:(m,n)— (am)@n (12.52)

is Z-bilinear and balanced, and so induces a unique Z-linear map specified by
la:M®DN—>M®DN:m®n»—>a(m®n)déf(am)@n. (12.53)

The uniqueness implies that l,.p = I, + lp, lep = l4 0 lp, and, of course, [y
is the identity map. Thus, M ®p N is a left R-module with multiplication
given by a(m ® v) = (am) ® v for all a € R, m € M and m € N.

Despite the cautionary note and ‘infamous example’ described earlier,
there is the following comforting and useful result:

Theorem 12.9.1 Let D be a ring, {M;}icr a family of right D-modules with
direct sum denoted M, and {N; : j € J} a family of left D-modules with direct
sum denoted N. Then the tensor product maps t;; : M; x N; — M; @ N; :
(m,n) — m ®n induce an isomorphism

O @ M; ®p Nj - M ®p N : @i7jtij(mi,nj) — sz(ml) & Lj(nj),
(i,j)€IxJ ij
(12.54)
where 1, denotes the canonical injection of the k-th component module in a
direct sum.
If each M; s also a left R-module, where R is a commutative ring, satis-
Jying
(am)d = a(md) (12.55)
foralla e Rom € M;,d € D, and all the balanced tensor products are given
the left R-module structures, then © is an isomorphism of left R-modules.
If the right D-module M is free with basis {v;}icr and the left D-module
N is free with basis {w;}c; then M @ N is a free Z-module with basis {v; ®
W; tig)erx -
Note that the statement about bases applies to the D-modules M and N,
not to the R-module structures.

Proof. By universality, the bilinear balanced map M; x N; — M ®p N :
(m,n) — 1;(m) ® ;j(n) factors through a unique Z-linear map

Lij : Ml Xp Nj — M &p N ti]’(m, TL) — Ll(m) X Lj(ﬂ). (1256)
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These maps then combine to induce the Z-linear mapping © on the direct sum
of the M; ®p N;. Since every element of M is a sum of finitely many ¢;(m;)’s,
and every element of N is a sum of finitely many ¢;(n;)’s it follows that ©
is surjective. Let m; denote the canonical projection on the ¢-component in a
direct sum. The map

M x N — M; ®p N; : (m,n) — mi(m) @ m;(n)

is Z-bilinear and balanced and induces a Z-linear map m;; : M ®p N —
M; ®p Nj. There is also the Z-linear map ¢;; in (12.56). Now the composite
7 o ¢ is 0 if k& # [ and is the identity map if £ = [. Hence,

g O lyj = ! M:®pN; 1 (2’]) (?,"?/)7 (1257)
0 if (i, 7) # (@', J')-

If z € @(z’,j)eliMi ®@p N; then, with z;; being the M; ® p N;-component
of z, the relations (12.57) imply z;; = m;;(©(z)). Hence, if ©(z) = 0 then
x = 0.

If all the modules involved are left R-modules satisfying (12.55) then ©

is R-linear as well.

For more on balanced tensor products see Chevalley [13].

12.10 Extension of Base Ring

Let R be a subring of a commutative ring R;, with the multiplicative identity
1 of Ry lying in R. Then R; is a left R-module in the natural way. If M is
a left R-module then we have the tensor product product

Ry ®@r M

which is a left R-module, to start with. But then it becomes also a left
R;-module by means of the multiplication-by-scalar map

Rix (Ri®@M)— R ®M: (a,b®@m)— (ab) @ m

which is induced, for each fixed a € Ry, from the R-bilinear map f, : Ry X
M — Ry @M : (bym) — (ab) ® m. With this R;-module structure, we



332 Ambar N. Sengupta

denote Ry ®zg M by Ry M. Dispensing with ®, the typical element of R; M
looks like

aimq + -+ agpmg,

where ay,...,a; € Ry and my,...,m; € M. Pleasantly confirming intuition,
R M is free with finite basis if M is free with finite basis:

Theorem 12.10.1 Suppose R is a subring of a commutative ring Ry whose
multiplicative identity 1 lies in R. If M is a free left R-module with basis
bi,..., by, then Ry ®r M s a free Ry-module with basis 1 ® by,..., 1 ® b,,.

Proof. View R} first as an R-module. The mapping
Ry X M — RY : (a,c1by + -+ 4 ¢pby) — (acq, ..., acy),
with ¢q,...,¢, € R, is R-bilinear, and hence induces an R-linear mapping
L:Ri®rM — R} :a® (c1by + -+ + ¢pby) — (acq, ... acy,).

Viewing now both Ry ®r M and RY as left Ri-modules, L is clearly R;-linear.
Next we observe that the map L is invertible, with inverse given by

R?—>R1®RMZ(1’1,...,1‘”)l-)lj@bl—f—"'—f-l'n@bn.

Thus, L is an isomorphism of Ry ® g M with the free R;-module R}. The
elements (1,0,...,0),..., (0,...,1), forming a basis of R}, are carried by L™}
to 1®by,...,1®b, in Ry M. This proves that R; M is a free R;-module and

1®bq,...,1®0b, form a basis of R{M.



Chapter 13

Selected Solutions

1.10

1.11

1.14

Let V,, be a 1-dimensional vector space, for each n € N = {1,2,3,...},
V = @neN V., and e, the element of V' which has 0 in all entries
except the m-th, in which the entry is 1. Let N be the subspace of
V' consisting of all ¢ such that {m € N : ¢(e,,) # 0} is finite (thus,
N is isomorphic to V). Then N is a proper subspace of V' but the
annihilator Ny is all of V.

(i) Let S : V — V" be specified by (Sv)(¢) = ¢(v) for all v € V' and
¢ € V'. Then, with p denoting the representation of G on V', and
primes denoting duals,

S (p(g)v) (¢) = ¢ (p(g)v) = (Sv)(p'(g7")),

for all ¢ € G, which says that Sp(g) = p"(¢g)S. When V is finite
dimensional, S is a vector space isomorphism. (ii) Let T: V' — W be
an intertwining map. Then the dual map 77 : W' — V' : ¢ +— ¢T is an
intertwining map:

(T'piw (9)) () = dpw (g~ )T = ¢Tpv(g~") = (pi(9)T") (9),

for all ¢ € W’'. When V and W are finite dimensional, 7" is an iso-
morphism of vector spaces if and only if 7”7 is an isomorphism of vector
spaces.

Among all invariant subspaces of V', choose V| to be one of minimum
positive dimension. Then V; is irreducible. Proceed with V/Vj.

333
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Pick g € G and choose a basis vy, ...,vg of V such that p(g)v; = A\jv;
for all j € [d] = {1,...,d}. Then the vectors v; ® v;, for j € [d], and
V; U + v Ry, for 1 < j < k < d form a basis of V®2, and the matrix
of ps(g) for this basis is diagonal with entries A%, for j € [d], and A\;\
for j <k in [d], whence x,,(g) is 3°; A} + 32, ., AjAx, and so

Xp.(9) = [Xo(9%) + Xp(9)%]/2- (13.1)

This was noted by Frobenius and Schur [35, eqn (3), section 5] who
refer to earlier work by Molien.

p(g) is given by a diagonal matrix with respect to some basis, with
roots of unity along the diagonal, and so |x,(g)| < d, with equality if
and only if all the diagonal entries of p(g) are equal.

Character Table for D5 with generators ¢ and r satisfying ¢® = 1% = ¢

and rer—! = ¢ 1
2
e 2 r
o1 1 1 -1

o |2 712\/5 _1+2\/5 0

pr |2 R SRR 0

Table 13.1: Character Table for Ds

Let ¢ = (123) and r = (12), and specify the representation p; on F? by
the matrices

L R ey EC R R )

If v = (z,y) € F? is mapped into a multiple A\(z,y) by pi(r) then
A =1,and so A € {1,—1}. If A = 1 then z = y and we can take
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3.2

3.3

3.4

3.5

both to be 1; then pi(c)v = (—2,1) which is a multiple of v if and
only if 3 = 0in F. If A = —1 then we can take v = (1,—1) and
so p1(c)v = (0,1) which, again, is not a multiple of v. Thus, p; is
irreducible, as long as 3 # 0 in F.

Choose g not the identity in G, a =¢g—1landb=1+¢g+--- +g"*
where n = |G|; then ab = 0.

If v € F[G] then vs = €(v)s, where € : F[G] — F : > _,2(9)g —
> gec@(g). Thus, F[G]s = Fs. Since s* = 0, the submodule F[G]s

contains no nonzero idempotent and hence has no complement.

It is checked directly that € is a ring homomorphism. Here is a more
‘fundamental’” argument. Let i : G —< G >g: g — i(g) be the free
R-module over the set G. Then the map G — R : g — 1 induces a ring
homomorphism €; :< G >r— R, carrying i(g) to g, for every g € G.
Now R[G] is the quotient of < G >g by the two sided ideal generated
by elements of the form i(g)i(h) — i(gh), and €; is 0 on such elements.
Hence, with ¢ :< G >r— R[G] denoting the quotient map, the induced
map € : R[G] — R, carrying ¢(x) to € (z) for every x €< G >pg, is a
ring homomorphism. If v € kere then v = Zg x,g, with Zg z, = 0,
and then v = x,(g—1). The coefficient of any g # ein >° A,(g—1)
is Ag and so this is 0if >° A,(g — 1) = 0.

The multiplicative structure of the center of F[Ds] is specified through:

1 C D R
11 ¢ D R
C|C 24D C+D 2R
D|D C+D 2+C 2R
R|R 2R 2R 5(1+C+ D)

Table 13.2: Multiplication in the center of F[Dj]

where C =c+ct, D=+, and R=(1+c+c*+ 3+ ct)r.
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3.6 The central idempotents of F[Ds], where F has characteristic 0 and
contains v/5, are:

0
1 1
u+:1—0[1+C+D+R] and u,:1—0[1+C+D—R]
u1:1—10[4+(\/5—1)0—(\/3+1)D]

uzzl—l()[4—(\/5+1)c+(\/5—1>p]

Uy +U—, Uy +Up, Uy + U2, U+ U, U_+ U2, U+ U

Uy +U_ + Uy, Uy +U_+ Uz, Ugp + U+ Uy, U+ U+ U2

3.10 (i)

Uy +U_ Fup +us =1

(13.3)
where notation is as in 3.3.
3.7 See Lemma 7.1.1.
For any v,w € V we have
(S, S,w) = S(S,v,w) = S(w, S,v) = (w, S2v), (13.4)

(iii)

and interchanging v and w gives

(S2w,v) = (v, S2w) = (S,w, S,v) = (S,v, S,w).

By (ii), (S?v,v) = (S,v, S,v) > 0. Since S # 0 it is nondegenerate,
by Theorem 3.3.2. Looking at the diagonal form matrix of S, it
follows that no diagonal entry is 0, for otherwise that entire column
would be 0. In particular, S, is invertible.

Choose a polynomial P(X) such that P(t) = v/t for each diagonal
entry ¢ in the diagonal form of the matrix for S?. Then Sy = P(S?)
and hence commutes with S, as well as with all p(g), because p(g)
commutes with S2.

It is clear that C' = S,S,' is conjugate linear. Next, since Sy
commutes with S,, we have C? = S2S;2 = I. Since S, and S
commute with all p(g), so does C.
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(vi)

(vii)

(viii)

(ix)

Write any v € V' as

1 1
v = §(v+Cv) +22—i(v—Cv)

we observe that the first term is fixed by C' and so is o (v — Cv).
Thus V = Vi + VR, and the sum is direct because Vxk NiVg =0
since C acts as I on Vi and acts as —I on V.

Since C' commutes with p(g) we have p(¢)Vg C Vi and hence also
p(g)iVk C iVg. Choosing a real basis of Vg we have automatically
a complex basis of V', and since p(g) maps Vi real-linearly into
itsef, the matrix of p(g) in this basis has all entries real.

Let p be a complex irreducible representation of a finite group G
on a vector space V. Suppose uq, ..., uq is a basis of V relative to
which all entries of all matrices p(g) are real. Let Vg be the real
linear span of uy,...,uq. Then p restricts to a real representation
on Vg, and V is the complexification V = Vi +1¢Vg. Let B be a
real inner product on Vg and take Sk to be the real bilinear form
on Vg obtained by symmetrizing B:

Sk(v,w) = Z B(ﬁ(Q)U’ p(g)w)
geG

for all v,w € V. Then Sg is G-invariant and Sg(v,v) > 0, with
equality if and only if v = 0. Now extend Sg complex-bilinearly
to a complex bilinear form on V. Clearly, S is still G-invariant,
nonzero, and symmetric.

This is simply an enumeration of all the cases already noted.

3.11 Subtract the first column from all the other columns. This transforms
the Vandermonde determinant to

Xo— X, ... X, —X,
det : :
xXp-t—xpto o xnt o Xt
Now factor out [];_;, (Xx — X1) to obtain
1 1

det

X2+X1 Xn+Xl

X024 XO3X . X2 X2 XX L X
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Subtract X; times each row, except the last, from the next row, to re-
duce to the Vandermonde determinant in Xs,...,X,,. Thus, inductively,
we have the full factorization [, <, (Xx — X}).

I :F[G] - V : 2 — zv has a nonzero submodule of V' as image and
so I is surjective. Let Ly C F[G] be a complement to the submodule
ker I. Then Iy = I|Lg : Ly — V is an isomorphism of F[G]-modules.

Multiply the i-th row of D = det[X;_jmoan) by 0, where 6" = 1, and

add all rows to obtain the factor X + X160 + --- + X,,_10"!, and the

product of these n factors, one for each n-th root 6 € {1,n,...,n" "'},

is a monic polynomial in Xy (with coefficients in Z[X}, ..., X,,_1]) of

degree n just as D is. Alternatively, D applied to the column vector
1

u = .|, for # any of the n n-th roots of unity, is (Xo + X160 +

gnfl
o+ X, 10™1) times u, which shows that taking as basis of C" the
n vectors u, the matrix is diagonalized with diagonal entries being the
factors Xog + X104+ -+ + X,,_10" L.

Let R(g) : © — gz and R,(g) : x — xg, as linear maps on F[G]. Using
the elements of G as a basis for F[G], we have the matrix entries

R(g>ab - 5g,ab_ 1

13.5
Rr(h)ab = 5h,b—1a- ( )

So the group matrices, with variables X. and Y., for the group G and
the opposite group G°PP are

Da(X) = Y X, R(g) = [Xap-1]asec

o I (13.6)
Deenn(Y) € Y YyR,(9) = [Yitalasec:
g

Since each R(g) commutes with each R,.(h), the group matrix D¢g(X)
commutes with Dgops (V).

Let p;(X) € F[X] be a polynomial of positive degree for which p;(M;) =
0, and let F; be the extension of F obtained by adjoining all roots



Representing Finite Groups 12/05/2010 339

of the polynomial p;(X)...p,(X). Since the matrices M; commute
with each other, the upper triangular form result in Proposition 12.8.4
shows that there is a basis of F7* relative to which each M;, viewed
as an endomorphism of F7*, is upper triangular. Let A;,..., Ay, be
the diagonal entries for the matrix of M; in this basis; then Fyq, re-
expressed in this basis, is upper triangular with the diagonal entry at
(4,7) being >~7_, Xi; X;, and so

j=1 \i=1

4.7 Any 1-dimensional representation p of GG generates a 1-dimensional
representation pg of G/G’ given by po(zG’) = p(z), and every 1-
dimensional representation of G/G” arises in this way from a 1-dimensional
representation of GG. Since G/G’ is abelian the number of inequivalent
1-dimensional representations of G/G’, over the algebraically closed
field F in which |G| and hence |G/G’| is not 0, is |G/G'|.

4.9 Let A = Q[G], and let A, be a complementary subspace to Ay, so that
A= Ay ® A.. Suppose y* =~y. The trace of T, : A = A : x> xy is,
on one hand (by considering g — gy), |G|y. = |G|, and it is also equal
to 0+ vdimg(Ay), because T, maps A, into the complementary space
Ay, and on Ay it acts as multiplication by ~. So

Y=Y = 1P)e =D Ugyy €Z
g

is a positive integer divisor of |G|, and (y~1y)? = v 1y.

4.10 We have hu, = 7(h)u, for every h € G. So F[G|u, = Fu, is indecom-
posable.

4.11 Examining the coefficient of g on both sides of the relation gy = y we
have y. = y,.

4.12 Let e : F[G] = F : }_ xy9 — > x4 be the augmentation map, which
is a homomorphism of rings. Then ker e is a proper nonzero ideal in
F[G]. If F[G] were semisimple then there would be an idempotent u
such that kere = F[G]u. For any g € G, the element g — 1 is in kere
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and so (¢ — 1)u = g — 1, which means (g — 1)w = 0, where w = 1 — u,
and this means gw = w. But then, as in 4.11 , the coefficient w, of
g in w is w,. This being true for all g € G, the element w must be
0 because G is infinite and, by definition, elements of F[G] are finite
linear combinations of elements of G. Hence u = 1, which contradicts

ker e # F[G].

Expressing Fy as the union of disjoint orbits Gz, for x € Ey, and noting
that the number of elements in each orbit is a power of p, and {0} is
a one-element orbit, there are at least p one-element orbits. (See the
discussion around equation (12.11).) In particular, there is a nonzero
element w € Ej such that Gw = {w}, and so Rw = R[G]w is an R[G]-
submodule of E, hence equal to E if E is simple. Since Gw = {w} the
action of G on FE is trivial.

Assume F has characteristic p > 0 and |G| = p™ for some positive
integer n. Let y be a nonzero element in a simple left ideal in F[G][G].
Then, by Exercise 4. 13, gy = y for all g € GG, and so, by Exercise 4. 11
, Y = YeS, Where s = > ;9. Thus Fs is the unique simple left (and
right) ideal in F[G]. In particular, remarkably, every nonzero left ideal
in F[G] contains s. Hence F|G] cannot be the direct sum of two nonzero
left ideals. Let M be a maximal ideal in F[G], and ¢ : F|G] — F[G]/M
the quotient map. The quotient F[G]/M is a simple module over F[G].
By Exercise 4.13, G acts trivially on the simple F[G]-module F[G]/M.
Hence gv —x € M for all ¢ € G and all x € F|G]. In particular,
g—1¢€ M. But the elements g — 1 span kere. So kere C M. Since
ker € is a maximal ideal, it follows that M is a maximal ideal. In the
converse direction, assume [F has characteristic p > 0, GG a finite group,
and F[G] is indecomposable. Suppose ¢ # p is a prime divisor of |G|;
then there is an element x € G of order ¢, and y = q_lsumz;éxk is a
nonzero idempotent not equal to 1. The left ideals F[G]y and F[G](1—y)
are nonzero and complementary.

(a) Is Z a semisimple ring? No. Any ideal in Z is of the form aZ for
some a € Z, and aZ C bZ if and only if a is an integer multiple of
b; hence Z contains no simple ideal.

(b) Is Q a semisimple ring? Yes. In a field, any nonzero ideal is the
full field itself, and so the field is simple and semisimple.
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(c)

(d)

[s a subring of a semisimple ring also semisimple? No, by (a) and
(b).

. a
The matrix M,;, = (O

is either 0 or I, and so the nonzero left ideal L = {My;, : b €
C} contains no nonzero idempotent and therefore cannot have a
complement.

Z) is an idempotent if and only if it

5.2 If a is a nonzero element in a commutative simple ring B then aB,
being a nonzero two sided ideal in B, is B, and so ab = 1 for some
a€B.

5.4 Let B = M,(D) be the algebra of n x n matrices over a division ring

D.
(a)

Let ey, ..., e, be the standard basis of D", and E;; € M, (D) be
the matrix all of whose columns are 0 except the j-th, which is
e;. Let T' € L; be nonzero; then Tj; # 0 for some [ € [n] and then
ﬂ;lEilT = E;; for every i € [n] and so L; = BT. Hence L; is a
simple left ideal.

Identify the matrix ring isomorphically with Endp(D™), viewing
D™ as a right D-module (or vector space), by considering T' € B
as the map D" — D" : v +— Tw, with Tv obtained by ma-
trix multiplication. Choose S € L with, say, the ([, k)-th en-
try nonzero; then T' = FEy;S is a nonzero element of L with all
rows other than the first being 0. The map 77 : D" — D :
(a1, ...,a,) Z?:l Ty,a; is surjective and a D-linear map of
right D-modules. Pick by € D™ with Tiby = 1; then, for any
v € D" we have v — by (T1v) € ker T}, and so the right D-module
D™ is the direct sum of ker77 and b;D. A basis of kerT}, to-
gether with by, forms a basis of D", and so dimp kerT} = n — 1.
Choose a basis by,...,b, of kerT;. Now L = BT and so all
elements of L vanish on bs,...,b,. By the argument for (a),
{T € B:Tby = --- =1Tb, = 0} is a simple left ideal, and
therefore is equal to L.

Let E;; be the matrix with (¢, j)-th entry 1 and all other entries

0. Then each Ej;; is an idempotent, generates the simple left ideal
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Assume (i), and suppose f : Ay; — Ay, is A-linear, where, by semisim-
plicity, y; is an idempotent with L; = Ay;. Then f(ay;) = f(ayiy1) =
ayi1f(y1) € LiLy = 0, and so (ii) holds. Next assume L;L, # 0; then
y1bys # 0 for some b € A and so the map Ay, — Ay, : x +— zbys
is a nonzero A-linear map between simple modules and is hence an
isomorphism. Equivalence with (iii) follows by symmetry.

Assume (i), and suppose f : Av; — Awy is A-linear, where, by semisim-
plicity, v; is an idempotent with N; = Av;. Then f(av1) = f(avivy) =
avy f(v1) € N1Ny = 0, and so (ii) holds. Next assume Ny Ny # 0; then
v1bvy # 0 for some b € A and so the map Av; — Avy : & — xbvs is
a nonzero A-linear map. Equivalence with (iii) follows by symmetry.
Equivalence of (ii) and (iv) is seen by decomposing N; and N, into
simple submodules and observing that an A-linear map f : Ny — N is
nonzero if and only if its restriction to some simple submodule Ly C N;
is nonzero and hence an isomorphism onto f(L;) C Ns.

For ag € A with v = uag, the map Au — Av : x — zag is a nonzero
A-linear map and hence an isomorphism.

It is clear that D, is closed under addition and multiplication, and
uuu = u # 0 is the multiplicative identity in D,. Next, if uxu # 0 then
the map f, : Au — Au : w — wuxu is A-linear and nonzero, and hence,
by Schur’s Lemma, f, is surjective; thus there exists y € A such that
yuuru = u and then (uyu)(uzru) = u. Thus every element b € D, has a

left inverse by ; then (b)) = (br)ru = (br)r(brb) = [(br)Lbr)b = ub = 0.

Suppose az, ..., a,, are the distinct idempotents in I, and let G be the set
of all nonzero elements x; ... x,, where z; is either a; or 1 —a;. Then G
consists of orthogonal idempotents adding up to [[}*,(a; +1—a;) = 1.
Next let G; be the set of nonzero elements of the form x; ...z, where
z; € {a;,1—a;} for each i except that x; = a;. Then the elements of G,
add up to 1-a; = a;. Moreover, the elements of U7, G; are mutually
orthogonal. Thus, aja = 0 for all a € G}, with k # j, and aja = a
for all @ € G;, and so if a; is a sum of elements of elements in G then
multiplying by a; makes every term in the sum 0 except those coming
from G; which remain as they are; hence the sum of the terms coming
from outside G is 0, but if a sum of orthogonal idempotents is 0 then
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each idempotent appearing in the sum is 0. This proves uniqueness of
decomposition.

For any polynomial p(X) € F[X] we have p(s) = >, p(cx)ex. Choose
the polynomials p;(X) such that p;(cy) = dj5; for example, p;(X) =
(X —¢2)e (X — )/ [s(c1 — cx). Then pj(s) = e;. The subset B of
A consisting of all elements of the form p(s), with p(X) running over
F[X], is just the F-linear span of ey, ..., e,, and this is closed under
addition and multiplication, has e; 4+ --- + e, as the multiplicative
identity, and is the sum of the simple ideals Be; = Fe;.

Let c¢1,...,cny be the distinct elements of C, and choose, for each j €
[N], orthogonal nonzero idempotents e;1, ..., €j,, such that c; is an [F-
linear combination of the ej;. By Problem 12, each ej; is a polynomial
in ¢;j, and so all the e;;, for all j and ¢, commute with each other. Then
by Problem 11 there are orthogonal nonzero idempotents ey, ..., eps such
that each e;; is a sum of certain of the e,’s, and so each ¢; is an F-linear
combination of the e;’s.

Using the isomorphism of rings A ~ [], - Ende, (L;) : a — [a]ier, an
element a € A is an idempotent if and only if each of its components
a; € Endg,(L;) is an idempotent, that is, a projection map. If the
rank of the block matrix [a;] were not 1, then we could write a; as
a sum of two nonzero orthogonal projections, and so a would not be
indecomposable. Conversely, if the rank of [a;];er is 1 then a is clearly
indecomposable.

The map A — [[_, Endg(L;) : = — (21,...,x,) is an isomorphism,
where x; = p;(z). Then for each relevant triple (ig, jo, ko) there is a
unique element a € A such that that p;(a) is given by the d; x d;
matrix whose jk entry is 6;;,0;j,0kk,.- Therefore, the functions p; j; are
linearly independent over IF. The characters, being made up of sums of
these matrix entries, are then also linearly independent.

If u and v belong to different A; then uv = 0. Suppose then that v and
v both belong to the same A;. Then we may as well assume that they
are d; X d; matrices over C; = End4(L;), where d; = dimp(L;). Since
u? = u, and u has rank 1, we can choose a basis in which u has entry
1 at the top left corner and has all other entries equal to 0. Then, for
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any matrix v, the product uv has all entries 0 except those in the top
row. Let A be the top left entry of the matrix uv. Then

(uv)™ = \" tuw

If A\ = 0 then (uwv)®> = 0. If X # 0 then A'uv has 1 as top left
entry and all rows below the top one are 0; hence, A™luv is a rank
1 projection, that is, an indecomposable idempotent. Thus, uv is a
multiple of an indecomposable idempotent. If v and v commute and
uv # 0 then (uv)? = u?v? = uv # 0, and so A~ uw is an indecomposable
idempotent for some A € F, and then A™2 = A~! and so A = 1, and so
uv is a indecomposable idempotent.

(i) If S is a nonempty subset of Ly, then NS, the intersection of all
the submodules in S, is the infimum of S, and ) S, the sum of
all the submodules in S, is the supremum.

(i) It is clear that (p+m)Nb D (pNb)+m. If x € p, y € m C b, and
r+yeb thenx=(x+y)—yeb andsoz+y e (pNb)+m.

(iii) In any nonempty set of left ideals, one of minimum dimension is
minimal.

(iv) Let S be a nonempty set of left ideals, and suppose it does not
contain a maximal element. Pick any L; € S; then by non-
maximality, there is an L, € S which strictly contains in Lq;
inductively there exist Ly C Ly C ... with each L; in § and all in-
clusions are strict. The union L of the L; is a left ideal and hence,
by semisimplicity of A, is of the form Awu for some element wu.
Then u lies in some Lj; but then since L; is a left ideal, Au C L;,
contradicting the strict inclusion L;i; C Lj.

(v) Since [ is a right ideal, and J a left ideal, I.J is contained inside
I'NJ. By semisimplicity, J = Au, for some idempotent u € J. So
ifaeINJthena € Jandsoa=auisin IJ, being a product of
aelanduel.

(vi) This follows from (v) on writing the intersection of the ideals as
products of the ideals, in which case the distributive law is easily
checked, noting that Il =1NI=1.

(i) Let t. be a complement of t. Then s = (t +t.)Ns=t+ (t.Ns),
by modularity, and t N ((.Ns) <tNt.=0. So v =t,Ns works.
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(i)

(iii)

(iv)

Suppose S C A is independent, T'C S and a € S — T. Since a is
an atom y =a N> T is either a or 0. If y = a then a < > T and
so then > S is equal to > S — {a}, contradicting independence
of S. Conversely, suppose a N> T = 0 for every T C S and all
a€ S—"T. If Tis a proper subset of S then such an a exists and
so > T cannot be equal to ) S.

Choose a maximal [ € IL such [ < m but [ # m, if m itself is not
an atom. Then by (i) there exists [, such that [ + [, = m and
[N, =0. Note that [,, # 0; we show now that [,, is an atom. If
a < I, then a + [ is < m and so, by maximality of [, is either [ or
m. If a+1l=1thena<landsoa<INl, =0;if a+[=m then
a=an(l+1l,) =(@nl)+1l, =0+1, = l,, using modularity.
Hence [,,, is an atom.

Take C = (A+ 1) N (B + J). Then, by modularity, C + I =
(A+1)N (I + B+ J) which is = A+ I since [ + J = 1; similarly,
C + J = B+ J. The next part follows by induction on observing
that I; + (IoN...I,) = R by choosing xs, ...,z € I, ys € I,...,
Ym € I, satisfying z, + y, = 1 for all a, which implies 1 = (x9 +
Y2) . (T +Ym) = termsinvolving x, +y1. . .Ym € 1+ (L2N. .. Iy,)
since each I, is a two sided ideal.

6.3 For the Youngtabs|i | j| k|, where {4,7,k} = {1,2,3}, the Young sym-

metrizers are all equal to ) g s. Then F[S;] - Fy

and the representation of S3 on this vector space is trivial, with all
elements represented as multipication by 1. Next, skipping ahead to
the finest partition:

def
Yskew = = Z Sgn(s)s
SES3

]

if {i,7,k} = {1,2,3}. Then F[S5]yskew = FYskew, and the representation
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is by the even/odd signature. The other symmetrizers are:

y=ygg)= ¢+ (28) = (13) = (132) w =ygyy) =+ (13) - (23) — (231)

3
1] 2]

oT3)= ¢+ (62) = (12) = (128) 2 =ygpq) =1+ (12) - (32) - (321)
1] 3]

[73]= ¢+ 6D =) = (213) gy =+ (21— (31) - (312)
2] 3]

Of course, knowing any one of the above yields all the others by re-
naming the numbers. Next,

2 _ B ,
y B 69‘ 1 ‘ 2 ‘ 3 ‘7 1|2 ‘ =3 112 ‘7 Yskew = 6yskew
3

The dimensions of F[Ss]yr then are obtained as

3! 3!

3
: 3! o
dim F[S5]yskew = i 1.

The module F[S3]y has a basis consisting of y and (23)y = 273
1
Then the module F[S;]w has basis w and (13)w = 1[3] These two

2
modules have direct sum containg F[S3]z, because 2z = y — (23)y + w.
On F|[Ss]y, with basis {y, (23)y}, the representation of S5 is specified
explicitly by

(12) — {_11 _01] ; (13) — {_01 _11] . (23) — [(1) (1)] :
(123) — {_01 _11] ; (132) — {_11 _01] :

6.4 Let vy, ..., v be a basis of E, and let M be the R-linear span of {p(s)v; :
s € G,i € {1,...,k}}. Then M is a finitely generated torsion free
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6.7

7.3

7.4

R-module and so, by Theorem 12.5.2, has an R-basis by,...,b;. In
particular, each v; is an R-linear combination of the w;, and so F is
spanned by B = {wy, ..., wy } over the scalars F. Suppose Zle ciw; = 0,
with ¢; € TF; since I is the field of fractions of R, there is a nonzero
D € R such that D¢; € R for each 7, and then from Zle Dc,w; =0
and linear independence of w; over R we conclude that Dc¢; = 0 and
hence ¢; = 0 for each i. Thus, {ws,...,wg} is an F-basis of E. Now
the crucial observation is that p(s)M C M, for all s € G, and so the
matrix of p(s) relative the the basis B has all entries in the ring R.

Check that
@HIEk)+ (k)] = ((kj)+ (ijk) =[(ik)+ (k) 7)

for all i < 7 < k. This implies that X; commutes with all transposi-
tions in Sk_;. This implies that X} commute with R[S,_1], and hence
Xq,...,X,, commute with each other and therefore generate a commuta-
tive subalgebra of R[S,].

Let M be a Z module which is the Z-linear span of a finite nonempty
subset S, and A : M — M a Z-linear map. For s € S the submodule
of M spanned by {A¥s : k€ {0,1,2,...}} is also finitely generated, say
by p1(A)s, ...,pj(A)s for some polynomials p;(X) € Z[X], and so, if n,
is the degree of p;(X)....p;(X), the element A" s lies in the Z-linear
span of 1, As, ..., A" s, which means that ¢s(A)s = 0 for some monic
polynomial ¢s(X) € Z[X]. Hence A is a root of the monic polynomial

HsES ds (X)

The idempotence relation u? = u; implies

1 « B 1 _ _
G (O = e 3 (GGG (18)
=1 1<),k<s
Then from i
CjCk = Z /ﬁ?ijCl (138)
=1
we obtain:
1
Xi(C) ] 2{: Xi(C5 i (Ci e (13.9)

1<j,k<s
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7.6

7.7

7.8
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In (7.81) let e and f run over basis elements of E and F', respectively,
and ¢ and f’ over corresponding dual bases, then sum over e and f:

ZXE(g)XF(gfl) =0 for E and F not equivalent. (13.10)

geG

The column vectors V; = [x;(C})]i<i<s, for j € {1,..., s}, are s mutually
orthogonal nonzero vectors in C*, with the norm of V; being /|G|/|C}|.
Therefore they are linearly independent, and the determinant of the
character table matrix is nonzero.

Dedekind factors the determinant by the devilishly clever trick of mul-
tiplying it by

1 1 1 1 1 1

1 w w? 1 w w?

1 w? w 1 W w
11 1 -1 -1 -1}’
1 w w? -1 —w —w?

1 w? w -1 —w? —w

which results in amazing simplification of the algebra. Frobenius [31,
§5] uses a more enlightening method.

By straightforward extension of the argument for (7.98), or by building
inductively on (7.98), we obtain (7.127). Next, let R denote the regular
representation, specified by

R(z):F[G] = F|G] : x — R(x)y =2y  for all z € F[G].

Then, as we know, Tr R(e) is |G|, and Tr (g) is 0 for all elements g € G
other than e. From the structure of F[G| we also know that F[G] is the

direct sum
S

FIG] =P (La @ ... 0 L),

i=1

and R|L;; is irreducible, say with character y;. So

Tr R(g) = Z dixi(g) for all g € G.
i=1
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Using all this we have:
‘{(tl, ,tm) eGm tltm =€, altl...amtm = €}|
= Z TroR(aity...amtm)

t1...tm=e

1
T > TrR(art...amty)
t1...tm=e

= |_C1;| Z Zdez(altlamtm)

t1..tm=e i=1

— |_C1¥| Zdi <|d_cj|> : Xi(ar) ... xi(am) (from (7.127) )

-y (‘%)m () .- xalan)

(13.11)

9. 1 For any a € A we have r, : A — A : z +— za, an element of Ends(A).
Clearly, 74, = 11, for all a,b € A, and so A°®? — Ends(A) : a — 7,
is a ring homomorphism. For any left A-linear f : A — A, we have
f(x) = (1) for all x € A, and so f = 7). Thus, a — r, is a ring
isomorphism.

9.2 By Theorem 9.3.5 applied to ' = A, viewed as a left A-module, A is
the sum of simple C-submodules of the form yA, where A is now being
viewed as a left C-module, C' = End4(A), and y runs over indecom-
posable idempotents.

9.5 For ¢ € E, writing ¢(v) as >gec P9(v)g, the F[Gl-linearity of ¢ is
equivalent to ¢,(v) = ¢.(¢7v) for all ¢ € G, v € E. Then from
(¢ h)(v) = >, dg(v)gh we have (¢ - h)e(v) = ¢p-1(v) = ¢(hv) which
shows that I : £ — E' : ¢ — ¢, is an A-linear map of right A-
modules. Moreover, ¢(v) = 3 ¢.(g~'v)g shows that I is injective,
and the invserse of [ is specified by (I™"f)(v) = >_, f(¢~"v)g and it is
readily checked that 71 f is in E.

9.6 Let I be a left A-module, where A is a semisimple ring, C' = Enda(E),
and F = Homy(E, A). We view E as a left C-module in the natural
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way, and view E asa right A-module For any nonempty subset S of F
define the subset Sy of A to be all finite sums of elements ¢(w) with ¢

running over E and w over S.

(i)

(i)
(iif)

(vi)

(vii)

If¢pecF acAthnd-a:E— A:ve ¢)aisin E and
(¢-a)(w) = ¢p(w)a shows that Sga C Sy.

Show that (aE)y = aEy for all a € A.

For ¢ € E, v € E, themap E — E : y — ¢(y)v is A-linear,
which means that it is in C, and hence maps W into itself; hence
p(w)v € W for all w € W. Consequently, WxE C W. In the
converse direction use the fact that the right ideal Wy has an
idempotent generator u, so that Wy, = uA. Then for any ¢ € E,
and w € W, we have ¢(w) € Wy and so ugp(w) = ¢(w), which
implies ¢(uw — w) = 0. Thus every ¢ € E vanishes on uw — w.
Now decompose x = uw — w as a sum ), x; with z; € E;, where
the F;are simple A-submodules of E whose direct sum is F; if
some z; # 0 then its image in some left ideal, isomorphic to Ej,
in A would be nonzero. Thus z = 0, which means w € uA and so
w=uw € ukl = WiukE.

Write Uy = uA and Wy = wA, with u, w idempotent. If Uy C

W, then u € wA and so u = wa for some a € A, and this implies
U=uE CwE=W.

Proof: Suppose Wy is a simple right ideal. Let U C W be a
C-submodule of E. Then Uy C Wy and so Uy is {0} or W If
Uy = {0} then U = {0} (by the argument used for (iii)), while if
U# = W# then U =W by (111)

Let J be a right ideal in A contained inside Wyx. Then J = vA
and Wy = uA for idempotents u € Wy and v € J. Then v € uA

and so
vE CuE =W.

Therefore vE is {0} or uE. Applying # we have vEy is {0} or
uby. If Ey = A then this reads: J is either {0} or Wx. Thus,
W4 is a simple right ideal.

If uA C Ey then uA = uuA C uEby C A, and so uAd = ubly =
(uFE)4. Since u is an indecomposable idempotent, (u£) is simple
and so uF is a simple C-module.
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9.7

9.8

9.3

11

10.1

Forv € yE, let f, : L — E : x — xv, which is A-linear, and J(f,) = v.
Let d € D. From d(ay) = d(ayy) = ayd(y), for all a € A, we have

(food)(xz) = zd(y)v and so f, o d = fyu)w.

If 41, ..., ys are distinct nonzero orthogonal idempotents with sum 1 then
they are linearly independent over the field [F, because if >, c;y; = 0
then, multiplying by any w,, we have cyyr, = 0 and hence ¢ = 0
because y; is not 0. Therefore there is a maximal string, of finite
length, eq,...,ex of nonzero orthogonal idempotents whose sum is 1.
Each e; is the necessarily indecomposable, and so Ae; is a simple left
ideal in A and e;E is a simple submodule of the C-module E. Then
thesum £ = e  EF+---+enyFE, and the latter is a direct sum. Moreover,
by Theorem 9.3.3, each non-zero e; F is a simple C-module.

For b € F[G], the map L; : F[G] — F[G] : a — ba preserves addition
and satisfies Ly(aZ) = baz = Ly(a)Z. Hence L; € Endpi)F[G]r. More-
over, Ly, = LyL. and Ly, = Ly + Lc; so L : F|G] — EndpF[G]r :
b — L, is a morphism of F-algebras. Since L,(1) = b, the map L is
injective, Lastly, if f € EndpigF[G]g then f(a) = f(1)a = Lyq)(a) for
all a € F[G], and so L is also surjective.

(a) Suppose E contains two nonzero submodules E, and Eg which are
isomorphic to each other as A-modules and have {0} as intersection.
Let E be the direct sum of E,, Eg, and a submodule F'. Let T': £, —
Ejs be an A-linear isomorphism. Define Ty : £ — E to be equal to T’
on E, and 0 on Eg@ F, and Ty : E — E equal to T~ on Ejs and
0 on E,@ F. Then T1Tj is the identity on E,, while 7,7} is 0 on
E,. Thus, Ty, Ty € Enda(E) do not commute. (b) Suppose E is the
direct sum of submodules F,, with a running over a nonempty index
set I, and £, is not isomorphic to Ejs for distinct «, 8 € I. Then any
T € End4(F) maps each E, into itself, and so End4(F£) is isomorphic
to the product ring [] ., Enda(E,) by T = (T|Ey)aer- So if each
Endy,(E,) is commutative then so is End4(F).

(i) Decompose 1 € A as 1 = yy + y., with yy € N and y. € N..
Then y. = y.yn + y> shows that y? = y. and y.yy = 0, and, moreover,
a = ayy + ay. is th decomposition of a € A into a component in N
and one in N.. Thus, P.(a) = ay.. Then for a right ideal R, we have



352

10.2

11.1

11.5
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P.(R) = Ry. C R. (ii) If r& = 0 then r € N and then P.r = 0; so
ré — P.ris well-defined. (iii) If x € P.(R) then f(z€) = P.x = x.

(i) Let P.(z) = |111\ > nen rh for all z € F[G]. Then P.(z) € F|G/H]
and P.(y) = y for all y € F[G/H]|, whence P? = P,; also, clearly
¢ — Pa e N. If we FIG/H] then w = 77", w(g;)9i D pepys Where
g1H, ..., g, H are the distinct right cosets of H in GG, and so is w also
lies in N then, since ¢i€, ..., g,€ is a basis of FE, it follows that each
w(g;) is 0. Thus every x € F[G] splits uniquely as ¢ = (1 — P.)x + P.x,
with the first term in N and the second in F[G/H]; that is, F[G] =
N & F[G/H]. (i) Let L be a left ideal in F[G]; then L = {4 : z € L}
is a right ideal, where 2 = 3, x(g)g~" for all x € F[G]. By Exercise
10.2(i), dimg(L&) = dimg P,(L), and the latter is the trace of the map
P.|L : L — L. Next, by Exercise 10.2(ii),

A~ A o 1 ~ A
Tr (PC|L:L—>L):E§ Tr (L—>L:x|—>:ch>
heH

Using the isomorphism of F-vector-space L — L:xw— Z, the trace of
L — L : x + xhis equal to the trace of L — L : x — h™'z, which is
xr(h™1). Combining everything gives

dimp( Lé) | ZXL

heH

Finally observe that if y is an idempotent generator of L then Le= yE,
because F[Gle'= E.

If p: U(N) — Endc(V) is a representation, the linear span of p(U(N))
as a subset of the algebra Endc(V), is a semisimple algebra, being a
subalgebra of the semisimple algebra Endc (V).

(i) Fix a basis e, ...,ey of V|, with N > 1, and for fixed 7,5 € [N]
let B € E have matrix with all entries 0 except the entry at row j
and column i¢; then (A, B)n = A;; the ij-th entry for the matrix of
A. Therefore, ¢4 : E — E’ is an isomorphism. (ii) For any subspace
L of V, the dimension of L+ is N — dimg L, and clearly L C (L1);
hence (L*)* = L. (iii) This follows from: Tr (AB) = Tr(BA) for all
A, B € E, which implies (A, TBT "), = (T7'AT, B)x,.
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representation of U(N), 277
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semisimple ring, definition, 76
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stabilizer, 300
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subalgebra, 314

subgroup, 299

subgroup, normal, 299
submodule, 311
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symmetric group, 298
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