## METU, Fall 2010, Math 111, Section 1. <br> Homework 2

1. Simplify the logical formula

$$
\neg(((P \vee Q) \wedge R) \Rightarrow \neg Q)
$$

by writing it with symbols $\{\neg, \wedge\}$ only.
2. Using the system of detachment, demonstrate the validity of the argument

$$
\{P \Rightarrow R, \neg P \Rightarrow Q, Q \Rightarrow S\} \vDash \neg R \Rightarrow S .
$$

3. Show that

$$
\{P \Rightarrow Q, \neg Q\} \vDash \neg P
$$

is valid by using truth values and tables. Using this argument, illustrate the following rules of logical reasoning:

- Contradiction
- Contraposition
- Deduction

4. For the universe of integers, let $P(x, y)$ mean $x$ divides $y$. State whether the following statements are true or false. Justify briefly.

- $\exists x \forall y P(x, y)$
- $\exists y \forall x P(x, y)$
- $\exists x \exists y P(x, y)$
- $\forall x \forall y P(x, y)$

5. Express the given sentences in logical symbols where the universe of discourse is positive integers. Write the negation of these sentences in logical symbols and words.

- If $x$ is odd then $x^{2}-1$ is even.
- If $x$ is a prime number and $x \equiv 1(\bmod 4)$ then there exists $m$ and $n$ such that $x=m^{2}+n^{2}$.

