M E T U Department of Mathematics

Elementary Number Theory I	
Midterm 1	
Code : Math 365 Acad. Year : 2017 Semester : Fall Instructor : Küçüksakallı	Last Name : Name : Student No. : Signature :
Date: November 6, 2014Time: $17:40$ Duration: 120 minutes	8 QUESTIONS ON 4 PAGES 100 TOTAL POINTS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 8

1. (15pts) Let a = 3655 and b = 2021. Show that gcd(a, b) = 43. Find $x, y \in \mathbb{Z}$ such that ax + by = 43.

2. (10pts) Give the precise statement of the Fundamental Theorem of Arithmetic. Provide a few examples to illustrate its conclusion.

3. (15pts) Let a, b and c be positive integers and let x and y be integer variables. Prove or disprove the following statement: "The Diophantine equation ax + by = c has a solution if and only if the Diophantine equation ax + cy = b has a solution."

4. (10pts) Let a and b positive integers such that gcd(a, b) = 1. Suppose that ab is a perfect square, i.e. $ab = c^2$ for some integer c. Show that each one of the integers a and b is a perfect square.

5. (15pts) Let $S = \{2, 3, 5, 7, 13, 17, 19, 23, 29, 37, 43, ...\}$ be the set of primes that are NOT of the form 5k + 1. Show that S is infinite. (Do not use Dirichlet's Theorem.)

6. (10pts) Consider the 1000 digit number N = 111...111 which consists of 1000 digits of ones. Determine the remainder of N upon division by 13.

7. (15pts) Find all solutions of the following system of equations:

 $2x \equiv 2 \pmod{4}, \quad 3x \equiv 1 \pmod{5}, \quad 4x \equiv 3 \pmod{9}.$

8. (10pts) The student ID-number of a university is of the form $a_1a_2a_3a_4a_5a_6 - c$ where six digits are followed by a check digit c that satisfies the congruence $c \equiv a_1 + 2a_2 + 3a_3 + 4a_4 + 5a_5 + 6a_6 \pmod{10}$. Cahit's student ID-number is 365x42 - 8. Is it possible to find the missing digit x? If it is possible, then find it. If it is not possible, then explain why.