M E T U Department of Mathematics

Elementary Number Theory I	
Midterm 2	
Code : Math 365 Acad. Year : 2017 Semester : Fall Instructor : Küçüksakallı	Last Name : Name : Student No. : Signature :
Date: December 4, 2017Time: 17:40Duration: 120 minutes	8 QUESTIONS ON 4 PAGES 100 TOTAL POINTS
1 2 3 4 5 6	7 8

1. (15pts) Find the remainder of $N = 20! + 2^{20}$ upon divison by 23.

2. (10pts) Show that $a^{365} \equiv a \pmod{29}$ for all integers a.

3. (15pts) Prove that $\tau(n)$ is an odd integer if and only if n is a perfect square.

4. (10pts) Find all n, if there is any, such that n! has precisely 60 digits of zeros at the end in its decimal expression.

5. (15pts) Define $F(n) = \sum_{d|n} \mu(d)\sigma(d)$. Compute F(10!).

6. (10pts) Find a function f(n) such that $\sum_{d|n} f(d) = n^2 + 1$. Compute f(6) and f(12).

7. (15pts) Find all solutions of the equation $\phi(n) = 16$.

8. (10pts) Let k be a fixed positive integer. Show that the equation $\phi(n) = k$ has only a finite number of solutions. (Hint: Show that $\phi(n) > \sqrt{n/2}$.)