Make-up exam

Math 111 (Berkman, Küçüksakall, Pamuk, Pierce)
January 22, 2011

Problem 1. Find either a disjunctive or a conjunctive normal form (DNF or CNF) of the propositional formula

$$
(P \Rightarrow Q) \wedge R .
$$

Problem 2. Are the following sets countable or uncountable? Explain briefly.
a. The set of points on a line in \mathbb{R}^{3}.
b. The set of points on a circle in \mathbb{R}^{2}.
c. The set of finite sequences of integers.
d. The set of algebraic numbers. (A real number is called algebraic if it is the root of a nonzero polynomial with integer coeficients.)

Problem 3. On \mathbb{Z}, define the relation E so that $x E y$ if and only if the product $x y$ is a square (that is, $x y=z^{2}$ for some z in \mathbb{Z}). It is known that, if $x \in \mathbb{Q}$ and $x^{2} \in \mathbb{Z}$, then $x \in \mathbb{Z}$.
a. Show that E is an equivalence relation on \mathbb{Z}.
b. Determine, with justification, whether there are well-defined operations • and + on \mathbb{Z} / E given by

$$
[x] \cdot[y]=[x \cdot y], \quad[x]+[y]=[x+y] .
$$

Problem 4. Let $f: A \rightarrow B$. Prove or disprove:
a. If f is one-to-one, then the left inverse of f is unique.
b. If f is a bijection, then its inverse is unique.

Problem 5. Let \leqslant_{X} and \leqslant_{Y} be partial orderings on sets X and Y respectively. Define a new ordering \leqslant on $X \times Y$ as follows:

$$
\left(x_{1}, y_{1}\right) \leqslant\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}<x_{2} \vee\left(x_{1}=x_{2} \wedge y_{1} \leqslant Y y_{2}\right)
$$

It is given that \leqslant is a partial ordering: you need not prove this.
a. If \leqslant_{X} and \leqslant_{Y} are linear orderings, prove that \leqslant also is a linear ordering.
b. If \leqslant_{X} and \leqslant_{Y} are well-orderings, prove that \leqslant also is a well-ordering.

Problem 6. Define the integer sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$, recursively by

$$
a_{0}=1, \quad a_{1}=1, \quad a_{2}=2, \quad a_{n+3}=a_{n+2}+a_{n} .
$$

Prove that $a_{n+2} \geqslant(\sqrt{2})^{n}$ for all n.

Problem 7. Prove or give a counterexample to each of the following statements with given universe of discourse.

- $\forall x \forall y\left((x-2)\left(y^{2}+5\right)>0\right)$, the universe of discourse is \mathbb{R}.
- $\forall x \exists y(3 x+4 y=5)$, the universe of discourse is \mathbb{Q}.
- $\exists x \exists y\left(x^{2}-x=2 y+1\right)$, the universe of discourse is \mathbb{Z}.

