M E T U Department of Mathematics

Elementary Number Theory I										
Final										
Code	: Mati		Last Name :							
Acad. Year : 2017					Name :					
Semester	: Fall	: Fall								
Instructor	ıctor : Küçüksakallı					Student No. :				
					Signature :					
Date : January 8, 2018				ŀ	8 QUESTIONS ON 4 PAGES					
Time	Time : 13:30									
Duration : 135 minutes					100 TOTAL POINTS					
1 2	3	4	5	6	7		8			

1. (15pts) Find the last three digits of $N = 7^{799}$. In other words, find the remainder of N upon division by 1000.

2. (10pts) Suppose that $n = 79 \cdot 97$. Show that the equation $x^{365} \equiv 2017 \pmod{n}$ has a solution modulo n.

- 3. (15pts) Suppose that p is an odd prime, and suppose also that q = 4p + 1 is prime.
- (i) Prove that $\left(\frac{2}{q}\right) = -1.$

(ii) Prove that 2 is a primitive root modulo q.

4. (10pts) You are given that 2 is a primitive root modulo 61. Find all positive integers less than 61 having order 10 modulo 61.

5. (15pts) In this question, fill in the blanks and prove the statements: We have

$$\left(\frac{-3}{p}\right) = \begin{cases} 1 & \text{if} \\ -1 & \text{if} \end{cases}$$

for each prime $p \ge 5$. If a prime number q divides an integer of the form $n^2 + 3$, then q = 2, 3 or $q \equiv$ _____.

6. (10pts) Recall that a Carmichael number is an odd composite number n which satisfies Fermat's little theorem $a^{n-1} \equiv 1 \pmod{n}$ for every a such that gcd(a, n) = 1. Show that $n = 561 = 3 \cdot 11 \cdot 17$ is a Carmichael number. 7. (15pts) Let n = pqr where p, q and r are distinct odd primes. Show that the equation

 $x^2 \equiv 1 \pmod{n}$

has at least eight distinct solutions modulo n. (Hint: Chinese Remainder Theorem)

8. (10pts) Recall that $\sigma(n)$ denotes the sum of positive divisors of n. Let k be a fixed positive integer. Show that the equation $\sigma(n) = k$ has finitely many solutions.