Q.1 Position vector of a particle as a function of time t is given by

$$\mathbf{r}(t) = \frac{4t}{\pi}\hat{i} + (5 + \cos 2t)\hat{j} - \sqrt{2}\sin t\hat{k}$$

- a) Find velocity $\mathbf{v}(t)$ and acceleration $\mathbf{a}(t)$ vectors of the particle.
- b) Find magnitudes of $\mathbf{v}(t)$ and $\mathbf{a}(t)$ at the instant when the particle passes through the point (1, 5, -1).
- c) Find the equation of the line tangent to the trajectory of the particle at the point (1, 5, -1).
- d) Find an equation of the plane normal to the trajectory of the particle at the point (1, 5, -1).

Q.2 Find the tangent, normal and binormal vector and compute the curvature and the torsion of the curve specified by

$$x(t) = a(1 + \cos t), \quad y(t) = a \sin t, \quad z(t) = 2a \sin \frac{t}{2}.$$

This is called Viviani's curve.

Q.3

a) Find the directional derivative of the scalar field $\varphi(x, y, z) = x^2 + \sin y - xz$, in the direction of the vector $\mathbf{A} = \hat{i} + 2\hat{j} - 2\hat{k}$ at the point $(1, \frac{\pi}{2}, -3)$.

b) In which direction does the scalar field $\varphi(x, y, z) = z \sin y - xz$ increases most rapidly at the point $\left(2, \frac{\pi}{2}, -1\right)$.

Q.4 Compute the diverge and the curl of the following vector fields:

a)
$$\mathbf{r}(t) = x\hat{i} + y\hat{j} + z\hat{k}$$
, b) $\mathbf{V}(t) = x^2y\hat{i} + y^2x\hat{j} + xyz\hat{k}$, c) $\mathbf{V}(t) = x\sin y\hat{i} + \cos y\hat{j} + xy\hat{k}$

Q.5 Calculate the Laplacian $\nabla^2 = \nabla \cdot \nabla$ of the scalar fields

- a) $\ln(x^2 + y^2)$,
- b) $(x+y)^{-1}$.

Q.6 It is given that $\mathbf{r}(t) = x\hat{i} + y\hat{j} + z\hat{k}$. Compute

- a) $\nabla \times (\hat{k} \times \mathbf{r})$,
- b) $\nabla \cdot \left(\frac{\mathbf{r}}{|\mathbf{r}|}\right)$,
- c) $\nabla \cdot \left(\frac{\mathbf{r}}{|\mathbf{r}|} \right)$,

Q.7 Simplify the following expressions using index notation

- a) $\nabla \times (\mathbf{U} \times \mathbf{V})$,
- b) $\nabla (\mathbf{U} \cdot \mathbf{V})$,
- c) $\nabla\cdot (\nabla\phi\times\nabla\psi)$,