M ET U
 Department of Mathematics

Elementary Number Theory I Midterm 1			
Code Acad. Year Semester Instructor	: Math 365 : 2017 : Fall : Küçüksakallı	Last Name Name Student No. Signature	
Time Duration	$: 17: 40$: 120 minutes	8 QUESTIONS ON 4 PAGES 100 TOTAL POINTS	
${ }^{2}$	${ }^{3} \quad{ }^{4}{ }^{5}$	${ }^{7}{ }^{8}$	

1. (15pts) Let $a=3655$ and $b=2021$. Show that $\operatorname{gcd}(a, b)=43$. Find $x, y \in \mathbb{Z}$ such that $a x+b y=43$.
2. (10pts) Give the precise statement of the Fundamental Theorem of Arithmetic. Provide a few examples to illustrate its conclusion.
3. (15pts) Let a, b and c be positive integers and let x and y be integer variables. Prove or disprove the following statement: "The Diophantine equation $a x+b y=c$ has a solution if and only if the Diophantine equation $a x+c y=b$ has a solution."
4. (10pts) Let a and b positive integers such that $\operatorname{gcd}(a, b)=1$. Suppose that $a b$ is a perfect square, i.e. $a b=c^{2}$ for some integer c. Show that each one of the integers a and b is a perfect square.
5. (15pts) Let $S=\{2,3,5,7,13,17,19,23,29,37,43, \ldots\}$ be the set of primes that are NOT of the form $5 k+1$. Show that S is infinite. (Do not use Dirichlet's Theorem.)
6. (10pts) Consider the 1000 digit number $N=111 \ldots 111$ which consists of 1000 digits of ones. Determine the remainder of N upon division by 13 .
7. (15pts) Find all solutions of the following system of equations:

$$
2 x \equiv 2 \quad(\bmod 4), \quad 3 x \equiv 1 \quad(\bmod 5), \quad 4 x \equiv 3 \quad(\bmod 9) .
$$

8. (10pts) The student ID-number of a university is of the form $a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}-c$ where six digits are followed by a check digit c that satisfies the congruence $c \equiv a_{1}+2 a_{2}+3 a_{3}+$ $4 a_{4}+5 a_{5}+6 a_{6}(\bmod 10)$. Cahit's student ID-number is $365 x 42-8$. Is it possible to find the missing digit x ? If it is possible, then find it. If it is not possible, then explain why.
