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biomarker of Parkinson’s disease
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Abstract

Biomarkers obtained from the neurophysiological signals of patients with Parkinson’s disease (PD) have objective value in
assessing their motor condition for effective diagnosis, monitoring, and clinical intervention. Prominent cortical biomarkers of PD
have typically been derived from various b band wave features. This study approached the topic from an alternative perspective
and attempted to estimate a recently suggested measure representing a band nonlinear autocorrelative memory from a publicly
available EEG dataset that involves 15 patients with earlier-stage PD (dopaminergic medication OFF and ON states) and 16 age-
matched healthy controls. The cortical nonlinearity was elevated for the PD ON state compared with the OFF state for bilateral
sensorimotor channels C3 and C4 (n ¼ 26; P ¼ 0.003). A similar statistical difference was also identified between PD OFF state
and healthy subjects (n ¼ 26; P ¼ 0.049). Analysis over all channels revealed that the a band nonlinearity induced upon medica-
tion was constrained to sensorimotor regions. The a nonlinearity measure was compared with a well-accepted cortical biomarker
of b-c phase-amplitude coupling (PAC). They were in moderate negative correlation (r ¼ –0.412; P ¼ 0.036) for only healthy sub-
jects, but not for the patients. The nonlinearity measure was found to be insusceptible to the nonstationary variations within the
particular data. Our study provides further evidence that the a band nonlinearity measure can serve as a promising cortical bio-
marker of PD. The suggested measure can be estimated from a noninvasive low-resolution single scalp EEG channel of patients
with relatively early-stage PD, who did not yet need to undergo deep brain stimulation operation.

NEW & NOTEWORTHY This study suggests a nonlinearity measure that differentiates Parkinson’s disease (PD) dopamine OFF-
state scalp EEG data from those of dopamine ON-state patients and healthy subjects. Unlike typical PD cortical biomarkers
based on b band activity, this metric shows elevation upon dopaminergic medication in the a band. We provide evidence sup-
porting its potential as an early-stage promising PD biomarker that can be estimated from noninvasive EEG recordings with low
resolution and SNR.

biomarker; dopamine; EEG; nonlinearity; Parkinson’s disease

INTRODUCTION

Parkinson’s disease (PD) motor symptoms of tremor, ri-
gidity, and akinesia are linked with the dopaminergic de-
nervation of the striatum, leading to neural oscillatory
abnormalities throughout the basal ganglia-thalamo-corti-
cal, cortico-cortical, and cerebro-muscular networks (1).
PD biomarkers indicative of the pathophysiology are most
commonly obtained from invasive subcortical local field
potential (LFP) recordings acquired from the electrode
contacts, during or immediately after the deep brain stim-
ulation (DBS) surgery, performed on advanced late-stage

patients (2). These markers reflect the abnormality of the dis-
ease and hence are naturally expected to be modulated with
dopaminergic medication, i.e., frommedication OFF state to
ON state. A desired property of a PD biomarker comes from
its association with the motor symptom severity, typically
quantified with the Unified Parkinson’s Disease Rating Scale
(UPDRS), which is unavoidably rather subjective, i.e., rater
dependent (3). Thus, objective biomarkers are particularly
desirable for early diagnosis, optimal treatment, and clinical
improvement.

Neurophysiological biomarkers in PD literature have been
overwhelmingly derived from the excessive subthalamic
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(STN) LFP b band (�13–35 Hz) activity (2), which is sup-
pressed by dopaminergic administration (4) and coupled
consistently with sensorimotor cortical regions (5). Beta
band activity in the STN was shown to be phase coupled to
the amplitudes of high-frequency oscillations (HFO) encom-
passing the frequency range of 200–400 Hz (6, 7). A follow-
ing study (8) confirmed the occurrence of this phenomenon
called phase-amplitude coupling (PAC) between b oscilla-
tions and HFO in the STN along with the correlation of PAC
strength with the UPDRS akinesia-rigidity score. A recent
review by van Wijk et al. (2) reports that the STN LFP b band
activity-based features describe only �17% of patient vari-
ability in symptom severity, hence contain limited informa-
tive power to explain the PD motor impairment. The ratio of
slow HFO power (200–300 Hz) to fast HFO power (300–400
Hz) in the STN was proposed by Özkurt et al. (7). They
showed that the STN HFO ratio could consistently distin-
guish the medication OFF state from the medication ON
state and was correlated to the contralateral hemibody aki-
nesia-rigidity score (7). The same study showed that HFO ra-
tio and b peak power did not correlate with each other,
whereas their combination had an elevated correlation with
the akinesia-rigidity score, implying that b band and HFO
activities had complementary contributions to the motor
state. A PD tremor study conducted by Hirschmann et al. (9)
demonstrated the increase of the HFO ratio could predict the
emergence of tremors successfully and it outperformed
other established biomarkers such as power at individual
tremor frequency, b power, and low c power.

The primary emphasis in the literature on PD biomarkers
has centered on basal ganglia, especially the STN, local field
potential (LFP) recordings. However, since cortical activities
obtained through electroencephalography (EEG), magneto-
encephalography (MEG), and subdural electrocorticography
(ECoG) are integral components of the motor pathway, they
also hold vital information related to the PD mechanisms.
Besides cheap, noninvasive, safe, and mobile recordings,
scalp EEG offers particular several other advantages such as
the detection of early-stage Parkinsonian signatures (10),
monitoring of disease progression and treatment response
(11), and providing real-time feedback (12).

Unlike the consistency of abnormally high subcortical b
activity for the medical OFF state, findings for the modifica-
tion of cortical spectral b activity concerning dopaminergic
medication have been rather ambiguous in the literature.
Contrary to few studies concluding that dopaminergicmedica-
tion increases the cortical b band activity in patients with PD
(13, 14), many other cortical PD studies reported nonalteration
of b band power due to medication (15–22). The nonalteration
of b band power was also endorsed for the comparison
between OFF state PD patients (with no medication) and
healthy controls (20, 21). Moreover, accounting for the 1/f back-
ground activity did not affect the recent consensus that there
was no significant variation in the cortical b band power
between the medication OFF and ON states (22), which used
the same publicly available EEG data set with the current
study. Modification of cortical b band power seems also dubi-
ous for DBS studies, as Airaksinen et al. (23) reported elevated
cortical b band power after DBS for some of the patients, while
some others found suppression of the b power in the sensori-
motor cortex by DBS (24, 25). Hence, although cortical b band

power itself does not seem to be a reliable biomarker of PD
motor impairment, a recent MEG study conducted by Vinding
et al. (21) found out that the cortical b bursts are less frequent
in themedication OFF state when compared with healthy con-
trols. However, they could not identify the difference in burst
rates when the PD medication OFF state is compared with the
ON state instead of healthy controls.

One of themost promising cortical PD biomarkers reported
is the excessive PAC strength between b and broadband c
band (50–200 Hz) activities, initially demonstrated by de
Hemptinne et al. (18) via ECoG recordings placed over the pri-
mary motor cortex and confirmed by several other ECoG
studies (26, 27). The PAC as a biomarker, which distinguished
the PD OFF medication state from the ON medication and
healthy control states, was also detectable when noninvasive
scalp EEG is used (19). This finding was confirmed by
Jackson et al. (28) using the same EEG data set, while they
additionally concluded that the PAC strength correlated with
another recent cortical PD biomarker, namely b band wave-
form shape asymmetry, which was initially demonstrated by
Cole et al. (29) for ECoG data. They could show that the b
band sharpness ratio indicating the waveform asymmetry
was extremely correlated with b-c PAC and could be reduced
by DBS treatment.

Although analyses of the aforementioned two scalp EEG
studies (19, 28) primarily focused on two lateral channels
(C3 and C4) closest to sensorimotor cortex, they also dem-
onstrated the specificity of these biomarkers (PAC and
waveform asymmetry) to sensorimotor regions by evaluat-
ing them for all other remaining channels. Findings of
another PD EEG study conducted by Miller et al. (20) were
in general agreement with these studies, on the discrimi-
native capability of b-c PAC between medical states and its
spatial specificity, in addition to the correlation of PAC
with motor impairment scores. A high-density PD EEG
study by Gong et al. (30) utilized the beamformer inverse
method to investigate the b-c PAC in the source level.
Although the elevated PAC strength for the patients com-
pared with healthy controls was located within the previ-
ously unidentified area of the dorsolateral prefrontal
cortex as well as several sensorimotor regions, the correla-
tion with motor impairment was nevertheless constrained
solely to the latter, thus fundamentally agreeing with the
earlier studies on the spatial specificity of PAC regarding
the PD physiopathology.

Nonlinearity in the STN LFP recordings was notably iden-
tified within the b band range, such as the features derived
from bispectrum (31) and burst duration (32). Both studies
showed the evident nonlinearity observed within the b band
range (OFF state) was suppressed by the administration of
dopaminergic medication (ON state). It was reported by
Camara et al. (33) that the nonlinearity increases for the STN
LFP data episodes containing tremors. The presence of non-
linearity was also shown in the interspike interval series
obtained from various subcortical regions (34).

Attempts for the identification of nonlinear dynamics
within cortical data have been somewhat less common. The
correlation dimension was utilized by Muller et al. (35) to
identify the EEG channel-level topological differences for
resting state and motor tasks. Model features based on delay
differential equations were used by Lainscsek et al. (36) to
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differentiate EEG data at the medication OFF state from
the ON state. A recent study by Özkurt et al. (37) proposed
a novel nonlinear measure based on higher-order autocor-
relative memory. They applied this measure on the LFP-
MEG data postoperatively acquired from the patients with
advanced-stage PD that have undergone DBS operation
and demonstrated that the nonlinearity is consistently in-
herent in the high b band (20–30 Hz) of the subcortical
STN LFP, which dissolved upon the dopaminergic medi-
cation. While for the MEG source regions coherent with
STN LFP activity being located at the proximity of the pri-
mary motor cortex, the nonlinearity was nonexistent but
emerged only upon the administration of dopaminergic
medication in the a band (8–12 Hz). The identified nonli-
nearities for subcortical b and cortical a bands were found
to be respectively correlated with the UPDRS tremor and
akinesia subscores.

In this study, we would like to investigate the previously
proposed autocorrelative nonlinearity measure (37) for a
cohort of patients with early-stage PD via a publicly available
noninvasive scalp EEG data set, involving recordings from
the patients with medication OFF and ON states as well as
those from the age-matched healthy controls. We hypothe-
size that the a band nonlinearity induced by dopaminergic
medication, as observed in the higher spatial resolution
MEG cortical sources of patients with advanced-stage PD by
Özkurt et al. (37), can similarly be inferred from EEG sensori-
motor channels. Furthermore, this may enable the differen-
tiation of medication states and consequently provide
insights into the pathophysiology of earlier-stage PD using
noninvasive, albeit low spatial resolution and low signal-to-
noise ratio (SNR) EEG signals.

MATERIALS AND METHODS

Participants

We used a publicly available dataset (17) collected at the
University of San Diego and curated by Alex Rockhill at
the University of Oregon (https://openneuro.org/datasets/
ds002778/versions/1.0.2). It comprises EEG resting state
data acquired from 15 patients with PD (8 females, average
age ¼ 63.2 ± 8.2) for dopamine OFF and ON states, each
lasting over 3 min (durations for OFF ¼ 200.1 ± 26.5 s and
ON ¼ 199.9 ± 26.8 s). The data set also includes resting-
state data with a similar duration for 16 healthy controls
that are sex- and age matched (9 females, average age ¼
63.5 ± 9.6, data duration ¼ 191.9 ± 5.9 s). All participants
were right-handed and provided written consent in line
with the Institutional Review Board of the University of
California, San Diego, and the Declaration of Helsinki. For
further details, please see Ref. 17. The same PD EEG data
set has been used multiple times by several other studies
(such as in Refs. 19, 22, 28, 38, and 39).

Procedure

Recordings were conducted on two separate days for
OFF and ON medication sessions, the order of which was
counterbalanced across patients. They were asked to
abstain from taking medication for a minimum of 12 h
before the medication OFF session. Data for healthy

controls were collected in just one session. EEG recordings
were acquired via a 32-channel BioSemi ActiveTwo System
with a sampling rate of 512 Hz. During the recordings, the
participants were enabled to sit comfortably and were
instructed to focus their attention on a cross displayed on
the screen. Furthermore, the participants underwent a se-
ries of clinical assessments, which were reported by
George et al. (17). The dopaminergic medication improved
the motor condition of the patients bilaterally, as indi-
cated by the hemibody left and right side UPDRS III scores
being reduced from 14.57 ± 4.68 (OFF) to 12.3 ± 4.96 (ON),
significantly (n ¼ 30; P < 0.001).

Preprocessing

Data for two of the patients were labeled as preprocessed
by an EEG software package (EEGLAB), whereas the data for
the remaining 13 patients were raw. Since the nonlinearity
analysis strictly requires no “hard preprocessing,” we
excluded two patients (pd6, pd16) with preprocessed data
from the analysis. In particular, the presence of any gaps in
the data will compromise the accuracy of the estimation of
the nonlinearity measure, as relatively large, continuous
uninterrupted data segments are required to reveal the auto-
correlative memory, properly (see Nonlinearity Measure). To
match the number of healthy subjects to the patients for a
fair comparison, we excluded the last three ones (hc31, hc32,
and hc33) arbitrarily.

Data analyses and visualization were performed using
MATLAB version 2022a (MathWorks Inc., Natick, MA). We
used Fieldtrip ft_preprocessing function (40) to bandpass
filter with the cutoff frequencies 0.5 and 50 Hz and
demean the data. With the same function, we rereferenced
the data using the Laplacian spatial filter, as it is known to
provide highlighted localized activity and minimize the
volume conduction (41). As we predominantly selected C3
and C4 (assumed to be closest to the left and right sensori-
motor cortices, respectively) for the analyses in this study,
the Laplacian filter was used to increase spatial selectivity
for sensorimotor sources. Please note that the focus of
analysis on these two bilateral sensorimotor channels has
been rather common in PD EEG literature (19, 20, 28).
Since we observed some increased levels of noise toward
the end of the data, the last 7 s of data were eliminated for
all channels of all subjects.

Nonlinearity Measure

The nonlinearity measure was proposed and developed by
Özkurt et al. (37). It essentially quantifies the nonlinear
memory inherent within any time series, through the energy
difference of second-order and higher-order autocorrelative
sequences. These sequences are constructed from “average
magnitude difference function” (AMDF), which was origi-
nally defined and used by the speech processing community
to track the pitch period of voices (42). In their formulation,
AMDF was computed as the first-order (L1 norm) memory of
the signal x(n) with lengthN

DðsÞ ¼ 1
N

XN�1

n¼0

jx nð Þ � x n� sð Þj; s ¼ 0; . . . ; smax;

where s denotes the lag.
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A generalized AMDF is defined by inserting the degree p
into the formula and defining it in a statistical manner for a
stochastic time series (37):

sx s; pð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E jx nð Þ � x n� sð Þjp� �

p

q
;

where E denotes the expectation operator. Hence, D(s) is
equivalent to an estimate of sx(s,1).

AMDF sequence (s,2) (degree 2, L2 norm) can be shown to
reflect the autocorrelative memory of the signal, i.e., the lin-
ear correlation at two different time points of the signal,
where s represents the temporal distance between those
points. When we remove the mean from the signal x(n), it
may be taken as zero-mean. Then, the second-order AMDF
sequence becomes equivalent to:

sx s; 2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E x2 nð Þ� � þ E x2 n� sð Þ� �� 2E x nð Þx n� sð Þ� �q

;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2varðxÞ � 2rxðsÞ

p
;

where var and rx denote the variance and the autocorrela-
tion, respectively. As x(n) is assumed to be stationary, the
term of variance contributes only to the baseline, hence the
autocorrelation sequence rx(s) determines the essential tem-
poral pattern of (s,2) with respect to s. The linear character of
a signal is extracted frommeasures of the first two statistical
orders, such as the second-order autocorrelation sequence
rx(s) and its Fourier transform, i.e., power spectrum. Hence,
linear analysis methods may reveal the dominant rhythms
occurring within the frequency range of the commonly
known EEG spectral bands.

Contrary to the second-order (s,2), sx(s,p) with p > 2 com-
prises combinations of “higher-order” (i.e., orders greater
than two) autocorrelations with the lag s:

E x nð Þ � x n� sð Þ� �pn o
¼
Xp

k¼0

ð�1Þk p
k

	 

E x nð Þkx n� sð Þp�k
h i

:

Hence it may indicate nonlinear temporal variations
within the signal. Various forms of higher-order autocorrela-
tions as a function of the lag have been exploited to analyze
and identify the nonlinear characteristics of time series in
domains such as simulated data from certain nonlinear dif-
ference equations (43), clinical respiratory (44), and plasma
turbulence (45) measurements.

As sx(s,p) does only contain the linear properties of the sig-
nal, the proposed nonlinearity measure L aims to quantify
the deviation of the higher-order AMDF sequence via the L2

norm of the difference of sx(s,p) (with p > 2) from sx(s,2).
Note that, to obtain this deviation, both sequences (s,p) and
sx(s,2) are normalized by being divided by their maximum
amplitudes to be kept in a comparable level. If the normal-
ized AMDF sequences are denoted by spN and s2N, the nonli-
nearity measure may simply be defined as

L ¼ ||spN � s2N ||:

A simple numerical example that involves a simulated
time series is provided in Supplemental Fig. S1 to demon-
strate how the nonlinear memory of a time series could be
revealed by the suggested measure. Let xL be a linear autore-
gressive (AR) process

xL nð Þ ¼ 0:5xL n� 1ð Þ þ 0:5xL n� 5ð Þ þ wðnÞ
and xNL be a nonlinear AR process

xNL nð Þ ¼ 0:5xNL n� 1ð Þ þ 0:5xNL n� 5ð Þ

� 0:96 xNL n� 1ð Þ � jxNL n� 1ð Þj1:5
� �

þ 0:3875 xNL n� 5ð Þ � jxNL n� 5ð Þj5
� �

þ wðnÞ;
both with additive white Gaussian noise w(n). The latter
simulated time-series xNL(n) was borrowed from the example
given by Sammon and Curley (44), where they described it
as arising from a structurally unstable dynamical system.
Energies of both time series were dropped to unity by nor-
malization. The sampling frequency was assumed 100 Hz
and the data lengths were taken as 10,000, which corre-
sponds to 100 s. Supplemental Fig. S1, A and B, respectively,
exhibit the simulated time series and their corresponding
normalized nsAMDF difference [(s,5) � sx(s,2)], whose norm,
by definition, is equivalent to the nonlinearity measure L,
which was found to be 0.05 for the linear process xL(n) and
0.97 for the nonlinear process xNL(n). This is how L may dis-
tinguish a linear AR process from a nonlinear one.

In our particular implementation for the current study
(see Fig. 1 for the workflow), we estimate L by computing the
L2 norm difference of normalized s2 and sp which are AMDF
sequences averaged over data segments. We took segments
of 14 s with 50% overlap in length, the higher-order as p ¼ 7
and the maximum lag smax ¼ 1 s as these input parameters
proved to be effective enough for PD neural time-series data
from the previous work (37). Note that the degree of the
AMDF sequence as p ¼ 7 includes correlations for lower
orders less than p, thus choosing a high enough degree
assures to be on the safe side to capture nonlinear memory
inherent within the signal. In addition, we bandpass-filter
(forward-backward two-pass 4th-order Butterworth filter)
the AMDF sequences for the range (8–12 Hz) to capture spe-
cifically the a band nonlinearity. The reason we bandpass fil-
ter AMDF sequences (s,p) is to emphasize solely the
nonlinear a oscillatory part that was observed by Özkurt et
al. (37) for MEGmotor cortical sources. Filtering is especially
essential to implement for scalp EEG signals, which reputa-
bly have low SNR and contain large amounts of mixed sig-
nals from other sources due to volume conduction. The
MATLAB code to obtain the nonlinear measure from any
time series can be accessed at https://github.com/tolgaozkurt/
nonlinearity_measure.

Surrogate Data

Surrogates are generated to retain the linear characteris-
tics of the signal in question while excluding its nonlinear
components. Thus, the presence of nonlinearity can be
tested with respect to the suggested metric’s capability to
distinguish the original data from its linear surrogate coun-
terparts. Linear surrogates have been commonly produced
through Fourier transform (46). This family of methods
imposes the general idea of keeping the power spectrum
(hence the 2nd-order autocorrelative characteristics) of the
signal intact by preserving the Fourier coefficients, while
the phase is randomized. An improved version of the
Fourier transform based surrogate method called “iterated
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amplitude adjusted Fourier transform” (IAFFT) was sug-
gested by Schreiber and Schmitz (47), which assures to pre-
serve the probability distribution of the original signal as
well as its autocorrelation. Nonetheless, as cautioned (32),
IAFFT may confuse the nonlinearity with possible nonsta-
tionarity inherent in the neural time-series. As a remedy,
another iterative surrogate method based on wavelet trans-
form called “gradual wavelet reconstruction” (GWR) (48) is
used. Apart from avoiding the trap of mistaking nonlinear-
ity with nonstationarity, GWR allows surrogates along a
continuum of a threshold parameter r ranging between 0
(equivalent to the standard IAAFT surrogate) and 1 (equiva-
lent to the original signal). Wavelet coefficients of the origi-
nal signal with an energy ratio corresponding to r are left
out of the phase randomization process in the IAAFT.
Hence, surrogates for about r > 0.1 (largest wavelet coeffi-
cients corresponding to low-frequency high scales) retain
the fundamental nonstationary elements of the signal and
are assumed to be on the safe side to be tested for nonli-
nearity (32).

Phase Amplitude Coupling

To quantify the well-established b-broadband c PAC, we
applied the normalized direct PAC method (49) by thresh-
olding according to the analytical confidence limit derived
by Özkurt (50). This method is an amplitude-normalized var-
iant of the modulation index (51). It reduces the computa-
tional expense significantly, as it avoids the permutation
test. The normalized direct PACmethod has been commonly
used for PAC estimation in neural signal literature and was
added to open-source PAC toolboxes such as Tensorpac (52)
and pacpy (https://github.com/voytekresearch/pacpy). The
simple MATLAB routine used for this study can be accessed
at https://github.com/tolgaozkurt/ndpac. Phase and amplitude

frequencies were respectively determined within the b band
(13–30 Hz) and c band (50–150 Hz) ranges with bandwidths of
2 and 10 Hz. The confidence level was chosen as 0.95. If the
PAC estimates were below the confidence limit threshold,
whichwas computed from the explicit analytical formula given
byÖzkurt (50), then theywere nullified.We determined the av-
erage PAC strength for each individual’s sensorimotor EEG
channels (C3 and C4) by dividing the sum of PAC values over
the frequency region covered by b and c band boundaries by
the total number of nonzero PAC values. Please note that
although comprehensive PAC findings for the same data were
already published twice (19, 28), we repeated the PAC analysis,
to search for any possible relation and biomarking perform-
ance comparisonwith the nonlinearitymeasure.

RESULTS

Alpha Band Nonlinearity

The induced a-band nonlinearity with dopamine was
observed for the sensorimotor channels C3 and C4 of the
patients with PD. Figure 2A depicts the difference (s7 � s2) for
an exemplary case of a representative patient’s left sensori-
motor channel (C3), where the medication ON conspicuous
waves are absent for the state of OFFmedication. This differ-
ence, which represents the nonlinear memory, diminished
for the linear surrogate time-series obtained from the ON
state signal using IAFFT. The surrogate ON and the medica-
tion OFF states both show similarly low levels of (s7 � s2).
The absence of the nonlinear memory for the OFF state and
the surrogate ON data was also depicted in the frequency do-
main lying particularly on the a band range (Fig. 2B).

Group level analysis for all bilateral sensorimotor chan-
nels (C3 and C4) revealed that the nonlinearity measure L
was significantly elevated for the PD patient’s medication

Figure 1. Extraction of the nonlinearity parameter L from a neurophysiological time-series: the nonlinear parameter is simply obtained as the energy dif-
ference between the normalized s2 and s7 computed over data segments. s2 and s7 indicate respective second-order and higher-order autocorrelative
memories of the time series. For the cortical data used in this study, data segment length is chosen as 14 s, whereas s2 and s7 are bandpass filtered for
the a band range (8–12 Hz). EEG, electroencephalography; LFP, local field potential; MEG, magnetoencephalography.
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ON state compared with their medication OFF state (paired t
test, n¼ 26; P ¼ 0.003; Fig. 3). The nonlinearity measure was
also higher for healthy controls when compared with
patients at the medication OFF state (two-sample t test, P ¼
0.049). However, as presumed, there was no difference of
the estimated nonlinearity measure between healthy con-
trols and PD ON state (two-sample t test, P ¼ 0.8191). As a
reflection of the aforementioned statistical findings, Fig. 3
exhibits similar distributions of the nonlinearity for healthy
controls and patients on dopamine (ON state) and how both

deviate from that of patients without medication, i.e., PD
OFF state. Thus, these findings did not only show that the
cortical a band nonlinearity is indeed induced by dopaminer-
gic medication and can be sensed by the suggested measure
L from EEG channels without necessarily getting into the
neural source level through an inverse method, but also that
the absence of nonlinearity implies PD pathophysiology as
an inference from the nonlinearity measure levels observed
for the age-matched healthy subjects.

GWR Surrogates

Figure 4A exhibits GWR surrogate time series for a repre-
sentative patient’s ON state left sensorimotor EEG channel
data for r ¼ 0, 0.1, 0.6. It is especially difficult to see a differ-
ence by the naked eye between the original data and its sur-
rogate with r ¼ 0.6, as the surrogate contains 60% energy
(highest wavelet scales corresponding to low-frequency com-
ponents) of the original, which was omitted from the phase
randomization procedure.

We produced GWR surrogates for all EEG sensorimotor
channels of ON state PD patients with the threshold r vary-
ing between 0 and 0.9 in steps of 0.1, to test whether the non-
linear measure is disturbed by the commonly observed
nonstationary dynamics within EEG data. Accordingly, the
nonlinearity measure L was computed for all these surro-
gates. The statistical comparison by a pair-wise t test showed
that L was significantly greater for PD ON state channel data
than their surrogates for all thresholds up to r ¼ 0.6 with the
exception r ¼ 0.1 and r ¼ 0.3, though the latter was margin-
ally significant with P¼ 0.061 (Fig. 4B).

This implies that the suggested measure senses nonlinear-
ity as such and it is not vulnerable to nonstationarity, for the
EEG data set used in this study. As surrogate signals with r ¼
0.2, 0.3, 0.4, 0.5, and 0.6 look very much like the original data
in a growing manner and hence retain the essential temporal
variations within them, L still decreases significantly (P <

Figure 2. A: difference waveform between normalized s2 and normalized s7 for an arbitrary patient’s left sensorimotor channel (C3) for ON state (black),
OFF state (green), and ON state (blue) surrogate. B: power spectra of differences given by A. Dopamine increases the energy difference (s7 � s2) indi-
cated by the single number, L. This difference lies specifically in the a band range 8–12 Hz. Surrogate ON state data is produced such that it has the
exact second-order characteristics (autocorrelation and power spectrum) with ON state data, but lacks higher-order nonlinear features indicated by the
decrease of L (A) similar to the level for OFF state data.

Figure 3. Distribution of the nonlinearity measure for medication OFF and
medication ON states of the patients with Parkinson’s disease (PD) along
with the healthy controls for the bilateral somatosensory channels of C3
and C4. For the patients with PD, dopaminergic medication induces the
nonlinearity and sets it to a similarly distributed level of the healthy con-
trols. The nonlinearity is higher for the medication ON state compared
with OFF state (n ¼ 26; P ¼ 0.003). Similarly, healthy controls have higher
nonlinearity than the patients without medication (n¼ 26; P¼ 0.049).
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0.05) since even limited phase randomization is enough to
cancel the nonlinearity mirrored by L. As for r > 0.6, the
phase randomization is so tiny, and hence it resembles the
original signal so much that the difference in nonlinearity
cannot be discerned. This result is nearly in line with the
study by Duchet et al. (32), where they found out significant
difference also up to r ¼ 0.6 betweenmedication OFF and ON
PD STNdata for ameasure derived from the averaged squared
difference of b band burst durations between filtered original
data and its GWR surrogates.

In our case, the reduction of the nonlinear measure for the
surrogate signals with r¼ 0.1 was not statistically significant,
despite these signals being less similar to the original data
compared with those with r ¼ 0.6. This could be because the
nonlinear measure may particularly be sensitive to high
scales that exclusively include low-frequency components
within the a band range. In other words, it may show this
sensitivity when only these components are retained, while
all other scales are excluded.

Phase-Amplitude Coupling

Average b-c PAC strength was found to be greater for the
PD OFF state compared with the PD ON state (paired t test,
n ¼ 26; P ¼ 0.012). However, there was no significant differ-
ence in the PAC strengths between PD OFF state and
healthy controls. These findings are in line with those
reported by Jackson et al. (28). Group-level statistical
results indicated by P values of the t test along with Cohen’s

d effect sizes for both PAC and nonlinear measures are com-
pared in Table 1.

We correlated PAC strength with the nonlinear measure
even though they operate on totally different bands of the
spectrum since the former is one of the most emphasized and
prevalent biomarkers of recent “cortical” PD data studies as
covered in INTRODUCTION. The Pearson correlation between
PAC and L for the bilateral sensorimotor channels was not sig-
nificant either for the OFF state (r ¼ –0.025, P ¼ 0.913) or for
the ON state (r ¼ –0.254; P ¼ 0.212). However, PAC and L cor-
related significantly for the healthy subjects (r ¼ –0.412; P ¼
0.036). Thus, the negative correlation between them tended
to increase as the neuropathology is driven away.

Channel Topology of the Nonlinear Measure

To observe how spatially distributed the nonlinearitymea-
sure is, we constructed scalp topographies by averaging L

Figure 4. A: filtered ON state electroencephalography (EEG) channel C3 time-series for an arbitrary patient (no. 11) and its gradual wavelet reconstruction
(GWR) surrogates for r ¼ 0, 0.1, and 0.6. The inset plots depict a zoomed-in view for a duration of two arbitrary seconds (10–12 s). The GWR threshold
rmay be considered as a parameter gradually modifying similarity of the surrogates toward the original data. At the limits, the surrogate time series with
r ¼ 0 corresponds to iterated amplitude adjusted Fourier transform (IAAFT) surrogate phase-randomized time series, whereas the surrogate time-series
with r ¼ 1 corresponds to the original intact ON state time series. B: P values for the statistical comparison of the nonlinearity metric between ON state
patients with Parkinson’s disease (PD) cortical time-series and their GWR surrogates when the threshold r varies between 0 and 0.9 with steps of 0.1.

Table 1. Comparison of nonlinear measure and PAC for
all sensorimotor channels C3 and C4

PD OFF vs. PD ON State PD OFF vs. Healthy Controls

Metric P Value Effect Size P Value Effect Size

Nonlinear measure 0.003 0.695 0.049 0.417
PAC 0.012 0.496 0.493 0.094

Comparisons made between conditions by Student’s t test along
with Cohen’s d effect size; n ¼ 26. PAC, phase-amplitude coupling;
PD, Parkinson’s disease.
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over all subjects for all channels for the PD OFF state (Fig.
5A), PD ON state (Fig. 5B) along with healthy controls (Fig.
5C). Not only was Lmainly specific to sensorimotor channels
but also its level was lesser for the OFF state when compared
with ON state as well as the healthy state. We also depicted
the scalp topography of the statistical contrast (paired t test)
between medication OFF and ON states as the reciprocal P
values in Fig. 5D. A clear statistical distinction was evident
in the sensorimotor channels, implying the spatial specific-
ity of the pathology.

DISCUSSION
This study investigated the relevance of the a band nonli-

nearity measure L suggested by Özkurt et al. (37) for PD scalp
EEG recordings. The patients with PD in that LFP-MEG
study were inherently in their advanced stage as they had
undergone DBS operation with an average disease duration
of 11.43± 3.50 (14 patients). Although in the current study,
the patients were without DBS electrodes and the average
disease duration was 3.50±2.64 (computed for 10 patients as
the duration is not provided for 3 of them), i.e., they were at
much earlier stages.

Apart from confirming the validity of the nonlinearity
measure as a PD biomarker elevated by dopaminergic medi-
cation for cortical sources, the current study revealed several
additional novel important findings that can be summed up
as follows: 1) L is effective for noninvasive scalp EEG chan-
nels over the primary motor cortex without the requirement
to get into spatially high-resolved source-level. 2) Not only
does L distinguish the PD OFF state from the ON state, but it
can also discriminate the PD OFF state from age-matched
healthy subjects and hence indicates the PD pathophysiol-
ogy. 3) At least for the employed EEG data set, L is not found
to be vulnerable to typical nonstationary variations of the
neural time-series, hence it represents a genuine nonlinear-
ity occurring within the analyzed data. 4) L does not signifi-
cantly correlate with the recently well-accepted cortical
biomarker of b-c PAC for patients with PD andmay even out-
perform it in a statistical manner. 5) Abundant nonlinearity
quantified by L is spatially constrained to sensorimotor
regions. 6) L is potentially a promising biomarker for earlier-
stage PD patients as well.

Some most popularly approved electrophysiological bio-
markers of PD from cortical signals (EEG, MEG, ECoG) so far
have been listed as b bursts, b coherence, b-broad c band
PAC, and b waveform asymmetry (19, 20, 28, 53). One

reported drawback of b coherence as a biomarker is its
requirement of multiple electrodes to be estimated properly
(53), as it is practically extracted from all pair-wise combina-
tions of all EEG channels (17, 20, 54). All these markers are
essentially derived from b band oscillatory features, even
though the cortical spectral power alone at the same fre-
quency band is not reliable enough to discriminate PD data
characteristics. Some of them were reported to be strongly
correlated, such as PAC and waveform asymmetry (28, 29).
In addition, PAC and the b waveform characteristics were
shown to be dependent upon the bursting behavior of the
b band (55), which implies that b band activity-derived
markers, are intimately associated with each other, as they
may all be assumed to quantify various aspects of the
abnormal excessive oscillatory synchronization through-
out the basal ganglia-thalamo-cortical loops.

Due to being operative at the a band for the sensorimotor
cortical regions, the nonlinearity measure as a promising
biomarker represents exclusive dynamics of the signal com-
pared with the aforesaid measures. Besides, it shows an
opposing behavior compared with the b-derived markers as
it does not decrease but increases upon dopaminergic medi-
cation, i.e., the PD pathophysiology is connected with the ab-
sence of nonlinear autocorrelative memory, as observed for
PD OFF state compared with medication ON and healthy
states. There was no correlation between PCA and the non-
linear measure for the patients. However, some significant
negative correlation (r ¼ –0.412) was found for the healthy
subjects. As the correlation is exclusive to healthy subjects
and not that strong, one may safely consider the nonli-
nearity measure to be a biophysically unique marker of PD
pathophysiology.

According to our statistical findings for the 13 patients (26
channels) used in this study, even though both L and PAC
could discriminate PD EEG data for OFF and ON states, the
nonlinearity measure L had a larger effect size and smaller P
value compared to those of PAC (see Table 1). Furthermore,
while L could discriminate PD OFF state from healthy con-
trols, this was not the case for PAC. Hence, our empirical
results favored L as a better describer of PD pathophysiologi-
cal condition. Nevertheless, as these two measures (L and
PAC) operate on different spectra (b and a) and dynamics
(autocorrelative memory and oscillatory phase) of the data,
they may well be considered to be complementary. This is
also supported by our results showing a lack of correlation
between them for the patient data and the presence of a rela-
tively weak correlation for the controls.

Figure 5. Scalp topography of the aver-
aged nonlinearity measure for patients
with Parkinson’s disease (PD) for OFF
state (A), ON state (B), and healthy individ-
uals (C). Nonlinearity is constrained specif-
ically to somatosensory regions for all
states. D: depicts the reciprocal P values
of the statistical comparison between non-
linearity measures of OFF and ON states,
hence it indicates the statistical contrast
between A and B, which is concentrated
on the somatosensory channels.
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Two separate studies (19, 28) using the same EEG data set
with the current work reported somewhat initially inconsis-
tent results when it comes to differentiating the PDOFF state
from the controls via PAC. This discrepancy was shown by
Jackson et al. (28) to be due to the sensitivity of the PACmea-
sure to the rereferencing scheme and the applied PAC meth-
odology. Thus, the parameter dependencies of the PD
markers should be taken rather carefully. Likewise, the filter
type and the selected threshold may impact the b burst
measures considerably (53). On the other hand, the nonli-
nearity measure depends on a few parameters of segment
length, lag, and degree. Once all these parameters are appro-
priately determined for the PD neural dynamics, one can
readily apply the method to the data using the established
settings. In this study, we maintained the identical parame-
ters used in the previous LFP-MEG study (37), without
requiring any adjustments or searching for optimal parame-
ters specific to the EEG data at hand. Compared with the
other markers, one critical methodological requirement to
properly estimate the nonlinearity measure is to use longer
segments (in our case �14 s) as the nonlinear dynamics can
accurately be inferred from relatively large durations.

Conventionally, any suggested measure’s correlation with
motor impairment scores (UPDRS) is naturally accepted to
be desirable, as it is thereby supported to be a neurophysio-
logical marker representative of medication-induced motor
improvement. However, for the current EEG data set used
by previous studies, no significant correlation with UPDRS
has been reported either for PAC (19) or waveform asymme-
try (28). Similarly, another study using the same dataset (22)
did not attempt to carry out UPDRS correlations with net-
work measures due to the forewarned uncertainty of the
clinical scores. The data curator cautions that the UPDRS rat-
ing scales were “collected by laboratory personnel who had
completed online training and not a board-certified neurolo-
gist” (https://openneuro.org/datasets/ds002778/versions/1.0.2).
Nevertheless, to compare the UPDRS correlation result with
that of Özkurt et al. (37), we assumed the scores labeled as “left
UPDRS” and “right UPDRS” represent motor impairment with
respect to the contralateral sensorimotor channel, labeled
respectively as C4 (right-sided) andC3 (left-sided), in our analy-
ses. There was no significant correlation between dopaminer-
gic medication-induced change in the nonlinearity metric (DL)
and the change in the contralateral hemibody motor impair-
ment score (DUPDRS) for the electrodes (r ¼ 0.23, P ¼ 0.22;
Supplemental Fig. S2A). Although this finding is not in dis-
agreement with the aforesaid studies using the same EEG data,
we think that it does not necessarily imply the absence of inter-
relation betweenmotor impairment and nonlinearitymeasure.
The absence can be due to the underlined uncertainty of the
UPDRS as cautioned. Besides, the low SNR of EEG chan-
nels may be another important factor. More importantly,
one should keep in mind the vulnerability of these correla-
tion results. When we took only one channel out from the
analysis, a significant correlation between DL and hemi-
body DUPDRS emerged (r ¼ 0.38, P ¼ 0.04; Supplemental
Fig. S2B). Hence, the correlation output is very sensitive to
any possible flaw occurring in the signal quality of the
electrodes, motor score examination, or biomarker estima-
tion and should be taken into account while interpreting
the results.

There is a list of topics for further investigation to clarify
the role of cortical a band nonlinearity in PD mechanisms.
One such direction concerns the degree of specificity to PD
rather than other movement disorders such as dystonia,
essential tremor, and multiple sclerosis. The previous study
(37) already showed that motor cortical a band nonlinearity
tends to associate with akinesia and rigidity, whereas sub-
cortical STN high b band (20–30 Hz) correlated with tremor
severity. Nonlinear measures of both bands were uncorre-
lated with linear spectral power values in the cortex and the
STN. Thus, their findings implied that a band nonlinearity is
associated with akinesia and rigidity scores but how the na-
ture of L varies with respect to other movement disorders is
still an open question.

Several studies have reported increases in STN power
within the a band range upon dopaminergic medication (56–
58). So far, nonlinearity observed in PD electrophysiological
recordings generally has been associated with increased neu-
ral complexity (61). The presence of nonlinearity was inter-
preted as a hallmark of obstruction of the information
coding capacity of the basal ganglia-cortical network (32).
Autocorrelative nonlinearity (37), burst duration-derived
nonlinearity (32), and higher-order spectral amplitude (31)
were all reported to be excessively present for the PD STN at
the b band. On the other hand, our results in accordance
with Özkurt et al. (37) show that cortical a band nonlinearity
implies an opposite prokinetic tendency as it lacks in the
sensorimotor regions in PD and hence requires a different
line of interpretation other than reducing the coding
capacity. To confidently establish the neurophysiological
role of a band nonlinearity in PD, more extensive neural data
analyses on a larger cohort of patients and computational
neural models describing cortical data are required.

The current study showed that the cortical L estimated
from a single-channel EEG persists to be a promising indica-
tor of PD at even earlier stages. Nonetheless, the robustness
of the nonlinearity measure as a PD biomarker should be
tested further with patient data obtained via various neuro-
physiology modalities collected by multiple sites. How L
spontaneously varies with the disease progress is another
interesting issue that needs to be elaborated in future
studies. Thanks to the recent upsurge of mobile and wire-
less EEG systems (59), it is possible to quantify and track
cortical nonlinearity across temporal scales from minutes
to years, through a smartphone in real time, which allows
personalization of monitoring for effective clinical treat-
ment. This also matters to accurately track the neural
markers sensitive enough to be affected by hourly circa-
dian events as well as specific days such as festive holi-
days, e.g., Christmas Day (60).
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