METU, Spring 2012, Math 515.

Homework 2

(due March 19)

Do not forget stapling your homework!

- 1. Let A be a ring with nilradical \mathfrak{N} and Jacobson radical \mathfrak{R} .
 - Show that $x \in \mathfrak{R} \Leftrightarrow 1 xy \in A^{\times}$ for all $y \in A$.
 - If A is a finite ring, then show that $\mathfrak{N} = \mathfrak{R}$. (Hint: For each $y \in A$, show the existence of an element $e = y^k \in A$ such that $e^2 = e$. Can 1 e be a unit in A?)
- 2. Let \mathfrak{a} and \mathfrak{b} be ideals of a ring A. Is the following statement true for positive integers m and n? Prove or disprove.

$$\mathfrak{a} + \mathfrak{b} = (1) \Leftrightarrow \mathfrak{a}^n + \mathfrak{b}^m = (1).$$

- 3. Let $\mathcal{O} = \mathbb{Z}[\sqrt{-5}]$ and consider the ideals $\mathfrak{p} = (2, 1 + \sqrt{-5})$ and $\mathfrak{q} = (3, 1 \sqrt{-5})$. In this question, please do not use technical tools from Math 523.
 - Show that \mathfrak{p} and \mathfrak{q} are not principal ideals. Are they maximal?
 - Describe the ideals p + q, p ∩ q, (p : q), (q : p) by giving generators. For each ideal check if it is principal, or not.
 - Consider the set $S = \{ \alpha \in \mathcal{O} : \alpha 1 \in \mathfrak{p}, \alpha 2\sqrt{-5} \in \mathfrak{q} \}$. Give a condition on integers x and y so that $x\sqrt{-5} + y$ is an element of S. Is your condition necessary for $x\sqrt{-5} + y$ to be in S?
- 4. If $T: V \to V$ is a linear transformation on a vector space V over a field **F**, then V can be made into an $\mathbf{F}[x]$ -module by setting xv = Tv for any $v \in V$. For each of the following transformations T, find all $\mathbf{F}[x]$ -submodules of V.
 - $V = \mathbf{R}^2$ and T(x, y) = (-y, x).
 - $V = \mathbf{R}^2$ and T(x, y) = (0, y).
 - $V = \mathbf{R}^3$ and T(x, y, z) = (z, x, y).
- 5. An element m of the A-module M is called a torsion element if xm = 0 for some non-zero $a \in A$. The set of torsion elements in M is denoted by Tor(M).
 - If A is an integral domain then prove that Tor(M) is a submodule of M. Give an example so that Tor(M) is not a submodule.
 - Show that if A has zero divisors than every non-zero A-module has torsion elements.