Name:

Student number:

METU MATH 111, EXAM 2,

Tuesday, December 13, 2010, at 17:40

Instructors: A. Berkman, Ö. Küçüksakallı, S. Pamuk, D. Pierce

Instructions: There are 7 numbered problems on 4 pages. Please work carefully. It should be obvious to the grader how to read your solutions.

Problem 1. Write down a bijection from the interval (1, 2) to \mathbb{R} . (You need not prove that it is a bijection.)

-

$$(1,2) \rightarrow (-\frac{\pi}{2}, \frac{\pi}{2})$$

$$\times \longmapsto \pi \times -\frac{3\pi}{2}$$

$$(-\pi/2, \pi/2) \rightarrow \mathbb{R}$$

$$\times \longmapsto +\alpha \times$$

$$(1,2) \rightarrow (-\pi/2, \pi/2) \rightarrow \mathbb{R}$$

$$\times \longmapsto +\alpha \times$$

Problem 2. In this problem,

- $\mathcal{P}(A)$ stands for the power set of A,
- ullet S is the set of polynomials in the variable x with integer coefficients,
- $T = {\pi^k + n : k, n \in \mathbb{N}}$ (where π is the usual irrational constant).

Let

$$\Omega = \{ \mathbb{N}, \mathbb{Q}, \mathbb{R}, \mathbb{N} \times \mathbb{R}, \mathbb{N} \times \mathbb{Z}, \mathbb{R} \smallsetminus \mathbb{Q}, \mathscr{P}(\mathbb{R}), \mathscr{P}(\mathbb{Q}), S, T \}.$$

It is known that the partition of Ω with respect to equipollence (\approx) can be written as $\{A_0, A_1, A_2\}$. Find the sets A_0, A_1, A_2 . (You are not required to prove your answer; but you will lose points if you puts elements of Ω into the wrong sets A_i .)

$$A_0 = \{N, Q, N \times Z, S, T\}$$

 $A_1 = \{R, N \times R, R \setminus Q, P(Q)\}$
 $A_2 = \{P(R)\}$

Problem 3. Let A, B, C, and D be subsets of some universal set \mathcal{U} .

(a) Prove that $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$.

If $(A\times B)U((\times D) = \emptyset$, then we are done. Otherwise pick an orbitary $(x,y) \in (A\times B)U((\times D))$. Now $(x,y) \in A\times B$ or $(x,y) \in (\times D)$. So $x \in A$ or $x \in C$ and $y \in B$ or $y \in D$. It follows that $x \in AUC$ and $y \in BUD$. Therefore $(x,y) \in (AUC) \times (BUD)$.

(b) Give an example where the inclusion in (a) is proper.

Pick
$$A=D=\emptyset$$
 and $B=C=\S13$. Then
$$(A\times B)\cup(C\times D)=\emptyset$$
but
$$(A\cup C)\times(B\cup D)=\S(1,1)3\neq\emptyset$$

Problem 4. If f and g are different functions from a set A to a set B, show that $f \cup g$ is not a function.

Suppose f and g are different functions. Then there exists $a \in A$ s.t. $f(a) \neq g(a)$. Consider the relation $P = f \lor g$. Note that $(a, f(a)) \in P$ and $(a, g(a)) \in P$. Since there are two possible images for $a \in A$, P is not a function.

Problem 5. Let $A = \{0, 1\}$. Answer, with proof, the following two questions. On the set $\{0, 1\}$ with two elements, is there

(a) a relation R that is reflexive and symmetric, but not transitive?

No! If there were such a robotion R, then R would include $\{(0,0),(1,1)\}$ since it is reflexive. To make it not-transitive we should add either (0,1) or ((,0)). On the other hand, to keep R symmetric we have to add both (0,1) and (1,0). Then R has to be AXA which is transitive. Hence there is no way we can find such a relation.

(b) a relation T that is symmetric and transitive, but not reflexive?

Yes! $T = \S(0,0)\S$. T is not reflexive because (1,1) \(\xi \) It is clear that T is symmetric and trousifive.

Problem 6. Assume $f: A \to B$ and $g: B \to C$. If $g \circ f$ is one-to-one (that is, injective), must g be one-to-one? Prove your answer.

No! Consider the following counter-example $A=\S13$, $B=\S1,23$, $C=\S13$, $f=\S(1,1)3$, $g=\S(1,1)$, (2,1)3. The composition $gof=\S(1,1)3$ is I-1 but g is not one-to-one.

Problem 7. Suppose $f: A \to B$, and f has the property that, for all subsets X of A, $f[X^c] = (f[X])^c$.

(Here $f[X] = \{f(y) : y \in X\}$, also denoted by f(X).)

(a) Show that f is surjective (that is f[A] = B). (Hint: Consider $X = \emptyset$.)

$$f(A) = f(A_c) = f(A_c) = A_c = B$$

(b) Show that f is injective. (Hint: If $d \neq e$ in A, show $f(d) \notin f[\{e\}]$.)

To show f is injective, we should show
$$f(d)=f(e) \Rightarrow d=e$$

Alternatively we can use $d\neq e \Rightarrow f(d)\neq f(e)$

Pick die EA sit $d \neq e$. Then $d \notin Se3$ and $d \in Se3$ The follows that $f(d) \in f(Se3) = f(Se3)^c$. Thus $f(d) \notin f(Se3)$. As a result of this, we have $f(d) \neq f(e)$. Therefore f is injective.