METU, Spring 2012, Math 515.

Homework 3

(due April 2)

1. A nonzero A-module M is called irreducible if 0 and M are the only submodules of M.

- Determine all the irreducible Z-modules.
- Show that M is irreducible if and only if $M \cong A / \mathfrak{m}$ as A-modules where \mathfrak{m} is a maximal ideal of A.
- If M is irreducible then prove that $\operatorname{Hom}_{A}(M, M)$ is a field. What about the converse, is M irreducible if $\operatorname{Hom}_{A}(M, M)$ is a field?

2. Let $f^{\prime}, f, f^{\prime \prime}$ be A-module homomorphisms such that the following diagram commutes and suppose that the rows are exact. If f^{\prime} and $f^{\prime \prime}$ are surjective then show that f is surjective.

$$
\begin{aligned}
& 0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0 \\
& \downarrow f^{\prime} \quad \downarrow f \quad \downarrow f^{\prime \prime} \\
& 0 \rightarrow N^{\prime} \rightarrow N \rightarrow N^{\prime \prime} \rightarrow 0
\end{aligned}
$$

3. Show the exactness at $\operatorname{Coker}\left(f^{\prime}\right)$ in the sequence obtained by the snake lemma when it is applied to the commutative diagram above.

$$
0 \rightarrow \operatorname{Ker}\left(f^{\prime}\right) \rightarrow \operatorname{Ker}(f) \rightarrow \operatorname{Ker}\left(f^{\prime \prime}\right) \rightarrow \operatorname{Coker}\left(f^{\prime}\right) \rightarrow \operatorname{Coker}(f) \rightarrow \operatorname{Coker}\left(f^{\prime \prime}\right) \rightarrow 0
$$

4. Give an exact sequence of A-modules

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0
$$

and an A-module N such that

$$
0 \rightarrow \operatorname{Hom}\left(N, M^{\prime}\right) \rightarrow \operatorname{Hom}(N, M) \rightarrow \operatorname{Hom}\left(N, M^{\prime \prime}\right) \rightarrow 0
$$

is not exact.
5. Let $\left\{e_{1}, e_{2}\right\}$ be a basis of \mathbf{R}^{2}. Show that the element $e_{1} \otimes e_{2}+e_{2} \otimes e_{1}$ in $\mathbf{R}^{2} \otimes_{\mathbf{R}} \mathbf{R}^{2}$ cannot be written as a simple tensor $v \otimes w$ for any $v, w \in \mathbf{R}^{2}$.
6. Is \mathbf{Q} a flat \mathbf{Z}-module? Prove or disprove.

