Math 513 Representation Theory of Finite Groups Fall 2013 HW 1, due Monday Oct. 14
 S. Ö. K.

1) Let R be a ring with identity and e in R be an idempotent (i.e. $e^{2}+e$). If e is in the center of R, it is called a central idempotent. If e can be writte as sum of two idempotents, it is called a primitive idempotent. If e, f in R are idempotents with ef $=0$, they are called orthogonal.
Show that
i) sum of two idempotents is an idempotent.
ii) sum of two central idempotents is a central idempotent.
iii) sum of two primitive idempotents is a primitive idempotent.
iv) sum of two primitive central idempotents is an orthogonal idempotent.
\mathbf{v}) for an idempotent e in $R, R=R e$ if and only if $a e=a$ for all a.
vi) $A e \neq I+J$ for every right ideal J, J of R if and only if e is not primitive.
2) Let $A:=\mathbf{C}[G], \eta_{G}=\sum_{g \in G} g$.
i) If char $F X|G|$, then η_{G} is an idempotent.
ii) If $\operatorname{char} F\left||G|\right.$, then η_{G} is nilpotent and hence the trivial submodule $F \eta_{G}$ has no complentary submodule.
3) Let $A=F[x], V$ be a vector space over F. Show that $\rho: A \longrightarrow E$ given by

$$
\rho(f(x))(T)=T \cdot f(x) \text { where } T \cdot f(x):=f(T) \text { for } T \in \operatorname{End}_{F}(V)
$$

is a representation (i.e. V is an $F[x]$-module).
4) Show that for an F - algebra A
i) V is a cyclic A-module if and only if $V \cong A / I$ where I is a right ideal of A.
ii) V is an irreducible A-module if and only if all non-zero vectors of A is cyclic.
iii) Give an example (and verify) of an indecomposable module which is not cyclic.
5) Show the following. Let $A:=\mathbf{C}[G]$ and,
i) $\rho: A \longrightarrow \mathbf{C}$ be a representation. $G / \operatorname{ker} \rho$ is abelian.
ii) V be given by a representation $\rho: A \longrightarrow G L_{n}(\mathbf{C})$. Assume that there are g, h in G such that $\rho(g)$ does not commute with $\rho(h)$. Show that M is irreducible.
iii) V be given by a representation $\rho: A \longrightarrow G L_{n}(\mathbf{C})$. Assume that there are g, h in G such that $\rho(g)$ does not commute with $\rho(h)$. Show that M is irreducible if and only if for every matrix X over \mathbf{C} satisfying $A \eta_{G}(g)=\eta_{G}(g) A$ for all g in G, there exists λ_{A} in \mathbf{C} with $\lambda I_{n}=X$.
4) Show that converse of Schur's Lemma hold for a $\mathbf{C}[G]$-module M and give an example for which it fails (and verify).
5) Show that for an F - algebra A, the product [,] defined by $[a, b]:=a b-b a$ the following hold;
i) [,] is bilinear and skew-symmetric hence $[a, a]=0$ for all a, b in A.
ii) [,] satisfies the Jacobi identity $[[a, b], c]+[[b, c] a]+,[[c, a], b]=0$.
iii) Find the reason that \mathbf{R}^{3} with \times-product in is not an algebra but rather it satisfies the property given above for [,].
6) Show that for an F - algebra $A, \operatorname{End}_{A}\left(A^{\circ}\right) \cong A^{o p}$ or $(\cong A$ depending on what ? explain) as rings.
7) Find at least three non-trivial conditions for G to be abelian using that G has a representation $G \longrightarrow G L_{n}(\mathbf{C})$ with image in the center of $G L_{n}(\mathbf{C})$.

