METU, Fall 2010, Math 111, Section 1.
 Homework 4

Throughout this homework, let f be a function from A to B. In other words

$$
f: A \rightarrow B
$$

1. A function $g: B \rightarrow A$ is called a right inverse of f if $f \circ g=\mathrm{id}_{B}$. Show that the function f has a right inverse if and only if it is surjective.
2. Let X be a subset of A. Consider the function from the power set $\mathcal{P}(A)$ to the power set $\mathcal{P}(B)$ induced by images

$$
\left.\begin{array}{rl}
F: \mathcal{P}(A) & \rightarrow \mathcal{P}(B) \\
X & \mapsto
\end{array}\right) f(X) .
$$

If X_{1} and X_{2} are arbitrary subsets of A, then show that

$$
F\left(X_{1} \cap X_{2}\right) \subseteq F\left(X_{1}\right) \cap F\left(X_{2}\right)
$$

Give an example of a function f, where this inclusion is proper.
3. Let Y be a subset of B. The preimage of Y under f is given by

$$
f^{-1}(Y)=\{x \in A: f(x) \in Y\}
$$

Consider the function from the power set $\mathcal{P}(B)$ to the power set $\mathcal{P}(A)$ induced by preimages

$$
\begin{array}{rllc}
G: \mathcal{P}(B) & \rightarrow & \mathcal{P}(A) \\
Y & \mapsto & f^{-1}(Y) .
\end{array}
$$

If Y_{1} and Y_{2} are arbitrary subsets of B, then show that

$$
G\left(Y_{1} \cap Y_{2}\right)=G\left(Y_{1}\right) \cap G\left(Y_{2}\right) .
$$

4. Let S be a relation on B. Define a relation R on A as follows:

$$
R=\{(x, y) \in A \times A:(f(x), f(y)) \in S\} .
$$

- Prove that if S is reflexive, then so is R.
- Prove that if S is symmetrice, then so is R.
- Prove that if S is transitive, then so is R.

5. Suppose R and S are equivalence relations on A and $A / R=A / S$. Prove that $R=S$.
