# CHARACTERISTIC CLASSES AND ALGEBRAIC HOMOLOGY OF REAL ALGEBRAIC VARIETIES

### YILDIRAY OZAN

# Department of Mathematics Middle East Technical University 06531 Ankara, TURKEY Email: ozan@metu.edu.tr

### 1. INTRODUCTION

For real algebraic sets  $X \subseteq \mathbb{R}^r$  and  $Y \subseteq \mathbb{R}^s$  a map  $F: X \to Y$  is said to be entire rational if there exist  $f_i, g_i \in \mathbb{R}[x_1, \ldots, x_r]$ ,  $i = 1, \ldots, s$ , such that each  $g_i$  vanishes nowhere on X and  $F = (f_1/g_1, \ldots, f_s/g_s)$ . We say X and Y are isomorphic to each other if there are entire rational maps  $F: X \to Y$ and  $G: Y \to X$  such that  $F \circ G = id_Y$  and  $G \circ F = id_X$ . A complexification  $X_{\mathbb{C}} \subseteq \mathbb{CP}^N$  of X will mean that X is a nonsingular algebraic subset of some  $\mathbb{RP}^N$  and  $X_{\mathbb{C}} \subseteq \mathbb{CP}^N$  is the complexification of the pair  $X \subseteq \mathbb{RP}^N$ . We also require the complexification to be nonsingular (blow up  $X_{\mathbb{C}}$  along smooth centers away from X defined over reals if necessary). We refer the reader for the basic definitions and facts about real algebraic geometry to [1, 5]. Let  $KH_*(X, R)$  be the kernel of the induced map

$$i_*: H_*(X, R) \to H_*(X_{\mathbb{C}}, R)$$

on homology, where  $i: X \to X_{\mathbb{C}}$  is the inclusion map and R is either  $\mathbb{Z}, \mathbb{Z}_2$  or  $\mathbb{Q}$ . In [6] it is shown that  $KH_*(X, R)$  is independent of the complexification  $X \subseteq X_{\mathbb{C}}$ . Dually, denote the image of the homomorphism

$$i^*: H^*(X_{\mathbb{C}}, R) \to H^*(X, R)$$

by  $ImH^*(X, R)$ . In [6] and [7]  $KH_*(X, R)$  is studied and computed on some examples. Moreover some applications on the nonexistence of entire rational maps of real algebraic varieties are given. In this note, we will present a relation between  $ImH^*(X, R)$  and characteristic classes of strongly algebraic vector bundles over X (see Section 2 for the definition of strongly algebraic vector bundles) and some applications.

All compact manifolds and nonsingular real or complex algebraic sets are R oriented so that Poincaré duality and intersection of homology classes make sense.

## 2. Results

For a compact nonsingular real algebraic set X, define  $H_k^A(X,\mathbb{Z}_2) \subseteq H_k(X,\mathbb{Z}_2)$  to be the subgroup of classes represented by algebraic subsets

#### YILDIRAY OZAN

of X and let  $H^k_A(X, \mathbb{Z}_2)$  be the Poincaré dual of  $H^A_{n-k}(X, \mathbb{Z}_2)$ . These are well known and very useful in the study of real algebraic sets. Also we define  $H^k_A(X, \mathbb{Z}_2)^2$  to be the subgroup

$$\{\alpha^2 \mid \alpha \in H^k_A(X, \mathbb{Z}_2)\} \subseteq H^{2k}_A(X, \mathbb{Z}_2)$$

(cup product preserves algebraic cycles [2]).

It is well known that Grassmann varieties together with their canonical bundles have canonical real algebraic structures. Pullbacks of these canonical bundles via entire rational maps, from X into the Grassmannians, are called strongly algebraic vector bundles over X. A continuous vector bundle  $E \to X$  is said to have a strongly algebraic structure if it is continuously isomorphic to a strongly algebraic vector bundle, or equivalently, if the continuous map classifying E is homotopic to an entire rational map.

Akbulut and King showed that  $H_A^k(X, \mathbb{Z}_2)^2$  and Pontrjagin classes of Xare pullbacks of some classes of  $X_{\mathbb{C}}$  ([3]). Indeed, the same works for any strongly algebraic vector bundle  $E \to X$  over X, not just for the tangent bundle, because the complexification (as a vector bundle) of any strongly algebraic vector bundle over X extends over some complexification  $X_{\mathbb{C}}$  of X. The reason is that the real Grassmann variety,  $G_{\mathbb{R}}(n,k)$ , of real k-planes in  $\mathbb{R}^n$  has the complex Grassmann variety,  $G_{\mathbb{C}}(n,k)$ , of complex k-planes in  $\mathbb{C}^n$ as its natural complexifications and therefore any entire rational map from X into  $G_{\mathbb{R}}(n,k)$  gives rise to a regular map, maybe after some blowing-ups of the domain, from  $X_{\mathbb{C}}$  into  $G_{\mathbb{C}}(n,k)$ . We can summarize this as follows:

**Theorem 2.1.** Let X be a nonsingular compact connected real algebraic variety and set

 $P = \{e^2(E), p_i(E) \mid E \to X \text{ is a strongly algebraic vector bundle over } X\}$ and

 $W^2 = \{w_i^2(E) \mid E \to X \text{ is a strongly algebraic vector bundle over } X\}$ 

which are subsets of  $H^*(X, \mathbb{Q})$  and  $H^*(X, \mathbb{Z}_2)$  respectively, where e(E),  $p_i(E)$  and  $w_i(E)$  are the Euler, the Pontrjagin and the Stiefel-Whitney classes of E. Then  $ImH^*(X, \mathbb{Q})$  and  $ImH^*(X, \mathbb{Z}_2)$  contains the subalgebras generated by P and  $W^2$  respectively.

Any closed smooth manifold M has an algebraic model X so that any vector bundle over X has a strongly algebraic structure. This follows from the facts that Grassmann varieties have totally algebraic homology and the K-groups of a compact manifold are finitely generated. Hence, for this Xboth P and  $W^2$  are maximal. Some geometric consequences of this theorem are as follows:

**Corollary 2.2.** Let X be as in above theorem and  $H \subseteq X$  an algebraic hypersurface. If  $\alpha \in H_2(X, \mathbb{Z}_2)$  with  $[H] \cdot [H] \cdot \alpha \neq 0$  then  $\alpha \notin KH_2(X, \mathbb{Z}_2)$ .

**Corollary 2.3.** If M is a smooth closed manifold having an algebraic model X with  $H_2(X, \mathbb{Z}_2) = KH_2(X, \mathbb{Z}_2)$ , then  $\alpha^2 = 0$  for any  $\alpha \in H^1_A(X, \mathbb{Z}_2)$ .

Moreover, if X is such that  $H^1(X, \mathbb{Z}_2) = H^1_A(X, \mathbb{Z}_2)$ , then  $\alpha^2 = 0$  for any  $\alpha \in H^1(M, \mathbb{Z}_2).$ 

**Remark:** The converse of the above corollary is not true. Indeed, if Fis an oriented closed 2-manifold then clearly  $\alpha^2 = 0$  for any  $\alpha \in H^1(F, \mathbb{Z}_2)$ . However, if F has even genus then for any algebraic model X of F we have  $H_2(X,\mathbb{Z}_2) = \mathbb{Z}_2 \neq 0 = KH_2(X,\mathbb{Z}_2)$ . The last equality follows from the Bockstein homology sequence

$$\cdots \to H_2(F_{\mathbb{C}}, \mathbb{Z}) \xrightarrow{\times 2} H_2(F_{\mathbb{C}}, \mathbb{Z}) \longrightarrow H_2(F_{\mathbb{C}}, \mathbb{Z}_2) \xrightarrow{\partial} H_1(F_{\mathbb{C}}, \mathbb{Z}) \to \cdots$$

and the fact that the Euler class of F is not divisible by 4.

The rational cohomology ring of the quaternionic projective *n*-space  $\mathbb{Q}P^n$ is generated by the Pontrjagin classes of its tangent bundle which is clearly strongly algebraic and thus combining this with the above considerations we get:

**Theorem 2.4.** For any real algebraic model X of

- i) the quaternionic projective n-space  $\mathbb{Q}P^n$  we have  $KH_k(X,\mathbb{Z}) = 0$ , for all k;
- ii) the complex projective n-space  $\mathbb{C}P^n$  we have  $KH_{2n}(X,\mathbb{Z}) = 0$  and  $KH_{4k}(X,\mathbb{Z}) = 0$ , for all k;
- iii) the real projective 2n-space  $\mathbb{R}P^{2n}$  we have  $KH_{2k}(X,\mathbb{Z}_2) = 0$ , for all k.

Parts (ii) and (iii) of the above theorem are proved in [6].

#### References

- [1] Akbulut, S., King, H.: Topology of real algebraic sets, M.S.R.I. book series, Springer, New York, 1992.
- [2] ——: A relative Nash theorem, Trans. Amer. Math. Soc., 267 (1981), 465-481. [3] ——: Transcendental submanifolds of  $\mathbb{R}^n$ , Comment. Math. Helvetici, 68 (1993), 308-318
- [4] Bochnak, J., Buchner, M., Kucharz, W.: Vector bundles over real algebraic varieties, K-Theory J., 3 (1989), 271-289.
- [5] Bochnak, J., Coste, M., Roy, M.F.: Géometrie algébrique réelle, Ergebnisse der Math. vol. 12, Springer, Berlin, 1987.
- [6] Ozan, Y.: On homology of real algebraic sets (preprint).
- [7] ———: Homology of real algebraic fiber bundles having circle as fiber or base, to appear in Michigan Math. J.