Q1. Find the line element ds^2 , the scale factors, the vector ds, the volume and area elements and the unit vectors u in the elliptic cylindrical coordinates

```
x = a \cosh u \cos v, y = a \sinh u \sin v z = z.
```

Q2. Find the line element ds^2 . the scale factors, the vector ds, the area element and the unit vectors u in the Bipolar coordinates

$$x = \frac{a \sinh u}{\cosh u + \cos v}, \quad y = \frac{a \sin v}{\cosh u + \cos v}$$

Q3. Consider the rotational parabolic coordinates defined by

$$x = uvw$$
, $y = uv\sqrt{1 - w^2}$, $z = \frac{1}{2}(u^2 - v^2)$.

- a) Find the unit tangent vectors $\hat{\boldsymbol{e}}_u$, $\hat{\boldsymbol{e}}_v$, $\hat{\boldsymbol{e}}_w$ along the coordinate curves.
- b) Show that the system of coordinates (u, v, w) is orthogonal.
- c) Find the line and volume elements.
- d) Obtain the gradient operator and the Laplacian.

Q4. In cylindrical coordinates compute

 $oldsymbol{
abla} oldsymbol{
abla} \cdot oldsymbol{u}_r\,, \quad oldsymbol{
abla} imes oldsymbol{u}_ heta\,, \quad oldsymbol{
abla} imes oldsymbol{
abla} imes oldsymbol{u}_ heta\,, \quad oldsymbol{
abla} imes oldsymbol{
abla} imes oldsymbol{u}_ heta\,, \quad oldsymbol{
abla} imes oldsymbol{u}_ heta\,, \quad oldsymbol{
abla} imes oldsymbol{u}_ heta\,, \quad oldsymbol{abla} imes oldsymbol{u}_ heta\,, \quad oldsymbol{abla} imes oldsymbol{a$

Q5. In spherical coordinates compute

$$oldsymbol{
abla} oldsymbol{
abla} \cdot oldsymbol{u}_r\,, \quad oldsymbol{
abla} imes oldsymbol{u}_ heta\,, \quad oldsymbol{
abla}$$

Q6. Find the flux of the magnetic field $\boldsymbol{B} = r\boldsymbol{u}_r - 2z\boldsymbol{u}_z$ through the curved surface of a

a) a half cylinder of radius 3 bounded by the z = 3 and z = 7 planes and the xz-plane. Verify the divergence theorem

b) a quarter cylinder of radius 3 bounded by the z = 3 and z = 7 and the xz- and yz-planes. Verify the divergence theorem.

Q7. A force field is given in spherical coordinates as $\mathbf{F} = \frac{2P\cos\theta}{r^3} \mathbf{u}_r + \frac{P\cos\theta}{r^3} \mathbf{u}_{\theta}$. Compute $\oint_C \mathbf{F} \cdot d\mathbf{r}$ for a unit circle on the plane $\theta = \frac{\pi}{2}$. Is there a potential associated to \mathbf{F} .