M ETU

Department of Mathematics

1. (12pts) Let A be the ring of all continuous functions from $D=[-1,1] \times[-1,1]$ to \mathbf{R} and set $M_{P}=\left\{f \in A: f\left(x_{0}, y_{0}\right)=0\right\}$ for any point $P=\left(x_{0}, y_{0}\right) \in D$.

- Show that M_{P} is a maximal ideal of A.
- Prove that $M_{(0,0)} \neq(x, y)$.
- Is there a prime ideal \mathfrak{p} of A which is not maximal?

2. ($\mathbf{9 p t s}$) Let p be a prime number. Let \mathbf{F} be a finite field with p elements and let G be a group with p elements. Consider the group ring $A=\mathbf{F}[G]$. Find the nilradical \mathfrak{N} and Jacobson radical \mathfrak{R} of A. (Hint: Construct an ideal $\mathfrak{m}=\operatorname{ker}(\varphi)$ such that $\mathfrak{R} \subseteq \mathfrak{m} \subseteq \mathfrak{N} \subseteq \mathfrak{R}$.)
3. ($\mathbf{9 p t s}$) Let A be an integral domain and let u be a nonzero element of A. Show that $B=A[x] /(x u-1)$ is a finitely generated A-module if and only if u is a unit in A. (Hint: If B is a finitely generated A-module, then show that $x^{k+1}=\sum_{n=1}^{k} a_{n} x^{n}$ for some $k>0$.)
4. (9pts) Let $f^{\prime}, f, f^{\prime \prime}$ be A-module homomorphisms such that the following diagram commutes and suppose that the rows are exact. If f^{\prime} and $f^{\prime \prime}$ are injective then show that f is injective.

$$
\begin{array}{lllllllll}
0 & \rightarrow & M^{\prime} & \rightarrow & M & \rightarrow & M^{\prime \prime} & \rightarrow & 0 \\
& & \downarrow f^{\prime} & & \downarrow f & & \downarrow f^{\prime \prime} & & \\
0 & \rightarrow & N^{\prime} & \rightarrow & N & \rightarrow & N^{\prime \prime} & \rightarrow & 0
\end{array}
$$

5. (9pts) Let \mathfrak{p} be a prime ideal of A. Show that $A_{\mathfrak{p}}$ is a local ring.
6. (12pts) Let $A_{m}=\mathbf{Z} / m \mathbf{Z}$ and $A_{n}=\mathbf{Z} / n \mathbf{Z}$. Set $d=\operatorname{gcd}(m, n)$.

- Construct a non-zero bilinear map $\varphi: A_{m} \times A_{n} \rightarrow A_{d}$ if $d \neq 1$.
- Show that $A_{m} \otimes_{\mathbf{Z}} A_{n} \cong A_{d}$.
- Let $\psi: A_{m} \times A_{n} \rightarrow A_{d}$ be a bilinear map and let $\bar{\psi}: A_{m} \otimes_{\mathbf{z}} A_{n} \rightarrow A_{d}$ be the corresponding map induced by ψ. When is it possible to recover ψ if you are given $\bar{\psi}(x)$ for some $x \in A_{m} \otimes_{\mathbf{z}} A_{n}$?

