Math 513 Representation Theory of Finite Groups Fall 2013 HW 1, due Monday Oct. 14

S. Ö. K.

1) Let R be a ring with identity and e in R be an idempotent (i.e. $e^2 + e$). If e is in the center of R, it is called a central idempotent. If e can be writte as sum of two idempotents, it is called a primitive idempotent. If e, f in R are idempotents with ef = 0, they are called orthogonal.

Show that

i) sum of two idempotents is an idempotent.

ii) sum of two central idempotents is a central idempotent.

iii) sum of two primitive idempotents is a primitive idempotent.

iv) sum of two primitive central idempotents is an orthogonal idempotent.

v) for an idempotent e in R, R = Re if and only if ae = a for all a.

vi) $Ae \neq I + J$ for every right ideal J, J of R if and only if e is not primitive.

2) Let $A := \mathbf{C}[G]$, $\eta_G = \sum_{g \in G} g$.

i) If char $F \not| |G|$, then η_G is an idempotent.

ii) If $\operatorname{char} F||G|$, then η_G is nilpotent and hence the trivial submodule $F\eta_G$ has no complentary submodule.

3) Let A = F[x], V be a vector space over F. Show that $\rho : A \longrightarrow E$ given by $\rho(f(x))(T) = T \cdot f(x)$ where $T \cdot f(x) := f(T)$ for $T \in \operatorname{End}_F(V)$ is a representation (i.e. V is an F[x]-module).

4) Show that for an F - algebra A

i) V is a cyclic A -module if and only if $V \cong A/I$ where I is a right ideal of A.

ii) V is an irreducible A -module if and only if all non-zero vectors of A is cyclic.

iii) Give an example (and verify) of an indecomposable module which is not cyclic.

5) Show the following. Let $A := \mathbf{C}[G]$ and,

i) $\rho : A \longrightarrow \mathbf{C}$ be a representation. $G/\ker \rho$ is abelian.

ii) V be given by a representation $\rho : A \longrightarrow GL_n(\mathbf{C})$. Assume that there are g, h in G such that $\rho(g)$ does not commute with $\rho(h)$. Show that M is irreducible.

iii) V be given by a representation $\rho : A \longrightarrow GL_n(\mathbf{C})$. Assume that there are g, h in G such that $\rho(g)$ does not commute with $\rho(h)$. Show that M is irreducible if and only if for every matrix X over \mathbf{C} satisfying $A\eta_G(g) = \eta_G(g)A$ for all g in G, there exists λ_A in \mathbf{C} with $\lambda I_n = X$.

4) Show that converse of Schur's Lemma hold for a $\mathbb{C}[G]$ -module M and give an example for which it fails (and verify).

5) Show that for an F - algebra A, the product [,] defined by [a, b] := ab - ba the following hold;

i) [,] is bilinear and skew-symmetric hence [a, a] = 0 for all a, b in A.

ii) [,] satisfies the Jacobi identity [[a,b],c] + [[b,c]a,] + [[c,a],b] = 0.

iii) Find the reason that \mathbf{R}^3 with \times -product in is not an algebra but rather it satisfies the property given above for [,].

6) Show that for an F - algebra A, $\operatorname{End}_A(A^\circ) \cong A^{op}$ or $(\cong A$ depending on what ? explain) as rings.

7) Find at least three non-trivial conditions for G to be abelian using that G has a representation $G \longrightarrow GL_n(\mathbf{C})$ with image in the center of $GL_n(\mathbf{C})$.