METU, Spring 2012, Math 515.

Homework 2

(due March 19)

Do not forget stapling your homework!

1. Let A be a ring with nilradical \mathfrak{N} and Jacobson radical \mathfrak{R}.

- Show that $x \in \mathfrak{R} \Leftrightarrow 1-x y \in A^{\times}$for all $y \in A$.
- If A is a finite ring, then show that $\mathfrak{N}=\mathfrak{R}$. (Hint: For each $y \in A$, show the existence of an element $e=y^{k} \in A$ such that $e^{2}=e$. Can $1-e$ be a unit in A ?)

2. Let \mathfrak{a} and \mathfrak{b} be ideals of a ring A. Is the following statement true for positive integers m and n ? Prove or disprove.

$$
\mathfrak{a}+\mathfrak{b}=(1) \Leftrightarrow \mathfrak{a}^{n}+\mathfrak{b}^{m}=(1) .
$$

3. Let $\mathcal{O}=\mathbf{Z}[\sqrt{-5}]$ and consider the ideals $\mathfrak{p}=(2,1+\sqrt{-5})$ and $\mathfrak{q}=(3,1-\sqrt{-5})$. In this question, please do not use technical tools from Math 523.

- Show that \mathfrak{p} and \mathfrak{q} are not principal ideals. Are they maximal?
- Describe the ideals $\mathfrak{p}+\mathfrak{q}, \mathfrak{p} \cap \mathfrak{q},(\mathfrak{p}: \mathfrak{q}),(\mathfrak{q}: \mathfrak{p})$ by giving generators. For each ideal check if it is principal, or not.
- Consider the set $S=\{\alpha \in \mathcal{O}: \alpha-1 \in \mathfrak{p}, \alpha-2 \sqrt{-5} \in \mathfrak{q}\}$. Give a condition on integers x and y so that $x \sqrt{-5}+y$ is an element of S. Is your condition necessary for $x \sqrt{-5}+y$ to be in S ?

4. If $T: V \rightarrow V$ is a linear transformation on a vector space V over a field \mathbf{F}, then V can be made into an $\mathbf{F}[x]$-module by setting $x v=T v$ for any $v \in V$. For each of the following transformations T, find all $\mathbf{F}[x]$-submodules of V.

- $V=\mathbf{R}^{2}$ and $T(x, y)=(-y, x)$.
- $V=\mathbf{R}^{2}$ and $T(x, y)=(0, y)$.
- $V=\mathbf{R}^{3}$ and $T(x, y, z)=(z, x, y)$.

5. An element m of the A-module M is called a torsion element if $x m=0$ for some non-zero $a \in A$. The set of torsion elements in M is denoted by $\operatorname{Tor}(M)$.

- If A is an integral domain then prove that $\operatorname{Tor}(M)$ is a submodule of M. Give an example so that $\operatorname{Tor}(M)$ is not a submodule.
- Show that if A has zero divisors than every non-zero A-module has torsion elements.

