Q. 1 It is given that $\boldsymbol{F}=(3 x-y z) \boldsymbol{i}+\left(z^{2}-y^{2}\right) \boldsymbol{j}+\left(2 y z+x^{2}\right) \boldsymbol{k}$,
a. Evaluate the surface integral $\oiint_{S} \boldsymbol{F} \cdot d \boldsymbol{\sigma}$ over the surface of the sphere $(x-2)^{2}+(y+3)^{2}+z^{2}=9$.
b. Verify divergence theorem.
Q. 2 Consider the vector field given as $\overrightarrow{\boldsymbol{V}}=\left(x^{2}+3 x\right) \boldsymbol{i}+\left(3 y^{2}+3 y\right) \boldsymbol{j}-2 z\left(x_{3} y-2\right) \boldsymbol{k}$.
a. Evaluate the surface integral $\oiint_{S} \boldsymbol{V} \cdot d \boldsymbol{\sigma}$ over the surface of the unit cube $0 \leq x \leq 1,0 \leq y \leq$ $1,0 \leq z \leq 1$.
b. Verify the divergence theorem.
Q. 3 Given that $\boldsymbol{V}=(1+y) z \boldsymbol{i}+(1+z) x \boldsymbol{j}+(1+x) y \boldsymbol{k}$, use Stokes' theorem to evaluate $\oint_{C} \boldsymbol{V} \cdot d \boldsymbol{r}$, where C is a closed curve in the plane $x-2 y+z=1$. Ans: 0 .
Q. 4 Consider the vector field $\overrightarrow{\boldsymbol{V}}=\left(x^{2}+z\right) \boldsymbol{i}+\left(y^{2}+x\right) \boldsymbol{j}+\left(z^{2}+y\right) \boldsymbol{k}$ and let C be the curve of intersection of the sphere $x^{2}+y^{2}+z^{2}=1$ and the cone $z=\sqrt{x^{2}+y^{2}}$.
a. Compute $\oint_{C} \overrightarrow{\boldsymbol{V}} \cdot d \overrightarrow{\boldsymbol{r}}$ along the curve C directly.
b. Compute $\oint_{C} \overrightarrow{\boldsymbol{V}} \cdot d \overrightarrow{\boldsymbol{r}}$ using Stokes' theorem.

