METU, Fall 2010, Math 111, Section 1. Homework 5

1. In each case, determine whether or not R is a partial order. If so, is it a total order?

- $R=\{(x, y) \in \mathbb{R} \times \mathbb{R}: x \geq y\}$.
- $R=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: x^{2} \geq y^{2}\right\}$.
- $R=\{(x, y) \in \mathbb{R} \times \mathbb{R}:|x|>|y|\}$.

2. Suppose R is a relation on A. Prove that R is both symmetric and antisymmetric if and only if $R \subseteq \mathrm{id}_{A}$.
3. Suppose R_{1} and R_{2} are partial orders on A. For each part, give either a proof or a counterexample to justify your answer.

- Must $R_{1} \cap R_{2}$ be a partial order on A ?
- Must $R_{1} \cup R_{2}$ be a partial order on A ?

4. Let D be the divisibility relation on the set of integers. Let $B=\{x \in \mathbb{Z}: x>1\}$.

- What are the D-minimal elements of B ?
- Does B have a D-minimum element? If so, what is it?

5. Prove that for all $n \in \mathbb{N}$,

- $1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$.
- $a-b$ divides $a^{n}-b^{n}$ where $a, b \in \mathbb{Z}$.

