Q. 1 a. Prove that if $D(G)$ is any representation of a finite group G on an inner product space \boldsymbol{V} and $x, y \in \boldsymbol{V}$ then

$$
(x, y)=\sum_{g \in G}\{D(g) x \mid D(g) y\}
$$

defines a new sac; product on \boldsymbol{V}.
Q. 2 a. Consider the dihedral-3 group D_{3} of order 6 . Let \boldsymbol{V} be a 2-dimensional vector space spanned by the the vectors $\hat{\boldsymbol{e}}_{1}=\binom{1}{0}$ and $\hat{\boldsymbol{e}}_{2}=\binom{0}{1}$.
a. Write down a matrix representation of D_{3} on \boldsymbol{V} with respect to the Cartesian basis given above.
b. Is the representation that you have found in part a.) reducible or irreducible ?
c. Give a unitary irreducible representation od $D_{3} \simeq S_{3}$ on this vector space \boldsymbol{V}.
Q. 3 Consider the 2-dimensional function space \boldsymbol{V}^{*} consisting of the polynomials

$$
f(x, y)=a x+b y, \quad a, b \in \mathbb{C}
$$

As we have discussed in the class, these functionals form a representation of D_{2} and R_{2}. Note also that we can write

$$
f(x, y)=\langle a, b \mid x, y\rangle
$$

in a self-evident notation, where the "bra"'s $\langle a, b|$ stand abstract as an element of \boldsymbol{V}^{*}.
a.) Identify and write down the invariant subspaces and irreducible representations (IRR)'s of D_{2} on \boldsymbol{V}^{*}.
b.) Identify and write down the invariant subspaces and IRR's of R_{2} on \boldsymbol{V}^{*}.
Q. 4 Consider the group of translations in 1-dimensions. The elements of this group can be denoted as $T(a)$ such that $T(a) \boldsymbol{x}=\boldsymbol{x}+a$. Find a n-dimensional representation on the space of functionals of x in n-dimensions, i.e. in the n-dimensional space of polynomials of x of degree $n-1$. Show for instance in the case of $n=3$ that, $T(a) T(b)=T(a+b)$.

