M E T U
 Department of Mathematics

1. (15pts) Find the remainder of $N=20!+2^{20}$ upon divison by 23 .
2. (10pts) Show that $a^{365} \equiv a(\bmod 29)$ for all integers a.
3. (15pts) Prove that $\tau(n)$ is an odd integer if and only if n is a perfect square.
4. (10pts) Find all n, if there is any, such that $n!$ has precisely 60 digits of zeros at the end in its decimal expression.
5. (15pts) Define $F(n)=\sum_{d \mid n} \mu(d) \sigma(d)$. Compute $F(10!)$.
6. (10pts) Find a function $f(n)$ such that $\sum_{d \mid n} f(d)=n^{2}+1$. Compute $f(6)$ and $f(12)$.
7. (15pts) Find all solutions of the equation $\phi(n)=16$.
8. (10pts) Let k be a fixed positive integer. Show that the equation $\phi(n)=k$ has only a finite number of solutions. (Hint: Show that $\phi(n)>$ $\sqrt{n} / 2$.)
