M ET U
 Department of Mathematics

Elementary Number Theory I			
Final			
Code	: Math 365	Last Name Name Student No. Signature	
Acad. Year	: 2017		
Semester	: Fall		
Instructor	: Küçüksakallı		
Date Time	: January 8, 2018 : 13:30	8 QUESTIONS ON 4 PAGES100 TOTAL POINTS	
Duration	: 135 minutes		
${ }^{2}$	${ }^{3}{ }^{4}{ }^{4}$		

1. (15pts) Find the last three digits of $N=7^{799}$. In other words, find the remainder of N upon division by 1000 .
2. (10pts) Suppose that $n=79 \cdot 97$. Show that the equation $x^{365} \equiv 2017(\bmod n)$ has a solution modulo n.
3. (15pts) Suppose that p is an odd prime, and suppose also that $q=4 p+1$ is prime.
(i) Prove that $\left(\frac{2}{q}\right)=-1$.
(ii) Prove that 2 is a primitive root modulo q.
4. (10pts) You are given that 2 is a primitive root modulo 61 . Find all positive integers less than 61 having order 10 modulo 61 .
5. (15pts) In this question, fill in the blanks and prove the statements: We have

$$
\left(\frac{-3}{p}\right)=\left\{\begin{array}{cc}
1 & \text { if } \\
-1 & \text { if } \\
\square
\end{array}\right.
$$

for each prime $p \geq 5$. If a prime number q divides an integer of the form $n^{2}+3$, then $q=2,3$ or $q \equiv$
6. (10pts) Recall that a Carmichael number is an odd composite number n which satisfies Fermat's little theorem $a^{n-1} \equiv 1(\bmod n)$ for every a such that $\operatorname{gcd}(a, n)=1$. Show that $n=561=3 \cdot 11 \cdot 17$ is a Carmichael number.
7. (15pts) Let $n=p q r$ where p, q and r are distinct odd primes. Show that the equation

$$
x^{2} \equiv 1 \quad(\bmod n)
$$

has at least eight distinct solutions modulo n. (Hint: Chinese Remainder Theorem)
8. (10pts) Recall that $\sigma(n)$ denotes the sum of positive divisors of n. Let k be a fixed positive integer. Show that the equation $\sigma(n)=k$ has finitely many solutions.

