Q. 1 Given that $\boldsymbol{V}=x^{2} \boldsymbol{i}-(1+2 x) \boldsymbol{j}+z \boldsymbol{k}$,
a) Evaluate $\iint \boldsymbol{V} \cdot d \boldsymbol{\sigma}$ over the lateral surface of the cylinder $x^{2}+y^{2}=1$ between $0 \leq z \leq 2$. Ans : 0.
b) Verify the divergence theorem.
Q. 2 Given the electric field $\boldsymbol{E}=2 x y \boldsymbol{i}-y^{2} \boldsymbol{j}+(z+x y) \boldsymbol{k}$,
a) Find the electric flux $\iint_{S} \boldsymbol{E} \cdot d \boldsymbol{\sigma}$ through the lateral surface S of the portion of the cylinder $x^{2}+y^{2}=9$ bounded by the $x z$ plane, $x y$ plane and the plane $z=5$.
b) Use divergence theorem to obtain the same result.
Q. 3 Given that $\boldsymbol{F}=(y z) \boldsymbol{i}+(x z) \boldsymbol{j}+(x y) \boldsymbol{k}$. Evaluate $\iint_{S} \boldsymbol{F} \cdot d \boldsymbol{\sigma}$ over the closed surface bounded below by the paraboloid $z=x^{2}+y^{2}$ and above by the $z=1$ plane.
Q. 4 Consider the vector field $\boldsymbol{F}=\ln \left(x^{2}+y^{2}\right)(\boldsymbol{i}+\boldsymbol{j})$. Let C be the closed curve bounding the semiannular region above the x-axis between $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$. Compute $\oint_{C} \boldsymbol{F} \cdot d \mathbf{r}$. Hint : Use Green's theorem.
Q. 5 a) Use Green's theorem to show that area enclosed by a simple closed curve C is

$$
A=\frac{1}{2} \oint x d y-y d x .
$$

b) Use the result above to find the area bounded by the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$. (Hint : Take $x=a \cos ^{n} \theta$ and $y=a \sin ^{n} \theta$ for some suitable number n. Answer: $\frac{3}{8} \pi a^{2}$.
Q. 6 Given the vector field $\overrightarrow{\boldsymbol{V}}=(1+y) z \boldsymbol{i}+(1+z) x \boldsymbol{j}+(1+x) y \boldsymbol{k}$. Use Stokes' theorem to compute $\oint \overrightarrow{\boldsymbol{V}} \cdot d \overrightarrow{\boldsymbol{r}}$ along a circle of radius 5 that lies in the plane $-3 x+2 y+4 z=1$ and centered at $(1,-2,2)$.

