Q. 1 it is given that

$$
\boldsymbol{F}=\left(3 x^{2}-6 y z\right) \boldsymbol{i}+(2 y+3 x z) \boldsymbol{j}+\left(1-x y z^{2}\right) \boldsymbol{k}
$$

Evaluate the line integral $\int_{C} \boldsymbol{F} \cdot d \boldsymbol{l}$ from the point $(0,0,0)$ to the point $(1,1,1)$ along the curve C parametrized as $x(t)=t, y(t)=t^{2}, z(t)=t^{3}$.
Q. 2 Given the two force fields

$$
\boldsymbol{F}_{1}=-2 y \boldsymbol{i}+(z-2 x) \boldsymbol{j}+(y+z) \boldsymbol{k}, \quad \boldsymbol{F}_{2}=y \boldsymbol{i}+2 x \boldsymbol{j}
$$

a) Determine whether \boldsymbol{F}_{1} and \boldsymbol{F}_{2} are conservative or not.
b) Find the work done by \boldsymbol{F}_{1} and \boldsymbol{F}_{2} in moving a particle around the ellipse $x^{2}+\frac{y^{2}}{4}=1$.
c) Find potential(s) associated to conservative force(s) in this problem.
Q. 3 Evaluate the line integral $\int_{C} \overrightarrow{\boldsymbol{V}} \cdot d \overrightarrow{\boldsymbol{r}}$ where C is the helix

$$
x(t)=\cos t, \quad y(t)=\sin t, \quad z=t
$$

between the points $(1,0,0)$ and $(1,0,2 \pi)$ where $\overrightarrow{\boldsymbol{V}}$ is the vector field

$$
\overrightarrow{\boldsymbol{V}}=\sin (y z) \boldsymbol{i}+x z \cos (y z) \boldsymbol{j}+x y \cos (y z) \boldsymbol{k} .
$$

Q. 4 Check if the following vector fields are conservative and find a potential function if so.
a. $\boldsymbol{F}=y \sin 2 x \boldsymbol{i}+\sin ^{2} x \boldsymbol{j}$.
b. $\boldsymbol{F}=z^{2} \sinh y \boldsymbol{j}+2 z \cosh ^{2} y \boldsymbol{k}$
c. $\boldsymbol{F}=y \boldsymbol{i}+x \boldsymbol{j}+\boldsymbol{k}$
Q. 5 Compute the line integral of

$$
\boldsymbol{F}=x^{2} \boldsymbol{i}+5 x \boldsymbol{j}
$$

around a square with vertices at $(1,0),(0,1),(-1,0),(0,-1)$.

