M ETU
 Department of Mathematics

1. (15pts) Consider the sequence s_{n} of natural numbers given by $s_{1}=5$ and $s_{2}=13$ and $s_{n}=5 s_{n-1}-6 s_{n-2}$ for all $n \geq 3$. Show that $s_{n}=2^{n}+3^{n}$ for all $n \geq 1$.

Solution: For $n=1$ and $n=2$, the formula $s_{n}=2^{n}+3^{n}$ is valid since we have $s_{1}=$ $2^{1}+3^{1}=5$ and $s_{2}=2^{2}+3^{2}=13$, respectively. Suppose that the formula $s_{n}=2^{n}+3^{n}$ holds for all $n \in\{1, \ldots, k\}$ for some positive integer $k \geq 2$. We have

$$
\begin{aligned}
s_{k+1} & =5 s_{k}-6 s_{k-1} \\
& =5\left(2^{k}+3^{k}\right)-6\left(2^{k-1}+3^{k-1}\right) \\
& =2^{k}(5-3)+3^{k}(5-2) \\
& =2^{k+1}+3^{k+1} .
\end{aligned}
$$

We see that the formula $s_{n}=2^{n}+3^{n}$ holds for $n=k+1$. We conclude that the formula $s_{n}=2^{n}+3^{n}$ holds for all $n \geq 1$ by induction.
2. (10pts) Show that the set $S=(\mathbb{Z} \times \mathbb{R}) \cap(\mathbb{R} \times \mathbb{N})$ is countable.

Solution: We start with noting

$$
S=(\mathbb{Z} \times \mathbb{R}) \cap(\mathbb{R} \times \mathbb{N})=(\mathbb{Z} \cap \mathbb{R}) \times(\mathbb{R} \cap \mathbb{N})=\mathbb{Z} \times \mathbb{N}
$$

Recall that \mathbb{Z} and \mathbb{N} are both countable. As a result, $\mathbb{Z} \times \mathbb{N}$ is countable too. Therefore the set S is countable
3. (12pts) For each of the following, determine if it is TRUE or FALSE. Explain briefly.
(i) There exists an injective function $f: \mathbb{R} \rightarrow \mathbb{Q}$.

Solution: FALSE. Recall that $\mathbb{Q} \sim \mathbb{N}$. If there were such a function then \mathbb{R} would be countable which is not the case.
(ii) The set $A=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}: m=n^{3}\right\}$ is of the same cardinality as \mathbb{Q}.

Solution: TRUE. The set A is countable by being a subset of a countable set $\mathbb{N} \times \mathbb{N}$. Note that A is infinite, so it is countably infinite. Therefore $A \sim \mathbb{Q}$.
(iii) Let B and C be nonempty sets. If B is countable and if there exists a surjective function $g: B \rightarrow C$, then C is countable.

Solution: TRUE. Since B is countable, there exists a surjective function $\tilde{g}: \mathbb{N} \rightarrow B$. Consider the composite function $g \circ \tilde{g}: \mathbb{N} \rightarrow C$. The function $g \circ \tilde{g}$ is surjective by being a composition of surjective functions. It follows that C is countable.
(iv) Let D be an infinite subset of $\mathbb{N} \times \mathbb{N}$ and let E be an uncountable set. Then the union $D \cup E$ is uncountable.

Solution: TRUE. Assume that $D \cup E$ is countable. Being a subset of a countable set, E must be countable. This is a contradiction. Therefore $D \cup E$ must be uncountable.
4. (13pts) Prove that $2^{2 n}-1$ is divisible by 3 for any positive integer n.

Solution: For $n=1$, it is obvious that $2^{2 \cdot 1}-1=3$ is divisible by 3 . Suppose that $2^{2 k}-1$ is divisible by 3 for some integer $k \geq 1$. We have

$$
\begin{aligned}
2^{2(k+1)}-1 & =2^{2 k+2}-1 \\
& =4 \cdot 2^{2 k}-1 \\
& =\left(3 \cdot 2^{2 k}\right)+\left(2^{2 k}-1\right) .
\end{aligned}
$$

The first part in this final sum is divisible by 3 . Moreover the second part is also divisible by 3 by the induction hypothesis. This proves that $2^{2(k+1)}-1$ is divisible by 3 . Therefore $2^{2 n}-1$ is divisible by 3 for any positive integer n by induction.
5. (15pts) Suppose that $a^{2}+b^{2}=c^{2}$ for some natural numbers a, b and c. Such a triple (a, b, c) is called a Pythagorean triple. Show that the product $a b c$ is divisible by 3 .

Solution: Suppose that $a^{2}+b^{2}=c^{2}$ for some natural numbers a, b and c. Assume that none of a, b and c are divisible by 3 . Then

$$
\begin{aligned}
& (a \equiv 1(\bmod 3) \text { or } a \equiv 2(\bmod 3)) \Longrightarrow a^{2} \equiv 1(\bmod 3) \\
& (b \equiv 1(\bmod 3) \text { or } b \equiv 2(\bmod 3)) \Longrightarrow b^{2} \equiv 1(\bmod 3) \\
& (c \equiv 1(\bmod 3) \text { or } c \equiv 2(\bmod 3)) \Longrightarrow c^{2} \equiv 1(\bmod 3)
\end{aligned}
$$

The equation $a^{2}+b^{2}=c^{2}$ must be satisfied modulo 3 as well. But $1+1 \equiv 1(\bmod 3)$ which is the same as $2 \equiv 1(\bmod 3)$ is impossible. Hence our assumption "none of a, b and c are divisible by $3 "$ must be wrong. It follows that one of a, b or c is divisible by 3 . Thus $a b c$ is divisible 3 .
6. (10pts) If m and n are integers then show that $m^{2}-4 n \neq 2$.

Solution: Assume that m and n are integers such that $m^{2}-4 n=2$. We will derive a contradiction. We have $m^{2}=4 n+2$. Thus m must be even. There exists an integer k such that $m=2 k$. We obtain

$$
2=m^{2}-4 n=(2 k)^{2}-4 n=4 k^{2}-4 n=4\left(k^{2}-n\right)
$$

It follows that $2=4\left(k^{2}-n\right)$. This is a contradiction since 2 is not divisible by 4 .
7. (12pts) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Suppose that $g \circ f$ is bijective. (i) Show that f is injective.

Solution: We are given that $g \circ f$ is bijective. Thus $g \circ f$ is injective. Suppose that $f(x)=f(y)$ for some $x, y \in A$. Then $g(f(x))=g(f(y))$. It follows that $x=y$ since $g \circ f$ is injective. We conclude that f is injective.
(ii) Show that g is surjective.

Solution: We are given that $g \circ f$ is bijective. Thus $g \circ f$ is surjective. Let c be an element of C. There exists an element $a \in A$ such that $g(f(a))=c$ since $g \circ f$ is surjective. Set $b=f(a)$. Observe that $g(b)=c$. In summary, for all $c \in C$ there exists $b \in B$ such that $c=g(b)$. We conclude that g is surjective.

8 (13pts) Let T be the relation defined on $\mathbb{R} \times \mathbb{R}$ as follows: $\left(x_{1}, y_{1}\right) T\left(x_{2}, y_{2}\right)$ if and only if $2 x_{1}-y_{1}=2 x_{2}-y_{2}$. Prove that T is an equivalence relation. Sketch the equivalence classes $[(1,2)]$ and $[(2,1)]$ in the Cartesian coordinate system.

Solution: Let $\left(x_{1}, y_{1}\right)$ be an element of $\mathbb{R} \times \mathbb{R}$. Observe that $2 x_{1}-y_{1}=2 x_{1}-y_{1}$. Thus $\left(x_{1}, y_{1}\right) T\left(x_{1}, y_{1}\right)$. Therefore T is reflexive. Suppose that $\left(x_{1}, y_{1}\right) T\left(x_{2}, y_{2}\right)$ for some elements $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ of $\mathbb{R} \times \mathbb{R}$. We have $2 x_{1}-y_{1}=2 x_{2}-y_{2}$. It follows that $2 x_{2}-y_{2}=2 x_{1}-y_{1}$ and therefore $\left(x_{2}, y_{2}\right) T\left(x_{1}, y_{1}\right)$. We conclude that T is symmetric. Suppose that $\left(x_{1}, y_{1}\right) T\left(x_{2}, y_{2}\right)$ and $\left(x_{2}, y_{2}\right) T\left(x_{3}, y_{3}\right)$ for some elements $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ of $\mathbb{R} \times \mathbb{R}$. Then $2 x_{1}-y_{1}=2 x_{2}-y_{2}$ and $2 x_{2}-y_{2}=2 x_{3}-y_{3}$. It follows that $2 x_{1}-y_{1}=2 x_{3}-y_{3}$ and therefore $\left(x_{1}, y_{1}\right) T\left(x_{3}, y_{3}\right)$. Thus T is transitive.

Observe that

$$
\begin{aligned}
& {[(1,2)]=\left\{(x, y) \in \mathbb{R}^{2}:(1,2) T(x, y)\right\}=\left\{(x, y) \in \mathbb{R}^{2}: 0=2 x-y\right\}} \\
& {[(2,1)]=\left\{(x, y) \in \mathbb{R}^{2}:(2,1) T(x, y)\right\}=\left\{(x, y) \in \mathbb{R}^{2}: 3=2 x-y\right\}}
\end{aligned}
$$

These equivalence classes form parallel straight lines in the Cartesian coordinate system.

