Make-up exam

Math 111 (Berkman, Küçüksakallı, Pamuk, Pierce)

January 22, 2011

Problem 1. Find either a disjunctive or a conjunctive normal form (DNF or CNF) of the propositional formula

$$(P \Rightarrow Q) \land R.$$

Problem 2. Are the following sets countable or uncountable? Explain briefly.

- a. The set of points on a line in \mathbb{R}^3 .
- b. The set of points on a circle in \mathbb{R}^2 .
- c. The set of finite sequences of integers.
- d. The set of algebraic numbers. (A real number is called algebraic if it is the root of a nonzero polynomial with integer coefficients.)

Problem 3. On \mathbb{Z} , define the relation E so that $x \in y$ if and only if the product xy is a square (that is, $xy = z^2$ for some z in \mathbb{Z}). It is known that, if $x \in \mathbb{Q}$ and $x^2 \in \mathbb{Z}$, then $x \in \mathbb{Z}$.

- a. Show that E is an equivalence relation on \mathbb{Z} .
- b. Determine, with justification, whether there are well-defined operations \cdot and + on \mathbb{Z}/E given by

$$[x] \cdot [y] = [x \cdot y], \qquad [x] + [y] = [x + y].$$

Problem 4. Let $f: A \to B$. Prove or disprove:

- a. If f is one-to-one, then the left inverse of f is unique.
- b. If f is a bijection, then its inverse is unique.

Problem 5. Let \leq_X and \leq_Y be partial orderings on sets X and Y respectively. Define a new ordering \leq on $X \times Y$ as follows:

$$(x_1, y_1) \leqslant (x_2, y_2) \iff x_1 < x_2 \lor (x_1 = x_2 \land y_1 \leqslant_Y y_2).$$

It is given that \leq is a partial ordering: you need not prove this.

- a. If \leq_X and \leq_Y are linear orderings, prove that \leq also is a linear ordering.
- b. If \leq_X and \leq_Y are well-orderings, prove that \leq also is a well-ordering.

Problem 6. Define the integer sequence $a_0, a_1, a_2, a_3, \ldots$, recursively by

 $a_0 = 1,$ $a_1 = 1,$ $a_2 = 2,$ $a_{n+3} = a_{n+2} + a_n.$

Prove that $a_{n+2} \ge (\sqrt{2})^n$ for all n.

Problem 7. Prove or give a counterexample to each of the following statements with given universe of discourse.

- $\forall x \ \forall y \ ((x-2)(y^2+5) > 0)$, the universe of discourse is \mathbb{R} .
- $\forall x \exists y (3x + 4y = 5)$, the universe of discourse is \mathbb{Q} .
- $\exists x \exists y \ (x^2 x = 2y + 1)$, the universe of discourse is \mathbb{Z} .