M E T U Department of Mathematics

Group	Co	mmutative Algebra	List No.
		Midterm	
Code Acad. Year Semester Instructor	: Math 515 : 2012 : Spring : Küçüksakallı	Name : Last Name : Signature :	
Date Time Duration	: 16/04/2012 : 13:40 : 110 minutes	6 QUESTIONS ON 4 PAGES 60 TOTAL POINTS	5
1 2	3 4 5 6	7	

1. (12pts) Let A be the ring of all continuous functions from $D = [-1, 1] \times [-1, 1]$ to **R** and set $M_P = \{f \in A : f(x_0, y_0) = 0\}$ for any point $P = (x_0, y_0) \in D$.

• Show that M_P is a maximal ideal of A.

• Prove that $M_{(0,0)} \neq (x, y)$.

• Is there a prime ideal \mathfrak{p} of A which is not maximal?

2. (9pts) Let p be a prime number. Let \mathbf{F} be a finite field with p elements and let G be a group with p elements. Consider the group ring $A = \mathbf{F}[G]$. Find the nilradical \mathfrak{N} and Jacobson radical \mathfrak{N} of A. (Hint: Construct an ideal $\mathfrak{m} = \ker(\varphi)$ such that $\mathfrak{R} \subseteq \mathfrak{m} \subseteq \mathfrak{N} \subseteq \mathfrak{N}$.)

3. (9pts) Let A be an integral domain and let u be a nonzero element of A. Show that B = A[x]/(xu-1) is a finitely generated A-module if and only if u is a unit in A. (Hint: If B is a finitely generated A-module, then show that $x^{k+1} = \sum_{n=1}^{k} a_n x^n$ for some k > 0.)

4. (9pts) Let f', f, f'' be A-module homomorphisms such that the following diagram commutes and suppose that the rows are exact. If f' and f'' are injective then show that f is injective.

5. (9pts) Let \mathfrak{p} be a prime ideal of A. Show that $A_{\mathfrak{p}}$ is a local ring.

- 6. (12pts) Let $A_m = \mathbf{Z}/m\mathbf{Z}$ and $A_n = \mathbf{Z}/m\mathbf{Z}$. Set d = gcd(m, n).
 - Construct a non-zero bilinear map $\varphi: A_m \times A_n \to A_d$ if $d \neq 1$.

• Show that $A_m \otimes_{\mathbf{Z}} A_n \cong A_d$.

• Let $\psi : A_m \times A_n \to A_d$ be a bilinear map and let $\overline{\psi} : A_m \otimes_{\mathbf{Z}} A_n \to A_d$ be the corresponding map induced by ψ . When is it possible to recover ψ if you are given $\overline{\psi}(x)$ for some $x \in A_m \otimes_{\mathbf{Z}} A_n$?