METU, Fall 2010, Math 111, Section 1.
 Homework 6

1. Show that

$$
\sum_{a=1}^{n} \frac{1}{\sqrt{a}}>\sqrt{n}
$$

for all $n \in \mathbb{N}$ such that $n \geq 2$.
2. Define a sequence by setting $r_{0}=1$ and $r_{n+1}=4 r_{n}+7$ for all $n \in \mathbb{N}$. Prove that

$$
r_{n}=\frac{1}{3}\left(10 \cdot 4^{n}-7\right)
$$

for all $n \in \mathbb{N}$.
3. Define a sequence by setting $a_{0}=a_{1}=1$ and

$$
a_{n}=\frac{1}{3}\left(a_{n-1}+\frac{2}{a_{n-2}}\right)
$$

for all $n \in \mathbb{N}$ such that $n \geq 2$. Prove that $1 \leq a_{n} \leq 3 / 2$ for all $n \in \mathbb{N}$.
4. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function. For each part, give either a proof or a counterexample to justify your answer.

- There must exist $k \in \mathbb{N}$ such that $f(n) \leq f(k)$ for all $n \in \mathbb{N}$.
- There must exist $k \in \mathbb{N}$ such that $f(k) \leq f(n)$ for all $n \in \mathbb{N}$.

5. Prove that $\sqrt[3]{5}$ is irrational.
