PHYS 209 MATHEMATICAL METHODS IN PHYSICS I Fall 2012

Instructor:

Assoc.Prof. Seçkin Kürkçüoğlu, Room 110, Phone: 3117, e-mail: kseckin@metu.edu.tr

Course Web Page:

http://www.metu.edu.tr/~kseckin/PHYS209.html

Schedule:

Monday:	13:40-15:30	P5
Wednesday:	12:40-14:30	P3

Recitations:

Fri: 10:40-12:30 U1, Teaching Assistant will be announced later.

Textbook:

W. E. Boyce and R.C. DiPrima, *Elementary Differential Equations and Boundary Value Problems*, 9th Edition, Wiley 2010

Suggested Books:

F. B. Hildebrand, Advanced Calculus for Applications, 2nd Edition, Prentice-Hall 1976

S. L. Ross, Differential Equations, 3rd Edition, Wiley 1984

Grading:

There will be three midterm examinations and a final. Your midterm average will comprise 50% each of the best two and 10% of the lowest of your midterm examinations. If your midterm average is greater than your final, the midterm average and the final will contribute 60% and 40 %, respectively, to your final grade; otherwise the midterm average and the final will contribute 50% each to your final grade.

Exam Dates and Places:

1st Midterm Exam: 31 October 2012 Wednesday, Time: 17:40, Place: P1 and P2 2nd Midterm Exam: 28 November 2012 Wednesday, Time: 17:40, Place: P1 and P2 3rd Midterm Exam: 2 January 2013, Wednesday, Time: 17:40, Place: P1 and P2 Final Exam: **To be announced later.**

Course Content:

- Definition and classification of differential equations
- First order differential equations
 - Linear equations, separable equations, homogeneous equations, Bernoulli equations, exact equations and integrating factors. Applications of first order equations.
- Second and higher order linear differential equations
 - Equations reducible to first order. Homogeneous equations with constant coefficients. Reduction of order. Cauchy-Euler equations. Non-homogeneous equations: Method of undetermined coefficients and method of variation of parameters.
- Series solutions of linear differential equations
 - Series solutions about ordinary points. Series solutions about regular singular points: Frobenius method.
- Systems of linear differential equations
- Boundary value problems and Sturm-Liouville Theory
- Fourier series and Fourier transforms