METU Mathematics Department
 MATH 112: Exercise set X

1. Find all the nonisomorphic complete bibartite graphs $G=(V, E)$ with $|V|=6$.
2. Prove that any subgraph of a bibartite graph is bibartite.
3. Let m, n be integers with $m \geq n \geq 2$.
(a) How many cycles of length 4 are there in $K_{m, n}$?
(b) How many different paths of length 3 are there in $K_{m, n}$?
4. Let G_{n} be a convex polygon with n vertices and n edges. For which values of n, is G_{n} bibartite?
5. Let $n \geq 4$ be an integer. How many subgraphs of K_{n} is isomorphic to the complete bibartite graph $K_{1,3}$.
6. Determine which of the following graphs are planar.
(a)

(b)

(c)

(d)

7. Prove that every loop-free connected planar graph has a vertex with degree strictly less than 6.
8. Let $G=(V, E)$ be a loop-free connected 4-regular planar graph. If $|E|=16$, how many regions are there in a planar depiction of G.
9. Suppose that a connected planar graph has 30 edges. If a planar representation of this graph divides the plane into 20 regions, how many vertices does this graph have?
10. Which of the nonplanar graphs $K_{5}, K_{6}, K_{3,3}, K_{3,4}$ have the property that the removal of any vertex and all edges incident with that vertex produces a planar graph.
