Q.1 It is given that $\boldsymbol{F} = (3x - yz)\boldsymbol{i} + (z^2 - y^2)\boldsymbol{j} + (2yz + x^2)\boldsymbol{k}$,

a. Evaluate the surface integral $\oiint_S \mathbf{F} \cdot d\boldsymbol{\sigma}$ over the surface of the sphere $(x-2)^2 + (y+3)^2 + z^2 = 9$.

b. Verify divergence theorem.

Q.2 Consider the vector field given as $\vec{V} = (x^2 + 3x)i + (3y^2 + 3y)j - 2z(x_3y - 2)k$.

a. Evaluate the surface integral $\oiint_S \mathbf{V} \cdot d\boldsymbol{\sigma}$ over the surface of the unit cube $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$.

b. Verify the divergence theorem.

Q.3 Given that V = (1+y)zi + (1+z)xj + (1+x)yk, use Stokes' theorem to evaluate $\oint_C V \cdot dr$, where C is a closed curve in the plane x - 2y + z = 1. Ans: 0.

Q.4 Consider the vector field $\vec{V} = (x^2 + z)i + (y^2 + x)j + (z^2 + y)k$ and let C be the curve of intersection of the sphere $x^2 + y^2 + z^2 = 1$ and the cone $z = \sqrt{x^2 + y^2}$.

a. Compute $\oint_C \vec{V} \cdot d\vec{r}$ along the curve C directly.

b. Compute $\oint_C \vec{V} \cdot d\vec{r}$ using Stokes' theorem.