Q.1 a. Prove that if D(G) is any representation of a finite group G on an inner product space V and $x, y \in V$ then

$$(x,y) = \sum_{g \in G} \{ D(g)x | D(g)y \},\$$

defines a new sac; r product on V.

Q.2 a. Consider the dihedral-3 group D_3 of order 6. Let V be a 2-dimensional vector space spanned by the the vectors $\hat{\boldsymbol{e}}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\hat{\boldsymbol{e}}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

a. Write down a matrix representation of D_3 on V with respect to the Cartesian basis given above.

b. Is the representation that you have found in part a.) reducible or irreducible ?

c.Give a unitary irreducible representation of $D_3 \simeq S_3$ on this vector space V.

Q.3 Consider the 2-dimensional function space V^* consisting of the polynomials

$$f(x,y) = ax + by, \quad a, b \in \mathbb{C}$$

As we have discussed in the class, these functionals form a representation of D_2 and R_2 . Note also that we can write

$$f(x,y) = \langle a, b | x, y \rangle,$$

in a self-evident notation, where the "bra"'s $\langle a, b |$ stand abstract as an element of V^* .

a.) Identify and write down the invariant subspaces and irreducible representations (IRR)'s of D_2 on ${\pmb V}^*$.

b.) Identify and write down the invariant subspaces and IRR's of R_2 on V^* .

Q.4 Consider the group of translations in 1-dimensions. The elements of this group can be denoted as T(a) such that $T(a)\mathbf{x} = \mathbf{x} + a$. Find a *n*-dimensional representation on the space of functionals of x in *n*-dimensions, i.e. in the *n*-dimensional space of polynomials of x of degree n - 1. Show for instance in the case of n = 3 that, T(a)T(b) = T(a + b).