METU, Spring 2012, Math 515. Homework 5

 $({\rm due}~{\rm May}~9)$

- 1. Let $A \subset B$ be rings, B integral over A. Let $\mathfrak{n} \subset B$ be a maximal ideal and set $\mathfrak{m} = \mathfrak{n} \cap A$. Give two examples such that
 - $B_{\mathfrak{n}}$ is integral over $A_{\mathfrak{m}}$,
 - $B_{\mathfrak{n}}$ is not integral over $A_{\mathfrak{m}}$.
- 2. Let $A \subset B$ be rings, B integral over A.
 - If $x \in A \cap B^{\times}$, then show that $x \in A^{\times}$.
 - Show that $\mathfrak{R}(A) = \mathfrak{R}(B) \cap A$ for Jacobson radicals of A and B.
- 3. Show that the ring of continous real-valued functions on [0, 1] is not Noetherian.
- 4. Let M be an A-module and let N_1, N_2 be submodules of M. If M/N_1 and M/N_2 are Noetherian then prove that $M/(N_1 \cap N_2)$ is Noetherian.
- 5. Prove that A/Ann(M) is Noetherian if M is a Noetherian A-module.