Q. 1 Position vector of a particle as a function of time t is given by

$$
\mathbf{r}(t)=\frac{4 t}{\pi} \hat{i}+(5+\cos 2 t) \hat{j}-\sqrt{2} \sin t \hat{k}
$$

a) Find velocity $\mathbf{v}(t)$ and acceleration $\mathbf{a}(t)$ vectors of the particle.
b) Find magnitudes of $\mathbf{v}(t)$ and $\mathbf{a}(t)$ at the instant when the particle passes through the point $(1,5,-1)$.
c) Find the equation of the line tangent to the trajectory of the particle at the point $(1,5,-1)$.
d) Find an equation of the plane normal to the trajectory of the particle at the point $(1,5,-1)$.
Q. 2 Find the tangent, normal and binormal vector and compute the curvature and the torsion of the curve specified by

$$
x(t)=a(1+\cos t), \quad y(t)=a \sin t, \quad z(t)=2 a \sin \frac{t}{2} .
$$

This is called Viviani's curve.
Q. 3
a) Find the directional derivative of the scalar field $\varphi(x, y, z)=x^{2}+\sin y-x z$, in the direction of the vector $\mathbf{A}=\hat{i}+2 \hat{j}-2 \hat{k}$ at the point $\left(1, \frac{\pi}{2},-3\right)$.
b) In which direction does the scalar field $\varphi(x, y, z)=z \sin y-x z$ increases most rapidly at the point $\left(2, \frac{\pi}{2},-1\right)$.
Q. 4 Compute the diverge and the curl of the following vector fields:
a) $\mathbf{r}(t)=x \hat{i}+y \hat{j}+z \hat{k}$,
b) $\mathbf{V}(t)=x^{2} y \hat{i}+y^{2} x \hat{j}+x y z \hat{k}$,
c) $\mathbf{V}(t)=x \sin y \hat{i}+\cos y \hat{j}+x y \hat{k}$.
Q. 5 Calculate the Laplacian $\nabla^{2}=\nabla \cdot \nabla$ of the scalar fields
a) $\ln \left(x^{2}+y^{2}\right)$,
b) $(x+y)^{-1}$.
Q. 6 It is given that $\mathbf{r}(t)=x \hat{i}+y \hat{j}+z \hat{k}$. Compute
a) $\boldsymbol{\nabla} \times(\hat{k} \times \mathbf{r})$,
b) $\nabla \cdot\left(\frac{\mathbf{r}}{|\mathbf{r |}|}\right)$,
c) $\nabla \cdot\left(\frac{\mathbf{r}}{|r|}\right)$,
Q. 7 Simplify the following expressions using index notation
a) $\nabla \times(\mathbf{U} \times \mathbf{V})$,
b) $\nabla(\mathbf{U} \cdot \mathbf{V})$,
c) $\nabla \cdot(\nabla \phi \times \nabla \psi)$,

