METU, Spring 2012, Math 515. Homework 1

(due March 5)

- 1. In this question, use only the basic definitions.
 - Construct a field $\mathbf{F} = \{0, 1, a, b\}$ with 4 elements and give its addition and multiplication tables. Verify that multiplication is distributive over addition.
 - Show that there is no field $\mathbf{F} = \{0, 1, a, b, c, d\}$ with 6 elements.
- 2. Let A be a ring and let B = A[[x]] be the ring of formal power series

$$f = \sum_{n=0}^{\infty} a_n x^n$$

with coefficients in A. Show that $f \in B^{\times} \Leftrightarrow a_0 \in A^{\times}$. Is B a local ring?

- 3. Let A be a finite ring. Prove that every prime ideal of A is maximal.
- 4. Let A be the ring of all continuous functions from the open interval (0, 1) to **R** and set $M_c = \{f \in A : f(c) = 0\}$ for any $c \in (0, 1)$.
 - Show that M_c is a maximal ideal of A.
 - Prove that $M_c \neq (x c)$.
 - Find a maximal ideal \mathfrak{m} of A such that $\mathfrak{m} \neq M_c$ for any $c \in (0, 1)$.
- 5. Let $\mathfrak{a} \subset A$ be an ideal and define

$$\operatorname{rad}(\mathfrak{a}) = \{ x \in A : x^n \in \mathfrak{a} \text{ for some } n \in \mathbf{Z}^+ \}$$

called the radical of ${\mathfrak a}.$

- Give two distinct examples such that $rad(\mathfrak{a}) \neq \mathfrak{a}$.
- Prove that $rad(\mathfrak{a})$ is an ideal containing \mathfrak{a} .
- Prove that $\operatorname{rad}(\mathfrak{a})/\mathfrak{a} = \mathfrak{N}(A/\mathfrak{a})$.