Q.1 Given that $\boldsymbol{V} = x^2 \boldsymbol{i} - (1+2x)\boldsymbol{j} + z\boldsymbol{k}$,

a) Evaluate $\iint \mathbf{V} \cdot d\boldsymbol{\sigma}$ over the lateral surface of the cylinder $x^2 + y^2 = 1$ between $0 \le z \le 2$. Ans : 0.

b) Verify the divergence theorem.

Q.2 Given the electric field $\boldsymbol{E} = 2xy\boldsymbol{i} - y^2\boldsymbol{j} + (z + xy)\boldsymbol{k}$,

a) Find the electric flux $\iint_S \mathbf{E} \cdot d\boldsymbol{\sigma}$ through the lateral surface S of the portion of the cylinder $x^2 + y^2 = 9$ bounded by the xz plane, xy plane and the plane z = 5.

b) Use divergence theorem to obtain the same result.

Q.3 Given that $\mathbf{F} = (yz)\mathbf{i} + (xz)\mathbf{j} + (xy)\mathbf{k}$. Evaluate $\iint_S \mathbf{F} \cdot d\boldsymbol{\sigma}$ over the closed surface bounded below by the paraboloid $z = x^2 + y^2$ and above by the z = 1 plane.

Q.4 Consider the vector field $\mathbf{F} = \ln(x^2 + y^2)(\mathbf{i} + \mathbf{j})$. Let *C* be the closed curve bounding the semiannular region above the *x*-axis between $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$. Compute $\oint_C \mathbf{F} \cdot d\mathbf{r}$. *Hint* : Use *Green's theorem.*

Q.5 a) Use Green's theorem to show that area enclosed by a simple closed curve C is

$$A = \frac{1}{2} \oint x dy - y dx$$

b) Use the result above to find the area bounded by the curve $x^{2/3} + y^{2/3} = a^{2/3}$. (Hint : Take $x = a \cos^n \theta$ and $y = a \sin^n \theta$ for some suitable number *n*. Answer: $\frac{3}{8}\pi a^2$.

Q.6 Given the vector field $\vec{V} = (1+y)zi + (1+z)xj + (1+x)yk$. Use Stokes' theorem to compute $\oint \vec{V} \cdot d\vec{r}$ along a circle of radius 5 that lies in the plane -3x + 2y + 4z = 1 and centered at (1, -2, 2).